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Abstract
The existence of buffering mechanisms is an emerging property of biological networks, and this results in the buildup 
of robustness through evolution. So far, there are no explicit methods to find loci implied in buffering mechanisms. 
However, buffering can be seen as interaction with genetic background. Here we develop this idea into a tractable model for 
quantitative genetics, in which the buffering effect of one locus with many other loci is condensed into a single statistical 
effect, multiplicative on the total additive genetic effect. This allows easier interpretation of the results and simplifies the 
problem of detecting epistasis from quadratic to linear in the number of loci. Using this formulation, we construct a linear 
model for genome-wide association studies that estimates and declares the significance of multiplicative epistatic effects 
at single loci. The model has the form of a variance components, norm reaction model and likelihood ratio tests are used 
for significance. This model is a generalization and explanation of previous ones. We test our model using bovine data: 
Brahman and Tropical Composite animals, phenotyped for body weight at yearling and genotyped at high density. After 
association analysis, we find a number of loci with buffering action in one, the other, or both breeds; these loci do not have 
a significant statistical additive effect. Most of these loci have been reported in previous studies, either with an additive 
effect or as footprints of selection. We identify buffering epistatic SNPs present in or near genes reported in the context 
of signatures of selection in multi-breed cattle population studies. Prominent among these genes are those associated 
with fertility (INHBA, TSHR, ESRRG, PRLR, and PPARG), growth (MSTN, GHR), coat characteristics (KIT, MITF, PRLR), and heat 
resistance (HSPA6 and HSPA1A). In these populations, we found loci that have a nonsignificant statistical additive effect but 
a significant epistatic effect. We argue that the discovery and study of loci associated with buffering effects allow attacking 
the difficult problems, among others, of the release of maintenance variance in artificial and natural selection, of quick 
adaptation to the environment, and of opposite signs of marker effects in different backgrounds. We conclude that our 
method and our results generate promising new perspectives for research in evolutionary and quantitative genetics based 
on the study of loci that buffer effect of other loci.
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Introduction
The availability of high-density single nucleotide polymorphism 
(SP) genotypes in livestock species allows for the exploration of 
nonadditive effects to a degree not often captured by pedigree 
relationships alone. In particular, epistasis—the interaction 
between loci—is thought to play a key role in defining the genetic 
architecture of complex traits (Mackay, 2014). However, exploring all 
possible SNP to SNP combinations is computationally prohibitively 
and statistically underpowered. Hence, alternative compromises are 
being proposed such as the identification of the interaction between 
one SNP and the polygenic background (Crawfor et al., 2017).

Epistasis against the polygenic background is one of the 
biological phenomena in which epistasis is likely implied in 
“buffering” (Visser et  al., 2003; Flatt, 2005), a mechanism that 
would allow the buildup of robustness through evolution (see 
Flatt, 2005, for examples). A known example is chaperones (Visser 
et al., 2003; Kitano, 2004). Loci implied in buffering would mitigate 
heritable perturbations. For instance, for a trait with intermediate 
optima, too high total genotypic values would not be expressed.

Inspired by these models, here we present a unique 
computational approach for the rapid identification of buffering 
epistatic SNPs based on those with a significant effect on the 
phenotype, however with an opposed effect depending on the 
genetic background of the sampled population. Preliminary 
derivations were presented by Reverter et  al. (2018) with a 
mechanical heuristic and a fast approximate numerical method 
applied to one population of Brahman (BB) cattle. Here, we expand 
that work by deriving an exact maximum likelihood method and 
using a second larger population of Tropical Composite (TC) cattle.

Materials and Methods
Animal Care and Use Committee approval was not obtained for 
this study because historical data were used and no animals 
were handled as part of the study. Analyses were performed 
on phenotypic data and DNA samples that had been collected 
previously as part of the Australian Cooperative Research Centre 
for Beef Genetic Technologies (Beef CRC; http://www.beefcrc.com/).

