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The incidence of oropharyngeal squamous cell carcinoma (OPSCC)

has been rapidly increasing. Disease stage and smoking history
are often used in current clinical trials to select patients for

deintensification therapy, but these features lack sufficient accu-

racy for predicting disease relapse. Our purpose was to develop

an imaging signature to assess early response and predict
outcomes of OPSCC. Methods: We retrospectively analyzed

162 OPSCC patients treated with concurrent chemoradiotherapy,

equally divided into separate training and validation cohorts with
similar clinical characteristics. A robust consensus clustering

approach was used to spatially partition the primary tumor and

involved lymph nodes into subregions (i.e., habitats) based on
18F-FDG PET and contrast CT imaging. We proposed quantitative
image features to characterize the temporal volumetric change of

the habitats and peritumoral/nodal tissue between baseline and

midtreatment. The reproducibility of these features was evaluated.

We developed an imaging signature to predict progression-free
survival (PFS) by fitting an L1-regularized Cox regression model.

Results: We identified 3 phenotypically distinct intratumoral

habitats: metabolically active and heterogeneous, enhancing
and heterogeneous, and metabolically inactive and homoge-

neous. The final Cox model consisted of 4 habitat evolution-based

features. In both cohorts, this imaging signature significantly out-

performed traditional imaging metrics, including midtreatment
metabolic tumor volume for predicting PFS, with a C-index of

0.72 versus 0.67 (training) and 0.66 versus 0.56 (validation). The

imaging signature stratified patients into high-risk versus low-risk

groups with 2-y PFS rates of 59.1% versus 89.4% (hazard ratio,
4.4; 95% confidence interval, 1.4–13.4 [training]) and 61.4% ver-

sus 87.8% (hazard ratio, 4.6; 95% confidence interval, 1.7–12.1

[validation]). The imaging signature remained an independent pre-

dictor of PFS in multivariable analysis adjusting for stage, human
papillomavirus status, and smoking history. Conclusion: The pro-

posed imaging signature allows more accurate prediction of dis-

ease progression and, if prospectively validated, may refine OPSCC
patient selection for risk-adaptive therapy.
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There has been a rapid increase in the prevalence of oropha-
ryngeal squamous cell carcinoma (OPSCC), largely attributable to

the epidemic of oral human papillomavirus (HPV) infection (1).

The current standard treatment for locally advanced OPSCC is

concurrent chemoradiotherapy, which is associated with signifi-

cant morbidity and decreased quality of life. HPV-positive tumors

typically respond well to radiation and chemotherapy, and these

patients tend to have a better prognosis than those with HPV-

negative tumors (2). Current treatment for HPV-positive OPSCC

therefore likely represents overtreatment for many patients.
Currently, there are ongoing and proposed trials that focus on

treatment deescalation in patients with clinically favorable HPV-

positive OPSCC based on tumor/nodal stage and smoking history

(3,4). These clinical features are imperfect, however, and some patients

still develop progressive disease despite having a small tumor. In a

recently reported phase III randomized trial (Radiation Therapy On-

cology Group trial 1016), 987 patients were enrolled on the basis of

clinical stage. This trial unfortunately failed to meet its primary ob-

jective of demonstrating the noninferiority of a less toxic drug (cetux-

imab) versus high-dose cisplatin, which is the current standard

systemic treatment for this disease (5). This result highlights the unmet

need for better prognostic biomarkers to improve risk stratification.
Imaging with CT and 18F-FDG PET is often used in staging,

radiation treatment planning, and response evaluation for patients

with OPSCC (6,7). Numerous studies have investigated imaging

characteristics associated with treatment outcomes, with limited

success (8–18). Most previous studies, however, analyzed baseline

imaging before the initiation of therapy. This approach does not

take into account the response to treatment, which can vary sig-

nificantly across tumors. Another limitation is that most studies

focus on the primary tumor and ignore regional lymph nodes,

which are a frequent site for metastasis in OPSCC.
At our institution, we have been routinely acquiring contrast-

enhanced CT and 18F-FDG PET scans both before and during the

course of radiation treatment for OPSCC. The midtreatment scan

is acquired for radiation replanning purposes, to address potential
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tumor response. An important advantage of midtreatment imaging
is that it allows the assessment of early treatment response, which
may be better correlated with disease outcomes (19,20).
In this work, we investigated the evolution of novel spatio-

temporal imaging characteristics in intratumor subregions (i.e.,
habitats) to assess early response and predict treatment outcomes
in OPSCC patients. We hypothesized that integrating quantitative
image features of the primary tumor and lymph nodes extracted
from baseline and midtreatment imaging will provide a more
complete evaluation of the complex response patterns and may
allow better prediction of clinical outcomes.

