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Abstract Distinctions between cell types underpin organizational principles for nervous system

function. Functional variation also exists between neurons of the same type. This is exemplified by

correspondence between grid cell spatial scales and the synaptic integrative properties of stellate

cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability

is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to

55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the

modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results

constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic

variability among neurons of the same type. We suggest that neuron type properties are tuned to

circuit-level set points that vary within and between animals.

Introduction
The concept of cell types provides a general organizing principle for understanding biological struc-

tures including the brain (Regev et al., 2017; Zeng and Sanes, 2017). The simplest conceptualiza-

tion of a neuronal cell type, as a population of phenotypically similar neurons with features that

cluster around a single set point (Wang et al., 2011b), is extended by observations of variability in

cell type features, suggesting that some neuronal cell types may be conceived as clustering along a

line rather than around a point in a feature space (Cembrowski and Menon, 2018; O’Donnell and

Nolan, 2011; Figure 1A). Correlations between the functional organization of sensory, motor and

cognitive circuits and the electrophysiological properties of individual neuronal cell types suggest

that this feature variability underlies key neural computations (Adamson et al., 2002; Angelo et al.,

2012; Fletcher and Williams, 2019; Garden et al., 2008; Giocomo et al., 2007; Kuba et al., 2005;

O’Donnell and Nolan, 2011). However, within-cell type variability has typically been deduced by

combining data obtained from multiple animals. By contrast, the structure of variation within individ-

ual animals or between different animals has received little attention. For example, apparent cluster-

ing of properties along lines in feature space could reflect a continuum of set points, or could result

from a small number of discrete set points that are obscured by inter-animal variation (Figure 1B).

Moreover, although investigations of invertebrate nervous systems show that set points may differ

between animals (Goaillard et al., 2009), it is not clear whether mammalian neurons exhibit similar

phenotypic diversity (Figure 1B). Distinguishing these possibilities requires many more electrophysi-

ological observations for each animal than are obtained in typical studies.

Stellate cells in layer 2 (SCs) of the medial entorhinal cortex (MEC) provide a striking example of

correspondence between functional organization of neural circuits and variability of
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electrophysiological features within a single cell type. The MEC contains neurons that encode an ani-

mal’s location through grid-like firing fields (Fyhn et al., 2004). The spatial scale of grid fields follows

a dorsoventral organization (Hafting et al., 2005), which is mirrored by a dorsoventral organization

in key electrophysiological features of SCs (Boehlen et al., 2010; Dodson et al., 2011;

Garden et al., 2008; Giocomo et al., 2007; Giocomo and Hasselmo, 2008a; Pastoll et al., 2012a).

Grid cells are further organized into discrete modules (Stensola et al., 2012), with the cells within a

module having a similar grid scale and orientation (Barry et al., 2007; Gu et al., 2018;

Stensola et al., 2012; Yoon et al., 2013); progressively more ventral modules are composed of cells

with wider grid spacing (Stensola et al., 2012). Studies that demonstrate dorsoventral organization

of integrative properties of SCs have so far relied on the pooling of relatively few measurements per

animal. Hence, it is unclear whether the organization of these cellular properties is modular, as one

might expect if they directly set the scale of grid firing fields in individual grid cells (Giocomo et al.,

2007). The possibility that set points for electrophysiological properties of SCs differ between ani-

mals has also not been considered previously.