Animals, phenotypes, and genotypes

Animals, phenotypes, and genotypes used in this study were a 
subset of those recently described in Raidan et al. (2018). In brief, 
we used body yearling weight (YWT) data of 2,111 BB and 2,550 
TC cows and bulls genotyped using either the BovineSNP50 
(Matukumalli et  al., 2009) or the BovineHD BeadChip array 
(Illumina Inc., San Diego, CA). Animals that were genotyped 
with the lower density array had their genotypes imputed to 
higher density as described previously by Bolormaa et al. (2014). 

The imputation was performed on 30 iterations of BEAGLE 3.3 
(Browning and Browning, 2011), within breed using as reference 
519 BB and 351 TC genotyped using the BovineHD chip. SNPs 
were mapped to the UMD3.1 bovine genome assembly (Zimin 
et  al., 2009). The SNP positions were based on the Bos taurus 
genome assembly ARS-UCD1.2 (https://www.animalgenome.
org/repository/cattle/UMC_bovine_coordinates/). After selecting 
autosomal SNP with minor allele frequency > 1%, we retained 
651,253 SNPs for BB and 689,818 SNPs for TC.

The average, minimum, and maximum of YWT (kg) were 
227.7, 115, and 353  kg for BB, and 247.07, 120.5, and 394.5  kg 
for TC. Moreover, the average, minimum, and maximum of age 
at YWT was 360, 302, and 416  days for BB, and 361, 319, and 
403 days for TC.

Genome-wide association study (GWAS) for 
epistasis: one locus against the polygenic 
background

A typical model is y = . . .+Wu+ . . . where u is estimated 
as a vector with additive polygenic effects. Let Var (u) = Gσ2

u 
and assume that there is an epistatic deviation quantitative 
trait loci (QTL) at position i with statistical (not biologically 
functional) effect (αα)i and that the epistasis is against the 
polygenic background. A  model for total genotypic value is: 
g = u+ i = u+ (αα)izi�u (Jannink, 2007), where zi is a centered 
vector with {2− 2p, 1− 2p, 0− 2p} for genotypes {aa,Aa,AA}, 
and the symbol ⨀ indicates de Hadamard product.

Equivalently, g = u+ (αα)iZ
∗
i u, where Z∗

i  is a matrix whose 
diagonal contains the coding of the different genotypes at locus 
i. Thus, (αα)i can be seen as the regression of the remaining 
genetic value once the polygenic additive effect u has been 
removed from g.

Imagine for instance the epistatic effect is (αα)i = −0.2 
and p = freq (a) = 0.6. For an individual with u = 20 and 
carrier of aa genotype, the epistatic effect is negative: 
(αα)iziu = −0.2 × 0.8 × 20 = −3.2, 2  – 2p  = 0.8, and the total 
genetic value is g = 20 − 3.2 = 16.8. Similarly, for an individual 
with u = 0, the epistatic QTL has no effect; for an individual with 
u = −20, the epistatic effect is positive.

Mechanical heuristics

In layman terms, our proposed approach proceeds in five main 
steps as follows (Reverter et al., 2018):

(1)	 Rank individuals from lowest to highest genomic 
estimated breeding value (GEBV);

(2)	 Divide the ranked list into five equally sized bins with 
BIN1 containing the 20% of individuals with the lowest 
GEBVs, BIN2 the next 20% of individuals based on GEBVs, 
and so on until BIN5 containing the 20% individuals with 
the highest GEBVs;

(3)	 Perform a GWAS of SNPs on phenotypes, within bin, 
and with the whole population. Note that because 
relationships are considered when estimating GEBVs, 
bins should contain similar individuals;

(4)	 Collect SNPs with significant yet opposed effect in BIN1 
and BIN5 and a monotonic pattern of effect from BIN1 
to BIN5 (e.g., strong positive, mild positive, zero, mild 
negative, and strong negative);

(5)	 Confirm the SNPs collected are not significant in the 
GWAS with the whole population.

The interpretation of the heuristic is that we try to find SNPs 
with significant and opposing effect in the extreme populations, 

Abbreviations

BB	 Brahman
FDR	 false discovery rate
GEBV	 genomic estimated breeding value
GWAS	 genome-wide association study
PLAG1	 pleomorphic adenoma gene 1
PRLR	 prolactin receptor
PRPF4B	 pre-mRNA processing factor 4B
QTL 	 quantitative trait loci
REML	 restricted maximum likelihood
SP	 single nucleotide polymorphism
TBX5	 T-box 5 transcription factor
TC	 Tropical Composite
YWT	 yearling weight
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but that are not significant in the current population when 
analyzed as a whole.