MATERIALS AND METHODS

Study Design

The overall study design is shown in Figure 1. In brief, we retro-

spectively collected and analyzed the baseline and midtreatment 18F-
FDG PET and CT scans for patients with OPSCC who were treated

with concurrent chemoradiotherapy. We proposed novel spatiotempo-
ral habitat evolution-based image features to characterize the treat-

ment response in the primary tumor and involved nodes, and we
assessed the stability and reproducibility of extracted features. Next,

we developed an imaging signature to predict PFS in a training
cohort and evaluated it in an independent validation cohort. Fi-

nally, we assessed its independent prognostic value in relation to

established imaging markers and clinicopathologic factors for predict-
ing PFS.

Patient Cohort

In this institutional review board–approved, Health Insurance Por-
tability and Accountability Act–compliant study, we retrospecti-

vely collected data for patients with OPSCC who were consecutively
treated at Stanford University Medical Center from February 2009

to February 2017. In total, 162 oropharyngeal patients were eligible
for this study (Supplemental Fig. 1; supplemental materials are

available at http://jnm.snmjournals.org).
Patients were included if they underwent definitive concurrent

chemoradiotherapy for OPSCC; if pre- and midtreatment contrast-
enhanced CT scans, 18F-FDG PET scans, and radiation treatment

plans were available; and if they had been closely followed with
posttreatment physical examination and PET/CT or MRI at a 3- to

4-mo interval after treatment completion. Patients were excluded if

they did not have biopsy-confirmed squamous cell carcinoma, had
previously received definitive surgery, had metastatic disease at pre-

sentation, or had no primary tumor (T0).
The overall study population was equally divided into separate

training and validation cohorts. To mitigate random effects and ensure
balanced splitting, we stratified the patients by matching T stage, N

stage, HPV status, and smoking history. The demographic and clinical
characteristics of the study population are presented in Table 1, which

show similar distributions between the training and validation cohorts.

Imaging Protocol

All patients underwent an initial 18F-FDG PET scan and separate
contrast-enhanced CT with a standard imaging protocol for radiation

therapy planning. To account for potential tumor response, patients
underwent a second 18F-FDG PET scan and separate contrast-en-

hanced CT for radiation therapy replanning after receiving approx-
imately 30–36 Gy.

We analyzed the PET component of the 18F-FDG PET/CT scan, as
well as a separate treatment-planning CT scan that had been obtained

with contrast medium (not the CT component of the PET/CT scan). Two
types of scanners were used: a GE Healthcare Discovery ST and

a Siemens Biograph. Regarding the imaging protocol, contrast-enhanced
CT scans were acquired at a tube potential of 120 kVand a tube current of

250 mA. CT images had a slice thickness of 1.5 mm and an in-plane
spatial resolution of 0.98 · 0.98–1.17 · 1.17 mm2. After an 8-h fast,

patients were injected with 370–666 MBq (10–18 mCi) of 18F-FDG, with
imaging taking place 60 min later. PET data were acquired in 2-dimen-

sional mode, with a 3- to 5-min acquisition time per bed position. The
PET images were then reconstructed with an ordered-subset expectation

maximization algorithm, using the CT data for attenuation correction. The
spatial resolution of the original PET image was 2.34 · 2.34 · 3.27 mm3.

Image Preprocessing

The primary tumor and involved lymph nodes were separately

contoured on both pre- and midtreatment CT scans for radiation
treatment planning or replanning purposes by an attending radiation

oncologist specializing in head and neck cancer. These contours were
computationally extracted using in-house–developed software in MAT-

LAB (The MathWorks) for subsequent analyses. We then spatially
aligned the pre- and midtreatment contrast-enhanced CT images and

FIGURE 1. Proposed study design.
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the PET and CT images using the rigid registration function of the well-

validated Elastix software (21). The use of rigid rather than deformable
registration is necessary to detect soft-tissue changes and tumor re-

sponse. Moreover, the quality of the registration was carefully inspected
for alignment of the bony structures, including the skull, mandible, and

cervical vertebrae. Each CT slice was manually inspected by a radiation
oncologist for metal artifacts due to dental fillings. Those slices with

severe artifacts were excluded in subsequent analysis, and the effect on
proposed features was adjusted for and evaluated in detail. To reduce the

variability in PET SUV, we normalized the SUV by the average back-
ground activity in a circular region of interest in the aortic arch (22). All

images were resampled at an isotropic spatial resolution of 1.0 mm3 via
the MATLAB (R2017b) function imresize3.