Evaluation of variability between and within animals requires statistical approaches that are not

typically used in single-cell electrophysiological investigations. Given appropriate assumptions, inter-

animal differences can be assessed using mixed effect models that are well established in other

fields (Baayen et al., 2008; Geiler-Samerotte et al., 2013). Because tests of whether data arise

from modular as opposed to continuous distributions have received less general attention, to facili-

tate detection of modularity using relatively few observations, we introduce a modification of the

gap statistic algorithm (Tibshirani et al., 2001) that estimates the number of modes in a dataset

while controlling for observations expected by chance (see ’Materials and methods’ and Figure 1—

figure supplements 1–5). This algorithm performs well compared with discreteness metrics

that are based on the standard deviation of binned data (Giocomo et al., 2014; Stensola et al.,

2012), which we find are prone to high false-positive rates (Figure 1—figure supplement 4A). We

find that recordings from approximately 30 SCs per animal should be sufficient to detect modularity

using the modified gap statistic algorithm and given the experimentally observed separation

between grid modules (see ’Materials and methods’ and Figure 1—figure supplements 2–

3). Although methods for high-quality recording from SCs in ex-vivo brain slices are well established

(Pastoll et al., 2012b), typically fewer than five recordings per animal were made in previous studies,

eLife digest The brain consists of many types of cells that are specialised to perform different

tasks. This is similar to how different groups of people will have different responsibilities in a large

company. But within each group with the same role, individual employees will also do their jobs in

different ways. Does the same apply to the brain? In other words, do individual neurons of the same

type – with the same role – process information differently?

To find out, Pastoll et al. studied stellate cells in the mouse brain: these neurons take their name

from their distinctive star-shaped arrays of projections, and they work together in groups known as

modules to help animals navigate their environment. To determine whether stellate cells differ

between mice, and how they might differ within a single animal, Pastoll et al. measured the activity

of more than 800 stellate cells in more than two dozen individuals.

The results revealed that stellate cells process the same information differently between mice,

which may contribute to variations in behaviour across the species. But even within an individual,

stellate cells also showed differences in information processing. In fact, the properties of the stellate

cells within each mouse varied along a continuum. This discovery rules out several previous theories

on how stellate cells form the modules that support navigation.

The work by Pastoll et al. helps to understand how the brain supports thinking and memory. In

the long term, these findings could also have implications for treating brain disorders, as they

suggest that variations between people in the properties of their neurons could lead to variations in

drug response. Researchers may need to take inter-individual differences into account when

planning experiments, and ultimately when designing drugs.
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which is many fewer than our estimate of the minimum number of observations required to test for

modularity.

We set out to establish the nature of the set points that establish the integrative properties of

SCs by measuring intra- and inter-animal variation in key electrophysiological features using experi-

ments that maximize the number of SCs recorded per animal. Our results suggest that set points for

individual features of a neuronal cell type are established at the level of neuronal cell populations,

differ between animals and follow a continuous organization.

Results

Sampling integrative properties from many neurons per animal
Before addressing intra- and inter-animal variability, we first describe the data set used for the analy-

ses that follow. We established procedures to facilitate the recording of integrative properties of

many SCs from a single animal (see ’Materials and methods’). With these procedures, we measured

and analyzed electrophysiological features of 836 SCs (n/mouse: range 11–55; median = 35) from 27

mice (median age = 37 days, age range = 18–57 days). The mice were housed either in a standard

home cage (dimensions: 0.2 � 0.37 m, N = 18 mice, n = 583 neurons) or from postnatal day 16 in a

Figure 1. Classification and variability of neuronal cell types. (A) Neuronal cell types are identifiable by features

clustering around a distinct point (blue, green and yellow) or a line (orange) in feature space. The clustering

implies that neuron types are defined by either a single set point (blue, green and yellow) or by multiple set points

spread along a line (orange). (B) Phenotypic variability of a single neuron type could result from distinct set points

that subdivide the neuron type but appear continuous when data from multiple animals are combined (modular),

from differences in components of a set point that do not extend along a continuum but that in different animals

cluster at different locations in feature space (orthogonal), or from differences between animals in the range

covered by a continuum of set points (offset). These distinct forms of variability can only be made apparent by

measuring the features of many neurons from multiple animals.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A quantitative adaptation of the gap statistic clustering algorithm.

Figure supplement 2. Discrimination of continuous from modular organizations using the adapted gap statistic

algorithm.

Figure supplement 3. Additional evaluation of the adapted gap statistic algorithm.