Fast approximate numerical method

The quantity of interest is the regression of y on Z∗
i u, which can 

be approximated as follows:

(1)	 Run a GBLUP model with additive effect;
(2)	 Extract residuals ê and GEBVs û from the output;
(3)	 For each SNP marker i:

a)	 Multiply û by centered gene contents to obtain Z∗
i û

b)	 Run a single marker regression ̂e = 1µ+ (αα)iZ
∗
i û+ ε to 

estimate (αα)i
c)	 Obtain a t-test and associated P-value from the output.

This approximate method is very fast, but ignores the 
uncertainty in the estimation of ê and û, and therefore it will 
be accurate for informative datasets—that is, for moderate to 
highly heritable traits or large datasets. It may be used for a fast 
screening followed by a restricted maximum likelihood (REML) 
analysis (Jannink, 2007; Crawford et al., 2017) for a subset.

Exact maximum likelihood method

A GWAS model would be:

y = Xb+ u+ kiZ
∗
i u+ e� (1)

Where y are quantitative phenotypes of interest, b is the 
fixed effects vector (e.g., herd-sex-year contemporary group), 
X is a design matrix relating records to fixed effects, Z∗

i  is a 
diagonal matrix whose diagonal contains zi, the coding of the 
different genotypes at locus i, and ki is the buffering effect of 
locus i, expressed as a regression of phenotype on the product 
gene content at i multiplied the additive polygenic effect. Note 

that the term kiZ
∗
i u = ki

∑
j=1,n

zi�zjαj is equivalent to equation 1 in 

Crawford et al. (2017) and their terms αj are equivalent to our 
terms kiαj. However, they do not present their model in terms 
of buffering, and their matrices x (z in our notation) are not 
centered, which leads to a lack of orthogonality of their model 
(Alvarez-Castro and Carlborg, 2007; Vitezica et al., 2017).

Our model in equation 1 is not usable because both the terms 
ki and u implied in the regression are unknown. However, the 
epistatic component φ = kiZ

∗
i u defines a covariance matrix forφ 

in the i-th locus:

Cov (φ) = Z∗
i Gσ

2
uk

2
i Z

∗′

i

which suggests a linear model with the form y = Xb+ u+ φ+ e,  
with covariance as above (Jannink, 2007; Crawford et  al., 
2017). Unfortunately, GWAS tests with this formulation imply 
computing and inverting Cov (φ) matrix at each locus (which 
is computing intensive) and can result in lack of convergence 
(Crawford et  al., 2017). We instead propose an equivalent 
formulation that uses:

g = u+ φ = u+ Z∗
i u

i

where ui = kiu. We have, therefore, defined a random effect, ui, 
which multiplies real values given by the covariable Z∗

i . This is 
known as a reaction norm or random regression model (Laird 
and Ware, 1982; Schaeffer, 2004). Using this formulation, there 

are two additive genetic traits in this model: a general additive 
trait u with variance Gσ2

u, where G is a relationship matrix 
(Wright, 1922; VanRaden, 2008) and a transformation of the 
buffering action of locus i into another additive trait: ui = uki, 
Var

(
ui
)
= Gσ2

uk
2
i . The joint covariance matrix is:

Var

Ç
u
ui

å
=

Ç
σ2
u kiσ

2
u

kiσ2
u k2i σ

2
u

å
⊗ G = G0 ⊗ G

where 

Ç
σ2
u kiσ

2
u

kiσ2
u k2i σ

2
u

å
= G0 is a non-full rank matrix  because 

ui = uki, and ⨂ indicates the Kronecker product. The final linear 
model, considering the epistatic interaction of locus i with all 
other loci, is:

y = Xb+ u+ Z∗
i u

i + e

with Var

Ç
u
ui

å
=

Ç
σ2
u kiσ

2
u

kiσ2
u k2i σ

2
u

å
⊗ G = G0 ⊗ G. This model can be 

used in an exact method as described below.
The exact method proceeds by likelihood ratio test of the two 

alternative hypothesis, using random regression with the Model 
H1:

y = Xb+ ziαi + u+ Z∗
i u

i + e� (2)

and a simpler model excluding random regression with the 
Model H0 :

y = Xb+ ziαi + u+ e� (3)

Where the actual parameter being tested is k2i σ
2
u �= 0. The 

regression on gene content ziαi corrects for eventual statistical 
additive (not epistatic) effects of locus i. Parameters are 
estimated by REML (Patterson and Thompson, 1971).