Identification and Validation of Habitat Regions by

Integrated PET and CT Analysis

We proposed a robust partitioning method to identify subregions within
the primary tumor and involved lymph nodes. The method consists

of a 2-step clustering process as outlined in Figure 2. First, at the

patient level, the primary tumor and involved nodes on pre- and
midtreatment images were oversegmented into numerous super-

pixels, respectively. In detail, given precalculated 4-feature maps, in-
cluding PET SUV, CT number, entropy of PET SUV, and entropy of

CT number, the SLIC algorithm (23) was used to generate super-
pixels, with squared Euclidean distance as the similarity metric. We

implemented this with the MATLAB (R2017b) function superpixels3.
Each superpixel contains connected voxels with similar imaging

characteristics as defined by CT number, PET SUV, and spatial
heterogeneity measured by local entropy maps. The similarity between

superpixels in the primary tumor and nodes was visualized with t-SNE
(24,25).

Next, we aggregated all patients’ superpixels in tumor and nodes at
pre- and midtreatment images and performed consensus clustering at

the population level to uncover the number and membership of habitat
regions, whereby superpixels with similar image phenotypes were

merged to form a habitat. In detail, each superpixel was characterized

TABLE 1
Demographic and Clinical Characteristics of Study Cohort

Total (n 5 162) Training (n 5 81) Validation (n 5 81) P

Median age (y) 62.4 (SD, 9.8) 64.3 (SD, 11.2) 62.0 (SD, 8.2) 0.138

Sex (n) 1.0

Male 149 (92.0%) 74 (91.4%) 75 (92.6%)

Female 13 (8.0%) 7 (8.6%) 6 (7.4%)

T category (AJCC 7th ed.) (n) 0.987

T1 20 (12.3%) 10 (12.3%) 10 (12.3%)

T2 58 (35.8%) 30 (37.0%) 28 (34.6%)

T3 46 (28.4%) 23 (28.4%) 23 (28.4%)

T4 38 (23.5%) 18 (22.2%) 20 (24.7%)

N category (AJCC 7th ed.) (n) 0.483

N0 8 (4.9%) 6 (7.4%) 2 (2.5%)

N1 15 (9.3%) 7 (8.6%) 8 (9.9%)

N2 125 (77.2%) 60 (74.1%) 65 (80.2%)

N3 14 (8.6%) 8 (9.9%) 6 (7.4%)

Stage (AJCC 7th ed.) (n) 1.0

I 1 (0.6%) 1 (1.2%) 0 (0%)

II 1 (0.6%) 0 (0%) 1 (1.2%)

III 13 (8.0%) 7 (8.6%) 6 (7.4%)

IV 147 (90.7%) 73 (90.1%) 74 (91.4%)

p16 status (HPV) (n) 0.812

1 142 (87.7%) 70 (86.4%) 72 (88.%9)

− 20 (12.3%) 11 (13.6%) 9 (11.1%)

Smoking history (n) 1.0

.10 pack-years 60 (37.0%) 30 (37.0%) 30 (37.0%)

#10 pack-years 102 (63.0%) 51 (63.0%) 51 (63.0%)

PFS (n) 1.0

No 37 (22.8%) 18 (22.2%) 19 (23.5%)

Yes 125 (77.2%) 63 (77.8%) 62 (76.5%)

Median follow-up (y) 2.1 (SD, 1.3) 2.1 (SD, 1.4) 2.1 (SD, 1.3) 1.0

2-y PFS (n) 1.0

No 32 (19.8%) 16 (19.8%) 16 (19.8%)

Yes 130 (80.2%) 65 (80.2%) 65 (80.2%)
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by these 4 parameters averaged over embraced voxels. Cumulating

superpixels for all patients in a global matrix, consensus clustering
(26) was applied to explore inter- and intrapatient similarity and dis-

cover consistent patterns in the population. Here, we used the parti-
tion-around-medoids clustering algorithm and Euclidean distance. We

performed 10,000 bootstraps with 80% resampling of the superpixels.

The candidate cluster number was tested from 2 to 10, and the optimal
one was selected to produce the most stable consensus matrix and the

least ambiguous cluster assignments across permuted clustering runs.

In particular, the optimal cluster number corresponded to the largest
cluster number that induced the minimum incremental change in the

area under the cumulative distribution function curves, while maxi-
mizing consensus within clusters and minimizing the ambiguity rate in

cluster assignments. We implemented it with R package ConsensusClus-

terPlus. We independently applied the proposed pipeline to discover
habitats in the training and validation cohorts, and quantitatively

FIGURE 2. Proposed habitat discovery framework. Method consists of 2-stage clustering process: individual-level clustering based on CT number,

PET SUV, and their local entropy maps, followed by population-level consensus clustering. pre-RT 5 pretreatment of radiation therapy; mid-RT 5
midtreatment of radiation therapy; t-SNE 5 t-distributed stochastic neighbor embedding.