Figure supplement 4. Comparing the adapted gap statistic algorithm with discontinuity measures for

discreteness.

Figure supplement 5. Evaluation of modularity of grid firing using an adapted gap statistic algorithm.
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2.4 � 1.2 m cage, which provided a large environment that could be freely explored (N = 9,

n = 253, median age = 38 days) (Figure 2—figure supplement 1). For each neuron, we measured

six sub-threshold integrative properties (Figure 2A–B) and six supra-threshold integrative properties

(Figure 2C). Unless indicated otherwise, we report the analysis of datasets that combine the groups

of mice housed in standard and large home cages and that span the full range of ages.

Because SCs are found intermingled with pyramidal cells in layer 2 (L2PCs), and as misclassifica-

tion of L2PCs as SCs would probably confound investigation of intra-SC variation, we validated our

criteria for distinguishing each cell type. To establish characteristic electrophysiological properties of

L2PCs, we recorded from neurons in layer 2 that were identified by Cre-dependent marker expres-

sion in a Wfs1Cre mouse line (Sürmeli et al., 2015). Expression of Cre in this line, and in a similar line

(Kitamura et al., 2014), labels L2PCs that project to the CA1 region of the hippocampus, but does

not label SCs (Kitamura et al., 2014; Sürmeli et al., 2015). We identified two populations of neu-

rons in layer 2 of MEC that were labelled in Wfs1Cre mice (Figure 3A–C). The more numerous popu-

lation had properties consistent with L2PCs (Figure 3A,G) and could be separated from the

unidentified population on the basis of a lower rheobase (Figure 3C). The unidentified population

had firing properties that were typical of layer 2 interneurons (Gonzalez-Sulser et al., 2014). A prin-

cipal component analysis (PCA) (Figure 3D–F) clearly separated the L2PC population from the SC

population, but did not identify subpopulations of SCs. The properties of the less numerous popula-

tion were also clearly distinct from those of SCs (Figure 3A,C). These data demonstrate that the SC

population used for our analyses is distinct from other cell types also found in layer 2 of the MEC.

To further validate the large SC dataset, we assessed the location-dependence of individual

electrophysiological features, several of which have previously been found to depend on the dorso-

ventral location of the recorded neuron (Boehlen et al., 2010; Booth et al., 2016; Garden et al.,

2008; Giocomo et al., 2007; Pastoll et al., 2012a; Yoshida et al., 2013). We initially fit the depen-

dence of each feature on dorsoventral position using a standard linear regression model. We found

substantial (adjusted R2 >0.1) dorsoventral gradients in input resistance, sag, membrane time con-

stant, resonant frequency, rheobase and the current-frequency (I-F) relationship (Figure 3G). In con-

trast to the situation in SCs, we did not find evidence for dorsoventral organization of these features

in L2PCs (Figure 3G). Thus, our large dataset replicates the previously observed dependence of

integrative properties of SCs on their dorsoventral position, and shows that this location depen-

dence further distinguishes SCs from L2PCs.

Inter-animal differences in the intrinsic properties of stellate cells
To what extent does variability between the integrative properties of SCs at a given dorsoventral

location arise from differences between animals? Comparing specific features between individual

animals suggested that their distributions could be almost completely non-overlapping, despite con-

sistent and strong dorsoventral tuning (Figure 4A). If this apparent inter-animal variability results

from the random sampling of a distribution determined by a common underlying set point, then fit-

ting the complete data set with a mixed model in which animal identity is included as a random

effect should reconcile the apparent differences between animals (Figure 4B). In this scenario, the

conditional R2 estimated from the mixed model, in other words, the estimate of variance explained

by animal identity and location, should be similar to the marginal R2 value, which indicates the vari-

ance explained by location only. By contrast, if differences between animals contribute to experi-

mental variability, the mixed model should predict different fitting parameters for each animal, and

the estimated conditional R2 should be greater than the corresponding marginal R2 (Figure 4C).