After fitting the two models, the likelihood ratio test of 
the competing models is distributed as a mixture of 0 and 
1  degrees of freedom chi-square, from which P-values can be 
obtained. In addition, from the estimated covariance matrix G0 
estimated under H1, the estimated buffering epistatic effect can 
be obtained as:

k̂i = Ĝ0 [2, 2] /Ĝ0 [1, 2]� (4)

Contrary to Crawford et  al. (2017), the matrix G has to be 
computed and inverted only once, because the inclusion of 
the i-th locus has zero influence on the result (Gianola et  al., 
2016) and the matrix Z∗

i Gσ
2
uZ

∗′

i  is never explicitly computed. This 
results in great savings of computing time. Matrix G0 is a non-full 
rank matrix, which slows down convergence. An easy solution is 
to use a reduced rank model fitting one principal component 
(Meyer and Kirkpatrick, 2005) as implemented in Wombat 
(Meyer, 2007). Convergence takes a few iterations in this case 
compared with hundreds using a standard REML algorithm.

False discovery rate

Following Bolormaa et  al. (2014) and with equivalent original 
derivations from Storey (2002), false discovery rate (FDR) was 
calculated as:

FDR =
P
(
1− A

T

)
(A
T

)
(1− P)
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Where P is the P-value tested, A is the number of SNPs that were 
significant at the P-value tested, and T is the total number of 
SNP tested (T = 651,253 and 689,818 for BB and TC, respectively).

Analytical implementation

We implemented the analyses using shell scripts to manipulate 
the data, Wombat (Meyer, 2007) for the REML analyses (see 
Supplementary Appendix), and our own programs for the fast 
approximate analyses. Scripts and source code are available 
from the corresponding author upon request. The GWAS was 
performed in a high-performance cluster computer (Genotoul 
Toulouse bioinfo platform), in which the epistatic effect of each 
marker (ki) was estimated separately from each other. Wall clock 
computing time was approximately 4 d for the exact analysis 
run in parallel and a few minutes for the fast approximate one.

Results and Discussions
Figure 1 shows the steps of the mechanical heuristics proposed 
to identify SNPs with buffering epistatic effect. For the BB 
population, the distribution of GEBV averaged 4.26 × 10–7 kg and 

ranged from −43.08 to 41.12 kg (Figure 1A). Similarly, for the TC 
population, the distribution of GEBV averaged −6.27 × 10–7 kg and 
ranged from −58.50 to 57.53 kg (Figure 1A). We split the animals 
into five equally sized bins according to their GEBV (Figure 1B). 
Using a nominal P  <  0.05 from the GWAS within the extreme 
bins (BIN1 and BIN5) with opposite effect sign, plus a monotonic 
pattern of effect across bins as well as a P > 0.10 in the GWAS 
using the whole data, we found 243 and 143 epistatic SNPs in the 
BB and TC population, respectively (Figure 1C).

For each population, six of these SNPs, including three of 
each pattern (positive to negative, and negative to positive), are 
listed in Table  1. Table  1 also lists the effect of an SNP in the 
coding regions of PLAG1 (pleomorphic adenoma gene 1), a well-
known locus affecting stature in humans (Gudbjartsson et al., 
2008), as well as growth and fertility traits in cattle (Karim et al., 
2011; Fortes et  al., 2013). The SNP on PLAG1 was found to be 
significant only in the GWAS of the middle bins (BIN3 and BIN2 
in BB and TC, respectively) as well as the GWAS of the whole 
dataset in both the populations.