TABLE 2
Details of Investigated Imaging Features from PET and CT, Including 27 Habitat-Related Features and

13 Conventional Imaging Markers

Type Details n

Habitat-related features

Change of individual habitat region’s burden ΔVolhabitat i where i 5 1,2,3 3

Change for connected habitat region burden measured by MSI matrix ΔMSI i, where i 5 1,…,9 9

Habitat progression via spatiotemporal habitat evolution (SHE) matrix SHE i, where i 5 1,…,15 15

Conventional features

Tumor and node burden from CT (a) Pre.Vol: volume from pre-RT CT; (b) Mid.Vol:
volume from mid-RT CT; (c) ΔVolCT: volume

change

3

Metabolic activity of tumor and node regions from PET Pre-RT PET: (a) Pre.SUVmax; (b) Pre.MTV2.5;
(c) Pre.MTVFCM

9

Mid-RT PET: (d) Mid.SUVmax; (e) Mid.MTV2.5;
(f) Mid.MTVFCM

Change: (g) ΔSUVmax; (h) ΔMTV2.5; (i) ΔMTVFCM

Radiomics signature of tumor Radiomics: prediction model built from set of
600 radiomics features (321 from CT, 279

from PET SUV)

1

Δ 5 mid − pre; pre-RT 5 pretreatment radiotherapy; mid-RT 5 midtreatment radiotherapy; MTVFCM 5 MTV adaptively defined using

fuzzy c-means algorithm; MTV2.5 = MTV defined using SUV of 2.5 as cutoff.
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assessed the consistency of the habitats across two cohorts using the

in-group proportion statistic.

Quantitative Spatiotemporal Habitat Evolution-Based

Image Features

To characterize the complex response patterns during treatment, we

proposed novel quantitative spatiotemporal image features based on
the habitats identified earlier. Specifically, 3 types of image features

were investigated, detailed in Table 2 and Supplemental Table 1. First,
we computed the volumetric change in individual habitat regions from

pre- to midtreatment (i.e., ΔVolhabitat). Second, we investigated how the

overall spatial arrangement of habitat regions evolved during treatment,
by comparing the multiregional spatial interaction (MSI) matrix between

pre- and midtreatment images (Fig. 3A). Briefly, the MSI matrix sum-
marized the spatial cooccurrence statistics among different habitat regions

in the same image. The response metric was calculated as the difference
in MSI between 2 time points (i.e., ΔMSI 5 MSImid 2 MSIpre).

The third category of image features aimed to characterize the
response pattern of the habitats at the voxel level (Fig. 3B). We pro-

posed a spatiotemporal habitat evolution matrix, which summarized
the temporal cooccurrence statistics among different habitats between

the baseline and midtreatment images. To compute the spatiotemporal
habitat evolution matrix, we compared the habitat labels at corre-

sponding voxels between coregistered pre- and midtreatment habitat

maps, and we computed the counts among different habitats by iter-

ating through all voxels. For both MSI and spatiotemporal habitat

evolution matrices, we explicitly included the peritumoral tissue as

a distinct habitat region to account for its relationship with the tumor

and node.

Evaluation for Reproducibility of the Habitat-Related

Image Features

We assessed the stability of the proposed image features against

variations in tumor delineation and image registration, as well as the

effect of dental artifacts. First, the primary tumor and involved lymph

nodes were independently recontoured by a second radiation oncol-

ogist for patients in the training cohort. We repeated the whole

computational analysis based on the new contours and investigated the

feature reproducibility. Second, to assess the impact of image registra-

tion on features based on the spatiotemporal habitat evolution matrix,

we repeated the registration with a different set of parameters in Elastix

and compared the resultant features. Third, we assessed the impact of

dental artifacts on the proposed features by randomly excluding a

similar number of CT slices in patients without dental artifacts. Because

certain image slices are excluded in some patients, this step will result in

smaller habitat volumes, leading to a potential bias in the computed

features. To compensate for this bias, we adjusted for the computed

features with a multiplicative factor assuming similar habitat distribu-

tions in the excluded slices. We compared the

adjusted image features with the ground truth

computed using the complete scan. The intra-

class correlation coefficient was used to eval-

uate the reproducibility of the proposed image

features.

