Skip to main content
. 2020 Mar 2;16(3):e1007605. doi: 10.1371/journal.pcbi.1007605

Table 2. Variables, intermediate functions, and reference parameters values.

Symbol Description Units Reference value Source
Upstream module: SAP Receptor and cGMP signalling
SAP and receptor
S Extracellular SAP concentration nM Variable a Eqs 811 b
RF Number of free SAP receptors per cell (flagellum) cell−1 Variable Eqs 811
RH Number of high activity SAP-receptor complexes per cell (flagellum) cell−1 Variable Eqs 811
RL Number of low activity SAP-receptor complexes per cell (flagellum) cell−1 Variable Eqs 811
RT Total number of SAP receptors per cell (flagellum) cell−1 7.36 × 105 F [22], S1 Fig
θR Receptor-bound to soluble SAP concentration conversion factor nM cell 6.14 × 10−5 D (sec. 4.2.1)
s Sperm density in measurement chamber cell mL−1 3.706 × 107 F [22], S1 Fig
r1 SAP-receptor association rate constant nM−1 s−1 2.70 × 10−2 [50]
r2 RH to RL conversion rate constant s−1 8.70 F [22], S1 Fig
r3 RL inactivation rate constant s−1 5.70 × 10−2 F [22], S1 Fig
cGMP
G Intraflagellar cGMP concentration nM Variable Eq 4
Gr Resting cGMP concentration nM 1.25 F [22]
σG Receptor-independent cGMP synthesis rate nM s−1 23.65 F [22], S1 Fig
δG cGMP turnover rate constant s−1 18.92 F [22], S1 Fig
ρG Receptor-dependent cGMP rate cell−1 s−1 Function Eq 14
kL cGMP synthesis rate constant per RL s−1 3.25 F [22], S1 Fig
kH cGMP synthesis rate constant per RH s−1 40.20 F [22], S1 Fig
BG Flagellum cGMP buffering power cell−1 5.49 × 103 F [10]
θG Conversion factor to turn cGMP molecule number into effective intraflagellar concentration nmcell 1.89 × 10−4 D (sec. 4.1.2)
KCNG channels
fkno Fraction of open channels Variable Eq 15
αkn Opening rate constant nM−1 s−1 10 F [10]
βkn Closing rate constant s−1 257 [48]
gkn Maximal conductance density pS μm−2 135.30 Ac [10]
Ikn Current density fA μm−2 Function Eq 18
spHCN channels
mhc Fraction of open gates Variable Eq 19
fhco Fraction of open channels Function mhc3
m^hc Steady state fraction of open channels Function Eq 20
τhc Characteristic time of gating s Function Eq 21
h1 Half-activation voltage mV -50.80 [62, 76]
h2 Voltage sensitivity of activation mV 6.60 [62, 76]
h3 τhc basal value s 9.18 × 10−2 F [62], S2 Fig
h4 τhc amplitude s 1.10 F [62], S2 Fig
h5 Voltage of maximum τhc mV -42 F [62], S2 Fig
h6 Characteristic width of τhc mV 18.50 F [62], S2 Fig
ghc Maximal conductance density pS μm−2 193.50 Ad [10]
Ihc Current density fA μm−2 Function Eq 22
CaV + BK module
Equilibrium parameters for V and C
gL Leakage conductance density pS μm−2 1.94 F [10]e
EL Reversal potential of leakage current mV 80.05 D (Eq 3)
σC CaV-independent Ca2+ source rate constant nm s−1 1.14 × 108 D (sec. 4.6)
δC Ca2+ extrusion rate constant s−1 1.16 × 106 MF
CaV channels
fcvo Fraction of open channels Variable Eq 30
fcvc Fraction of closed channels Variable Eq 31
αcv Inactivation recovery rate s−1 Function Eq 27
βcv Opening rate s−1 Function Eq 28
γcv Inactivation rate s−1 Function Eq 29
v1 Inactivation recovery rate constant mV−1 s−1 10.10 MF
v2 inactivation recovery rate voltage inflexion point mV -55 MF
v3 Inactivation recovery rate voltage sensitivity mV 1.42 MF
v4 Opening rate constant mV−1 s−1 33.80 MF
v5 Opening rate voltage inflexion point mV -39 MF
v6 Opening rate voltage sensitivity mV 2.10 MF
v7 Inactivation rate constant mV−1 s−1 8.10 MF
v8 Inactivation rate voltage inflexion point mV -18 MF
v9 Inactivation rate voltage sensitivity mV 7.50 MF
gcv Maximal conductance density pS μm−2 185.16 MFf
Icv Current density fA μm−2 Function Eq 33
BK channels
fbko Fraction of open channels Variable Eq 45
αbk Opening rate s−1 Function Eq 46
βbk Closing rate constant s−1 97 MF
b1 Opening rate constant nM−1 s−1 0.97 MF
b2 Opening rate [Ca2+]i inflexion point αbk nM 316 MF
b3 Opening rate [Ca2+]i sensitivity nM 30 MF
gbk Maximal conductance density pS μm−2 214.50 MFg
Ibk Current density fA μm−2 Function Eq 47
CatSper + NHE module
Equilibrium parameters for V and C
gL Leakage conductance density pS μm−2 9 MFh
EL Reversal potential of leakage current mV -20.4 D (Eq 3)
σC CatSper-independent Ca2+ source rate constant nM s−1 3.72 × 107 D (sec. 4.6)
δC Ca2+ extrusion rate constant s−1 4.27 × 105 MF
NHE exchangers
fnha Fraction of active exchangers Variable Eq 23
αnh Activation rate s−1 Function Eq 24
βnh Inactivation rate s−1 Function Eq 25
n1 Activation rate constant mV−1 s−1 1.51 MF
n2 activation rate voltage inflexion point mV -65 MF
n3 activation rate voltage sensitivity mV 7 MF
n4 inactivation rate constant mV−1 s−1 0.90 MF
n5 inactivation rate voltage inflexion point mV -30 MF
n6 inactivation rate voltage sensitivity mV 7 MF
Jmax Maximal H+ flux by total active exchangers fmol s−1 3 × 10−7 MF
KNa Na+ dissociation constant mM 25 MF [69]i
CatSper channels
fcso Fraction of open channels Function Eq 34
mcs Fraction of channels with voltage- and pH-dependent gate open Variable Eq 35
hcs Fraction of channels with Ca2+-dependent gate not inactivated Variable Eq 36
vcs pH-dependent voltage leading to half-maximal gate opening at equilibrium mV Function Eq 40
s1 Voltage-dependent gate opening rate constant s−1 270 MF
s2 mcs voltage sensitivity mV 10 MF [12, 83], S3 Fig
s3 Amplitude of vcs response to pHi mV 79.70 F [72], S3 Fig
s4 pHi leading to half-maximal vcs value 7.20 MF [72], S3 Fig
s5 Hill-coefficient of vcs 35.52 F [72]
s6 pHi-independent, minimal vcs value mV -41 MF, S3 Fig
s7 Scaling factor nM 1 MF
s8 [Ca2+]i leading to half-maximal hcs inactivation (IC50) nM 700 MF
s9 Hill coefficient of Ca2+-inactivation curve 2.50 MF
s10 Ca2+-inactivation rate constant nM−1 s−1 1.40 × 10−4 MF
gcs Maximal conductance density pS μm−2 39.90 MF j [72]
Ics Current density fA μm−2 Function Eq 44
Common variables and parameters
V Membrane potential mV Variable Eq 1
Em Resting membrane potential mV -40 [80, 84, 85, 10]
Cm Specific capacitance of flagellum membrane pF μm−2 1 × 10−2 [86] k
vf Intraflagellar volume fL 1.60 [48]
sf Surface area of flagellar membrane μm2 30 D l
[K+]o Extracellular potassium concentration mM 9 [87] m
[K+]i Resting intraflagellar potassium concentration mM 219 [66]
[Na+]o Extracellular sodium concentration mM 423 [87] m
[Na+]i Resting intraflagellar sodium concentration mM 20 [81]
pHo Extracellular pH 8 [87] m
pHr Resting intraflagellar pH 7.10 [81]
[Ca2+]o Extracellular calcium concentration mM 10 [87] m
Cr Resting intraflagellar calcium concentration nM 100 [81, 14]
C Intraflagellar calcium concentration nM Variable Eq 6
H Intraflagellar proton concentration M Variable Eq 5
σH NHE-independent proton source rate constant M s−1 1.50 × 10−7 D (sec. 4.6)
δH Proton extrusion/consumption rate constant s−1 1.28 D (Eq 5)
EK K+ equilibrium potential mV -80 Dn
Ehc Reversal potential of spHCN current mV -18 [61, 62, 63]
ECa Ca2+ equilibrium potential mV 144 Do