Among the genes listed in Table  1, we highlight LRIG3 
(Leucine-rich repeats and immunoglobulin-line domains 
protein 3), a body size-related gene found to be under positive 

Figure 1.  Schematic flowchart of the mechanical heuristic to identify buffering epistatic SNP: (A) Distribution of yearling weight GEBV for 2,111 BB and 2,550 TC cattle 

with five equally sized bins clearly demarked, BIN1 to BIN5; (B) Across bins the range of GEBV are by construct nonoverlapping, but the range of phenotypes overlap 

across bins. A GWAS of SNP genotype on phenotype is performed with the intention to capture SNPs with significant yet opposed additive effects in BIN1 and BIN5, and 

with a monotonic pattern of effects across bins; (C) We find 243 and 143 buffering epistatic SNPs in the BB and TC population, respectively. 

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa045#supplementary-data
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selection in a study of five bovine breeds including BB (Xu 
et al., 2015).  This finding is of most relevance because genes 
found under selection in a breed comparison study are bound 
to have little variation in their coding region and/or no additive 
effect in any given breed, and are only identified as relevant, 
such as harboring signatures of selection, in a multi-breed 
comparison.

Table 2 presents the number of significant SNP and FDR at 
various P-value thresholds. At any given P-value, the number 
of significant SNP was lower in BB than in TC. As a result, the 
FDR was lower in TC than in BB for a given P-value. For instance, 
at P-value < 0.0001, the FDR was 9.83% and 4.38% for BB and 
TC, respectively. The higher number of epistatic SNPs identified 
in the TC compared with the BB population was attributed to 
the distinct allele frequencies observed in the two populations. 
Across all SNPs, the first (reference) allele was found to be either 
mostly absent (reference allele frequency near 0)  or nearly 
fixated (reference allele frequency near 1) in the BB population, 
while intermediate allele frequencies (highly polymorphic and 
hence more informative SNP) were predominant in the TC 
population (Figure 2 in (Reverter et al. 2017)). In other words, the 
distribution of allele frequencies in BB are U-shaped.

Figure  2 illustrates the two-way relationship between the 
mechanical heuristics and the exact test based on bivariate 
random regression REML analyses (Figure  2A and C), and 
between the numerical approximation based on the regression 
of residuals on GEBV and the exact text (Figure 2B and D). In the 
BB population, we observed a correlation of r = 0.728 (Figure 2A) 
between SNP epistatic effects according to the mechanical 
heuristics and the exact test, while a correlation of r  =  0.979 
(Figure 2B) was found between the approximation and the exact 
test. In the TC population, the same pair of values were r = 0.805 
(Figure 2C) and r = 0.990 (Figure 2D). These results corroborate 
the superiority of the numerical approximation compared 
with the mechanical heuristics, with the latter being affected 
by arbitrary parameters, including the number of bins and the 
criteria for the identification of epistatic SNPs (e.g., monotonic 
pattern of effects from the first to the last bin).

The performance of the mechanical heuristics could be 
further affected if only GEBV with an accuracy beyond a 
nominal threshold were to be employed. Also, issues related to 
the sensitivity of the mechanical heuristics to GEBV accuracies, 
number of bins and relatedness of individuals within bin have 
not been considered with any degree of detail. Obviously, the 
minimum number of bins would be two (for negative and 
positive GEBVs), but that would likely result in many false 
positives. On the other extreme, a large number of bins can 
only be considered with large sample sizes so that a within-
bin GWAS can be undertaken with sufficient statistical power. 
At this stage, we acknowledge that the mechanical heuristics 
lacks theoretical formality and its value is limited to provide a 
graphical understanding of buffering epistasis.

Figure  3 shows the Manhattan plots for the GWAS for 
additive and epistatic effects in the BB and TC populations. The 
most likely candidate genes in the most significantly associated 
regions are also given in Figure 3. It can already be noted that 
additive and epistatic gene effects are mutually orthogonal.

In the BB population, the strongest significance for epistatic 
effect corresponded to SNP BovineHD1700017822 mapped to 
60,216,894 bp of BTA17 at 11,627 bp of the coding region of TBX5 
(T-box 5 transcription factor) and with an estimated epistatic 

Table 1.  Mechanical heuristics: estimated SNP effects in t-statistic units (estimated effect divided by standard error) in the GWAS within BINs 
and across the whole population: three examples each of “Negative to Positive” and “Positive to Negative” pattern as well as for a SNP in the 
PLAG1 coding region for BB and TC populations. 