Training and Validation of Imaging

Signature for Predicting

Progression-Free Survival (PFS)

On the basis of the proposed habitat-

based image features, we fitted a multivari-

able Cox proportional-hazards regression

model in the training cohort to predict PFS.

This step was combined with the least-abso-

lute-shrinkage-and-selection-operator algorithm

to mitigate the risk of overfitting. Before

model construction, we assessed the pair-

wise correlation between features and re-

moved redundant features with a Pearson

correlation coefficient of more than 0.9

and lower predictive power in terms of the

C-index to avoid colinearity in fitting the

Cox model. Tenfold cross-validation was

applied and repeated 100 times to mini-

mize potential selection bias, and the most

frequently selected features (.90%) were

used to refit the final Cox model.
Then, we evaluated the performance of the

proposed imaging signature for predicting
PFS in the independent validation cohort.

The ability to predict 2-year PFS (a clinically
relevant endpoint in oropharyngeal cancer)

was assessed by using survival receiver
operating characteristic curve. We also com-

pared the prediction accuracy for the habitat-
based imaging signature with conventional

imaging metrics and the combined model. In
particular, conventional imaging metrics con-

tain pretreatment, midtreatment, and change

FIGURE 3. (A) Implementation of MSI matrix, which summarizes cooccurrence statistics among

different habitat regions and is computed separately for pre- and midtreatment image. ΔMSI

(MSImidtreatment − MSIpretreatment) is calculated to quantify change of spatial habitat interaction.

(B) Implementation of spatiotemporal habitat evolution matrix to summarize temporal cooccur-

rence statistics among spatially coregistered habitat maps, where voxel-level evolution of habitats

from baseline to midtreatment is characterized. In both cases, we explicitly included surrounding

tissue as distinct habitat region to account for its relationship with tumor. pre-RT 5 pretreatment

of radiation therapy; mid-RT 5 midtreatment of radiation therapy.
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of in volume (at CT), SUVmax, and MTV2.5 measured from both tumor

and node regions. In addition, since MTV2.5 may be sensitive to small
and heterogeneous lesions (27), we adopted a previous validated study

(28) to implement a fuzzy c-means algorithm to adaptively define
MTV (MTVFCM). Moreover, we have trained radiomics model based

on a set of 600 features extracted from PET and CT via pyradiomics
(29) (Supplemental Table 1), as well as a clinicopathologic model

based on T stage, N stage, smoking status, and HPV.
We further evaluated the habitat-based model’s performance to

stratify patients within subgroups defined by HPV status, smoking
history, and stage. Finally, we performed multivariable Cox analysis

separately in the training and validation cohorts and tested whether the
proposed imaging signature provided independent prognostic value

beyond clinical and pathologic risk factors (2), including baseline
tumor volume, T stage, N stage, HPV status, smoking history, and

re-planning status at mid-treatment.

Statistical Analysis

The concordance index (c-index) or the Harrell C statistic was used

to assess prognostic accuracy. Kaplan–Meier analysis and log-rank
testing were used to evaluate patient stratification into different risk

groups. The cutoff was based on the median risk score in the training
cohort to divide the patients into high- and low-risk groups, and the

same cutoff was applied to the validation cohort. The hazard ratio was
used to measure the degree of survival difference, and the 95% con-

fidence interval was reported. All statistical tests were 2-sided, with a
P value of less than 0.05 considered significant. All statistical analyses

were performed in R (R Foundation for Statistical Computing).

RESULTS

Three Habitat Regions Associated with Distinct

Imaging Phenotypes

We first assessed the similarity in PET and CT imaging
phenotypes between superpixels in the primary tumor and in-
volved lymph nodes. As shown in t-distributed stochastic neighbor
embedding plots in Supplemental Figures 2 and 3, superpixels
extracted from tumor and node regions at pre- or midtreatment
images were well mixed for both the training and validation
cohorts, confirming our hypothesis. We therefore merged super-
pixels in the primary tumor and involved nodes in subsequent
analyses.
We independently applied our proposed habitat discovery

pipeline for the training and validation cohorts and identified 3
distinct habitats that were highly consistent between the 2 cohorts
(Supplemental Figs. 4A and 5A), with in-group proportions of
0.97, 0.99, and 0.99 (P , 0.001) for habitats 1, 2, and 3, respec-
tively. The optimal number of habitats was further confirmed by
the area under cumulative-distribution-function curves in Supple-
mental Figures 4B and 5B.
On the basis of the distributions of the 4 imaging features in

3 habitats (Supplemental Figs. 6 and 7), we observed that habitat
3 was associated with the highest PET SUV and the highest PET
entropy, suggesting it may contain the most metabolically active
and heterogeneous component. On the other hand, habitat 2 was
associated with the highest CT number and CT entropy, suggesting
it may contain the most contrast-enhanced and heterogeneous
component. By contrast, habitat 1 was associated with the lowest
value for all 4 imaging features, suggesting it may contain the
unenhanced, metabolically inactive, and homogeneous component.
These results were consistent between the training and validation
cohorts. The distribution of superpixels across 3 habitats is similar
between the tumor and node (Supplemental Fig. 8). Moreover,

the change from pre- to midtreatment also follows the same trend,
with an increase in habitats 1 and 2 and a decrease in habitat 3.