a The column entries are a numeric value if the quantity is a parameter or a label whether it is a variable or a function

b The column entries: are a bibliographic reference unlabelled if the values were used as reported in the original publication or with labels F and MF if further processed; a derivation labelled D followed by a reference to the section where its derivation is explained; or a reference to the defining equation(s) defining a variable or function.

c Taking into account the membrane surface of the flagellum sf, and KCNG unitary conductance (110 pS [59]), this implies ∼37 channels per flagellum

d Taking into account the membrane surface of the flagellum sf, and spHCN unitary conductance (43 pS [63]), this would imply ∼135 channels per flagellum

e Fitted in the Upstream module

f Taking into account the membrane surface of the flagellum sf, and CaV unitary conductance (4.70 pS [82]), this implies ∼1182 channels per flagellum

g Taking into account the membrane surface of the flagellum sf, and BK unitary conductance (70 pS [42]), this implies ∼92 channels per flagellum

h Fitted in the complete CatSper + NHE module to conserve the initial drop of membrane potential, whereas allowing calcium signal to return to levels close to resting value after spike-train finishes

i Based on figure 1 of [69]

j Taking into account the membrane surface of the flagellum sf, and assuming that the Ca2+ unitary conductance of CatSper might be below 1 pS, this implies ∼1200 channels per flagellum

k Conventional value for eukaryotic cytoplasmic membranes

l Calculated as the lateral surface of a cylinder with length 40 μm and diameter 0.240 μm

m Typical concentration in artificial seawater used for embryology experiments on marine organisms

n Calculated with the Nernst equation, E=RTzFln[X]o[X]i, having temperature T = 17°C

o Calculated with the Nernst equation, setting temperature T = 17°C, and using the Cr parameter as internal concentration value