SNP  
Chr:Mb (Gene) BIN1 BIN2 BIN3 BIN4 BIN5 Whole

 Brahman
18:56.5 (CPT1C) −7.58* −1.38 −0.86 2.67 4.84* 0.60
23:50.0 (PRPF4B) −4.50* 0.91 1.39 2.14 3.58* 1.28
28:23.3 (CTNNA3) −8.00* −3.05 −1.93 1.55 5.06* −0.05
4:71.4 (OSBPL3) 5.95* 1.45 −0.50 −1.89 −6.01* 0.29
5:54.9 (LRIG3) 4.86* −0.30 −0.79 −2.05 −3.94* 1.18
27:1.1 (CSMD1) 4.53* 1.18 −0.66 −0.69 −2.37* 0.58
14:25.0 (PLAG1) 0.74 2.07 3.46* 2.15 2.02 4.71*
 Tropical Composite
14:84.3 (SNTB1) −4.21* 0.25 1.69 1.93 3.42* 0.64
16:28.5 (CNIH3) −3.39* −2.00 0.65 1.10 2.74* 0.52
23:15.3 (FOXP4) −6.20* −1.94 −0.76 1.87 5.14* −0.26
1:5.39 (GRIK1) 2.90* 0.74 0.16 −0.83 −2.98* 1.58
10:75.6 (KCNH5) 3.56* 2.07 1.00 −0.12 −3.63* −0.54
22:57.3 (PPARG) 3.49* 1.12 −0.09 −2.66* −2.81* 1.01
14:25.0 (PLAG1) −0.08 2.83* 2.47 1.02 0.44 6.16*

*indicates significance at P < 0.001.

Table 2.  Number of significant buffering epistatic SNP (N) and false 
discovery rate (FDR) at decreasing levels of P-value for the BB and TC 
populations

P-value

Brahman Tropical Composite

N FDR, % N FDR, %

< 0.05 66,789 46.06 87,545 36.21
< 0.01 20,542 31.01 30,803 21.61
< 0.005 12,503 25.67 19,831 16.98
< 0.001 3,679 17.62 6,972 9.80
<0.0005 2,186 14.85 4,484 7.64
<0.0001 662 9.83 1,571 4.38
<0.00005 384 8.47 1,028 3.35
<0.00001 91 7.15 342 2.02
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effect of −0.533 (−Log10(P-value)  =  6.849). The corresponding 
human chromosome segment is involved in ulnar–mammary 
syndrome (Klopocki et al., 2006), and a recent large meta-GWAS 
study reveals TBX5 as a candidate gene for mammary gland 
morphology in Fleckvieh cattle (Pausch et al., 2016).

Following TBX5, we found the second strongest signal for 
buffering epistasis in BB to SNP BovineHD2000011094 (estimated 
epistatic effect of −0.282 and −Log10(P-value) = 6.669) mapped to 
38.97 Mb of BTA20 and 2.6 kb downstream of prolactin receptor 
(PRLR). PRLR is in a region captured by selection signatures for 
adaptation in beef cattle (Boitard et al., 2016) and mutations on 
this gene have been found to have a major genetic effect on hair 
length and coat structure characteristics of cattle (Littlejohn 
et al., 2014; Porto-Neto et al., 2018).

The third strongest signal corresponded to SNP 
BovineHD2300014569 mapped to 50.10  Mb of BTA23 in the 
coding region of PRPF4B (pre-mRNA processing factor 4B) with 
an estimated effect of 0.324 (−Log10(P-value)  =  6.309). With no 
reported function in the context of bovine breeding and genetics, 
PRPF4B is an essential kinase induced by estrogen (Lahsaee et al., 

2016) and its loss promotes sustained growth factor signaling 
(Corkery et al., 2018). Quite strikingly, loci on the coding region 
of SPEN (SNP BovineHD1600014616, epistatic effect  =  0.213, −
Log10(P-value)  =  2.137) and GHR (SNP BovineHD2000009203, 
epistatic effect = 0.782, −Log10(P-value) = 2.234) were found to be 
significantly epistatic in our study. SPEN is an estrogen receptor 
cofactor and a key regulator of fat deposition and energy balance 
(Hazegh et al., 2017). Furthermore, an SNP-based co-association 
gene network by our group previously identified ESRRG and 
PPARG as key regulators of age at puberty in BB cows (Fortes 
et al., 2013).