Habitat Image Features and Stability with Respect to

Technical Factors

We applied the proposed computational pipeline to extract a
total of 27 habitat-based image features (Table 2; Supplemental
Table 1). On the basis of the pairwise correlation map of proposed
image features (Supplemental Fig. 9), we removed 3 redundant
and less prognostic features before fitting the Cox model, includ-
ing ΔVolhabitat1, ΔVolhabitat2, and ΔVolhabitat3. To assess the effect of
tumor delineation on the proposed features, we generated 2 in-
dependent sets of contours and calculated the extent of overlap by
dice coefficients (Supplemental Fig. 10). Most of the proposed im-
age features showed good reproducibility, with an average intraclass
correlation coefficient of 0.82 (Supplemental Fig. 11). Similarly, the
image features derived from different image registration settings
were also highly reproducible, with an average intraclass correlation
coefficient of 0.95 (Supplemental Fig. 12). Finally, although around
two thirds of patients had some dental artifacts, these affected only a
small portion of the target volume: 12% for the primary tumor and
3.4% for the lymph nodes on average. By randomly excluding slices
for patients with otherwise complete images, we observed that the
features were highly consistent with those computed from the com-
plete image (average intraclass correlation coefficient, 0.90; Supple-
mental Fig. 13). These results demonstrate the robustness of the
proposed image features against variations in contouring and regis-
tration, as well as dental artifacts.

Better Prediction of PFS with Habitat-Based Imaging

Signature Than with Conventional Imaging Metrics

On the basis of the refined image feature set, we built a
predictive model for PFS using the training cohort. As shown in
Supplemental Table 2, the final imaging signature contained 4
features, including a volumetric change in interactions between

FIGURE 4. Waterfall plot of predicted risk with proposed habitat evolu-

tion-based imaging signature for training cohort (A) and validation cohort (B).
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habitat 1 and peritumoral tissue, as well as between habitats 1 and 3,
the volume of spatially persistent habitat 3, and the volume of
peritumoral tissue at baseline evolving to habitat 2 at midtreatment.
The imaging signature did not correlate with any of the conventional
image features (Pearson correlation , 0.5, Supplemental Fig. 14).
With the median as the cutoff (Fig. 4), the imaging signature

separated patients in the training cohort into 2 groups with a
significantly different PFS (hazard ratio, 4.39; 95% confidence
interval, 1.44–13.4; log-rank P 5 0.005; Fig. 5A). At the same
cutoff, the imaging signature also stratified patients for PFS in the
validation cohort (hazard ratio, 4.58; 95% confidence interval,
1.73–12.1; log-rank P 5 0.001; Fig. 5B). 2-y PFS rates for high-
risk and low-risk groups were 59.1% versus 89.4% in training
cohort and 61.4% versus 87.8% in the validation cohort. Impor-
tantly, this stratification remained significant in both training and
validation cohorts within the subgroup of HPV-positive tumors
(Figs. 5C and 5D), patients with at least 10 pack-years of smok-
ing (Supplemental Figs. 15A and 15B), patients with stage IV
disease (Supplemental Figs. 15C and 15D), and patients treated
at different time frames (Supplemental Figs. 15E and 15F).
We then compared the prediction performance of the proposed

imaging signature with 12 conventional imaging features and the
radiomics signature (Supplemental Tables 1 and 3). As shown in

Figure 6 and Supplemental Figure 16, the proposed imaging sig-
nature outperformed all conventional features in the validation
cohort, including midtreatment CT-based tumor volume or PET-
based MTV (C-index, 0.66 vs. 0.61–0.62). Classification analysis
of predicting 2-y PFS showed similar results (Supplemental Fig.
17). Despite a superior performance in the training cohort, the
radiomics signature failed to predict PFS in the validation cohort
(C-index, 0.58; P 5 0.467). Combining conventional imaging
features with the habitat-based imaging signature did not improve
the prediction performance, with a C-index of 0.64 (P5 0.875) in the
validation cohort. In multivariable analysis, the proposed imaging
signature remained an independent prognostic factor after adjusting
for clinicopathologic variables and baseline tumor volume (Table 3).