In the TC population, we found the strongest signal in 
SNP BovineHD0100028404 (epistatic effect  =  0.294, −Log10(P-
value) = 9.261) mapped to 98.71 Mb of BTA1 in the coding region 
of LOC100139843 (mCG140927-like) with limited information 
known about its function, but quite strikingly, recently reported 
to be associated with age at puberty in Angus bulls (Fernández 
et al., 2016). We found the second and third strongest signal in 
the coding region of ZNF521 (SNP BovineHD2400008618 mapped 
to BTA24:31,439,030 with an estimated epistatic effect = −0.260, 

Figure 2.  Methods comparison: relationship between the SNP buffering epistatic effects estimated via the bivariate REML analyses and the mechanical heuristic (A 

and C), and between the bivariate REML analyses and the approximation based on the regression of residuals on GEBV (B and D) for the Brahman (A and B) and Tropical 

Composite (C and D) populations. Highlighted red are the significant SNP (P < 0.0001) according to REML.
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−Log10(P-value)  =  7.432) and AGTR1 (SNP BovineHD0100034098 
mapped to BTA1: 119,483,491 with an estimated epistatic 
effect  =  −0.194, −Log10(P-value)  =  3.204), respectively.  The loci 
on ZNF521 has been found to associate with female fertility in 
Nordic Red cattle, consisting of three different populations from 
Finland, Sweden, and Denmark (Höglund et al., 2015). Whereas 
the role in bovine fertility of AGTR1 (angiotensin II receptor type 
1) has long been documented (Portela et al., 2008; Marey et al., 
2016) including its differential expression at the level of the 
oviduct between Bos taurus and Bos indicus cattle (Fontes et al., 
2018).

The relationship between epistatic and additive effect in 
each population is illustrated in Figure  4. It can be seen that 
effects are empirically orthogonal as expected. Note that unlike 
additive effects, epistatic effects have no units as they are 
defined as a multiplier on additive effects. Figure 5 shows the 
relationship between the epistatic effects in both populations, 
BB and TC. Significant simultaneously in both populations were 
42 SNPs of which 24 where located within 50 kb of the coding 
region of known genes and these are listed in Table 3. Porto-Neto 
et al. (2014) showed that Linkage disequilibrium dropped below 
0.2 at distances of 50 kb. 

Among those listed in Table  3, prominent genes for their 
reported role in mammalian fertility including bovine are: 
ALDH1A1 (aldehyde dehydrogenase 1 family member A1), PCSK5 
(proprotein convertase subtilisin/kexin type 5), and TSHR (thyroid-
stimulating hormone receptor), and IL21 (Interleukin-21).

The role of ALDH1A1 during bovine ovarian development 
has recently been established (Hatzirodos et  al., 2019; 
Hummitzsch et  al., 2019). Antenos et  al. (2011) reported the 
role of PCSK5 in mouse ovarian follicle development. Similarly, 
TSHR is a well-known regulator of growth, fat metabolism, and 

fertility. Dias et al. (2017) identified a candidate QTL in TSHR 
affecting puberty in five cattle breeds across the taurine and 
Indicine lineages: Brangus, BB, Nellore, Angus, and Holstein. 
Also, one of the most prominent selective sweeps found in all 
domestic chickens occurred at the locus for TSHR (Rubin et al., 
2010). Finally, the immune system response gene IL21 has 
been shown to harbor selection signatures among divergently 
selected subpopulations of Polish Red cattle (Gurgul et  al., 
2019), and among goats and sheep indigenous to a hot arid 
environment (Kim et al., 2016).