DISCUSSION

We developed and validated a novel habitat evolution-based
imaging signature to assess early response and predict treatment
outcomes of OPSCC. The imaging signature provided independent
prognostic information beyond established clinical factors and further
stratified patients into different risk groups within HPV-positive
OPSCC. The imaging signature has the potential to refine the
selection of low-risk HPV-positive patients who are eligible for

treatment deintensification. A commonly
accepted criterion for eligibility is that these
patients should have a 2-y PFS above 90%.
Currently, our model stratified the low-risk
HPV-positive patients who had 2-y PFS of
88.6%. This is a promising result but requires
further validation. On the other hand, the
prognosis of HPV-negative disease remains
poor with concurrent chemoradiotherapy, and
novel treatment strategies such as immu-
notherapy (30) may be needed for these
patients. The proposed imaging signature
could potentially be used to identify high-
risk patients who might benefit from adju-
vant immunotherapy.
To our knowledge, this is the largest

study to investigate the prognostic value
of midtreatment 18F-FDG PET and CT
imaging in OPSCC. Previously, several
studies have investigated imaging charac-
teristics associated with treatment out-
comes in OPSCC (9,11,12,16). Most of
these studies are based on either pretreat-
ment or posttreatment imaging, however.
By contrast, midtreatment imaging has
the unique advantage of allowing assess-
ment of early response, which may be bet-
ter correlated with disease control and
outcomes, and at the same time still offers
the opportunity to modify treatment. In a
recent study, the change in primary tumor
volume measured at midtreatment CT com-
pared with baseline was shown to be associ-
ated with locoregional recurrence in OPSCC
(20). In a previous study of a smaller cohort
of 74 patients, among traditional imaging
metrics midtreatment MTV was found to
be the most important one for predicting

FIGURE 5. Kaplan–Meier curves of progression-free survival (PFS), where patients are stratified

by median risk score according to proposed habitat evolution-based imaging signature in training

cohort. Plots are for overall training cohort (A), overall validation cohort (B), HPV-positive sub-

group in training (C), and HPV-positive subgroup in validation (D). HR 5 hazard ratio.
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outcomes (11). Our current study with 162 patients confirmed these
findings, and the new habitat imaging signature further improved the
prediction accuracy over midtreatment tumor volume at CT and
metabolic tumor volume at PET.
One key aspect of our study is that we analyzed both the

primary tumor and the involved lymph nodes, whereas previous
studies have focused mostly on the primary tumor only. Patients with
OPSCC, especially HPV-positive disease, tend to have early devel-
opment of regional metastases to the lymph nodes. Therefore,
incorporating involved nodal disease into the analysis can provide

a more complete evaluation and direct reflection of the metastatic
potential. Indeed, several studies have recently shown that specific
imaging characteristics of the involved nodes could play a more
important role in predicting outcomes than features derived from the
primary tumor. Our current study is consistent with these recent
findings and suggests that further investigation of the imaging
characteristics of nodal disease for predicting response or prognosis
may be warranted. Here, we combined the habitat features extract-
ed from primary tumor and nodes to mitigate the overfitting risk
with limited samples. In the future, it is worth exploring features
of these 2 regions separately in a larger cohort.
Multiregion sequencing studies have revealed significant vari-

ations in the genetic makeup and molecular pathways across
different regions in the same tumor (31). Image-based partitioning
could be used to identify aggressive subregions that are important
for determining prognosis and treatment response (32–34). Gillies
et al. used a threshold-based method to segment intratumoral
regions (i.e., habitats) with prognostic value in glioblastoma (35).
Cui et al. showed that radiomic analysis of intratumoral subregions
predicted survival better than whole-tumor imaging metrics in glio-
blastoma (36). Spatial heterogeneity among tumor habitats has also
been explored in breast cancer to predict chemotherapy response
and disease recurrence (37,38). Built on these pilot studies, we
further extended the habitat imaging approach to investigate primary
tumor and nodal regions at baseline and midtreatment imaging. The
proposed novel spatiotemporal habitat evolution-based image features
serve to characterize the complex response patterns and predict prog-
nosis in OPSCC. We envision that the proposed approach will be
applicable to other cancer types to dissect intratumor heterogeneity
and track tumor evolution through longitudinal imaging analysis.
Our study differs from the traditional high-throughput radio-

mics approaches that extract hundreds of computational image
features and are usually performed on the primary tumor at
baseline CT. Recently, concerns have been raised regarding the

FIGURE 6. Accuracy of predicting PFS as measured by C-index for

habitat-based imaging signature, compared with top-ranked conven-

tional imaging features from PET and CT images extracted, respectively,

at pretreatment, midtreatment, or change (mid–pre). comparison was

performed separately in training and validation cohorts. features were

ranked by C-index of validation. Δ 5 mid − pre; MTVFCM 5 MTV adap-

tively defined using fuzzy c-means algorithm; MTV2.5 5 MTV defined

using SUV of 2.5 as cutoff.

TABLE 3
Univariate and Multivariable Analyses of Proposed Imaging Signature and Clinicopathologic Factors for Predicting PFS

Training cohort Validation cohort

Univariate Multivariate Univariate Multivariate

Predictors HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P

Habitat imaging signature

(continuous)

1.36 1.10–1.68 0.004 1.30 1.02–1.66 0.028 1.37 1.05–1.79 0.021 1.41 1.01–1.98 0.048

T* 2.07 0.78–5.53 0.145 — — 0.866 1.99 0.78–5.07 0.147 — — 0.650

N† 3.98 0.53–29.93 0.180 — — 0.258 2.05 0.83–5.06 0.117 — — 0.405

HPV‡ 0.50 0.17–1.53 0.225 — — 0.197 0.56 0.16–1.93 0.359 — — 0.867

Smoking history§ 1.03 0.38–2.75 0.957 — — 0.675 1.07 0.42–2.72 0.894 — — 0.623

Baseline gross tumor

volume at CT

1.14 0.74–1.74 0.561 — — 0.757 1.52 1.08–2.12 0.015 1.70 1.08–2.69 0.023

Adaptive planning at

midtreatment‖
2.54 0.84–7.75 0.100 — — 0.119 1.14 0.33–3.91 0.887 — — 0.445

*T1–3 as 0, T4 as 1.
†N0–N2a as 0, N2b–N3 as 1.
‡HPV1 as 1, HPV− as 0.
§Smoking #10 pack-years as 0, otherwise as 1.
‖Plan change as 1, no change as 0.

HR 5 hazard ratio; CI 5 confidence interval.
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stability, reproducibility, and interpretability of high-throughput
radiomic features and signatures (39,40). By contrast, we proposed
volumetric measurement of intratumoral/nodal subregions (habitats)
as image features, as they are well-defined physical quantities, are
simple to interpret, and may be biologically relevant. In addition, they
may be less dependent on technical variations in image acquisition
than traditional intensity or texture-based radiomic features. The
prognostic accuracy of the habitat imaging signature is robust to
different splits of training and validation sets. Also, the results
are highly reproducible when we split the patients by their treat-
ment time, suggesting robustness of proposed analysis pipeline.
One limitation of the study is that it reflects the experience at a

single institution and is based on retrospective data. The proposed
imaging signature should be further tested in independent, pro-
spective studies. Issues such as repeatability and reproducibility
should be addressed for multicenter validation as proposed in
previous studies (41–43). Another limitation is that the cohort in-
cludes both HPV-positive and HPV-negative tumors. When we con-
trolled for HPV status, the imaging signature remained independently
prognostic in multivariable analysis and also stratified patients with
HPV-positive tumors. Future work should analyze patients separately
according to HPV status given the distinct biology between the 2
diseases. In the future, it may be interesting to explore deep-learning
approaches, in particular, convolutional neural networks, which can
automate the extraction of image features with prognostic potential,
but this will require a large number of patients for training purposes.

CONCLUSION

We proposed novel habitat evolution-based image features to
assess early response. We developed and independently vali-
dated an imaging signature to predict treatment outcomes, and
this imaging signature improved on traditional imaging re-
sponse metrics. If prospectively validated, the proposed imaging
signature could potentially be used to refine patient selection for
individualized risk-adaptive therapy in oropharyngeal cancer.
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KEY POINTS

QUESTION: Can parameters defined at baseline and midtreat-

ment 18F-FDG PET/CT imaging predict disease relapse in oro-

pharyngeal cancer?

PERTINENT FINDINGS: In a cohort of 162 patients with oro-

pharyngeal cancer treated with concurrent chemoradiotherapy,

a novel habitat evolution-based imaging signature was devel-

oped and independently validated to assess early response and

predict treatment outcomes. The imaging signature provided

independent prognostic information beyond established clini-

copathologic factors and further improved on traditional imaging

response metrics.

IMPLICATIONS FOR PATIENT CARE: Serial 18F-FDG PET/CT

imaging may be used to identify patients at high risk of disease

relapse and guide risk-adaptive therapy in oropharyngeal cancer.
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