The existence of buffering mechanisms is an emerging 
propriety of networks (Mackay, 2014), and, therefore, because 
biochemical and gene networks are pervasive in nature, 
buffering loci must exist. Moreover, the existence of segregating 
(not fixed) buffering epistatic loci would explain several 
phenomena that are not well understood: environmental 
robustness, release of additive variance after disturbing events, 
(Visser et al., 2003; Flatt, 2005), maintenance of genetic variance 
in selected populations previously under stabilizing selection 
(Gimelfarb, 1989), and opposite signs of GWAS associations in 
different populations (Huang et al., 2012).

A simulated dataset would assist in understanding the 
implications of the analytical approach presented here, but we 
argue about the difficulty of simulating a dataset in a realistic 
fashion. Jannink (2007) simulated a trait with a genetic variance 
of 60 and a phenotypic variance of 100. An epistatic variance 
of 20 was generated with the marked QTL interacted with nine 
other unlinked loci based on a compound epistatic network 
proposed in the context of plant breeding (Cooper et al., 2002). 
Further research is warranted to understand how and if this 
approach could work to simulate buffering epistasis by which a 
set of QTLs have opposing effects on the extremes of the additive 

Figure 3.  Genome-wide additive and epistasis association: Manhattan plots of the additive (A and C) and buffering epistatic (B and D) association of SNPs across the 

29 bovine autosomal chromosomes for the Brahman (A and B) and Tropical Composite (C and D) populations. The most likely candidate genes in the most significantly 

associated regions are annotated where an obvious candidate could be identified according to the bovine reference genome assembly ARS-UCS1.2. SNPs on odd-

numbered chromosomes are in black and those on even-numbered chromosomes are in yellow.
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polygenic value and in the presence of selection. Importantly, 
in his simulations, Jannink (2007) observed the conversion of 
additive-by-additive epistasis to additive variance which is 
what we hypothesize based on our mechanical heuristics and 
the empirical results.

In multi-generation selection programs, the continued 
response has been seen, classically for over 100 generations in 
the Illinois maize kernel content lines [38], and there have been 
large and still continuing genetic improvements in livestock 
populations, notably in broiler chickens [39]. Whilst the obvious 
source of continued response is de novo mutation, some of 
the additive variation being utilized may have derived from 
existing mutations whose behavior changes from epistatic to 

additive in response to changes in the remainder of the genome. 
Paixão and Barton (2016) argued that “epistasis sustains 
additive genetic variance for longer: Alleles that were initially 
deleterious or near-neutral may acquire favorable effects as the 
genetic background changes, ‘converting’ epistatic variance into 
additive, and so prolonging the response to selection.” Similarly, 
Hill (2017) concluded that “It seems better to concentrate on 
utilizing additive variance, and hope for a bonus from converting 
epistatic variance.” These assessments beg the questions: 1) how 
would one go about strategically increasing this conversion? 
and 2) are some functional groups and/or genomic regions more 
likely to convert than others? We hypothesize the epistatic 
SNPs found here are in effect “dormant” with an additive effect 

Figure 5.  Scatter plot of the relationship between SNP buffering epistatic effect in the Brahman (x-axis) and Tropical Composite (y-axis) populations. Red, green, and 

blue indicate significance (P-value < 0.001) in the Brahman, Tropical Composite, and both populations, respectively.

Figure 4.  Scatter plot of the relationship between SNP additive (x-axis) and buffering epistatic effects (y-axis) for the Brahman (left panel) and Tropical Composite 

(right) populations. Red, green, and blue indicate significance (P-value < 0.001) for additivity, epistatic and both, respectively.
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waiting to be “released” when selection moves the population to 
either tail of the genetic value distribution. Consistent with the 
argument of Carlborg et al. (2006), we further argue that these 
SNPs provide an answer to the long-standing paradox by which 
genetic variation does not diminish with selection as fast as 
theory would anticipate, and instead epistasis is responsible for 
the release of genetic variation during long-term selection.

Conclusions
We have developed three novel analytical methodologies to 
identify and estimate the effect of an SNP with an epistatic 
effect against the polygenic background. Two of the approaches 
require the use of previously computed GEBV, which makes 
them particularly suited to domestic species of agricultural 
importance that have adopted genomic selection for their 
breeding purposes.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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