Fitting the experimental measures for each feature with mixed models suggests that differences

between animals contribute substantially to the variability in properties of SCs. In contrast to simu-

lated data in which inter-animal differences are absent (Figure 4B), differences in fits between ani-

mals remained after fitting with the mixed model (Figure 4D). This corresponds with expectations

from fits to simulated data containing inter-animal variability (Figure 4C). To visualize inter-animal

variability for all measured features, we plot for each animal the intercept of the model fit (I), the

predicted value at a location 1 mm ventral from the intercept (I+S), and the slope (lines) (Figure 4E).

Strikingly, even for features such as rheobase and input resistance (IR) that are highly tuned to a neu-

rons’ dorsoventral position, the extent of variability between animals is similar to the extent to which

the property changes between dorsal and mid-levels of the MEC.
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Figure 2. Dorsoventral organization of intrinsic properties of stellate cells from a single animal. (A–C) Waveforms

(gray traces) and example responses (black traces) from a single mouse for step (A), ZAP (B) and ramp (C) stimuli

(left). The properties derived from each protocol are shown plotted against recording location (each data point is

a black cross) (right). KSDs with arbitrary bandwidth are displayed to the right of each data plot to facilitate

visualization of the property’s distribution when location information is disregarded (light gray pdfs). (A) Injection

of a series of current steps enables the measurement of the resting membrane potential (Vrest) (i), the input

resistance (IR) (ii), the sag coefficient (sag) (iii) and the membrane time constant (tm) (iv). (B) Injection of ZAP current

waveform enables the calculation of an impedance amplitude profile, which was used to estimate the resonance

resonant frequency (Res. F) (i) and magnitude (Res. mag) (ii). (C) Injection of a slow current ramp enabled

Figure 2 continued on next page
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If set points that determine integrative properties of SCs do indeed differ between animals, then

mixed models should provide a better account of the data than linear models that are generated by

pooling data across all animals. Consistent with this, we found that mixed models for all electrophys-

iological features gave a substantially better fit to the data than linear models that considered all

neurons as independent (adjusted p<2�10�17 for all models, c2 test, Table 1). Furthermore, even

for properties with substantial (R2 value >0.1) dorsoventral tuning, the conditional R2 value for the

mixed effect model was substantially larger than the marginal R2 value (Figure 4D and Table 1).

Together, these analyses demonstrate inter-animal variability in key electrophysiological features of

SCs, suggesting that the set points that establish the underlying integrative properties differ

between animals.

Experience-dependence of intrinsic properties of stellate cells
Because neuronal integrative properties may be modified by changes in neural activity (Zhang and

Linden, 2003), we asked whether experience influences the measured electrophysiological features

of SCs. We reasoned that modifying the space through which animals can navigate may drive experi-

ence-dependent plasticity in the MEC. As standard mouse housing has dimensions less than the dis-

tance between the firing fields of more ventrally located grid cells (Brun et al., 2008; Hafting et al.,

2005), in a standard home cage, only a relatively small fraction of ventral grid cells is likely to be acti-

vated, whereas larger housing should lead to the activation of a greater proportion of ventral grid

cells. We therefore tested whether the electrophysiological features of SCs differ between mice

housed in larger environments (28,800 cm2) and those with standard home cages (740 cm2).

We compared the mixed models described above to models in which housing was also included

as a fixed effect. To minimize the effects of age on SCs (Boehlen et al., 2010; Burton et al.,

2008; Supplementary file 2), we focused these and subsequent analyses on mice between P33 and

P44 (N = 25, n = 779). We found that larger housing was associated with a smaller sag

coefficient, indicating an increased sag response, a lower resonant frequency and a larger spike half-

width (adjusted p<0.05; Figure 4E, Supplementary file 3). These differences were primarily from

changes to the magnitude rather than the location-dependence of each feature. Other electrophysi-

ological features appeared to be unaffected by housing.

To determine whether inter-animal differences remain after accounting for housing, we compared

mixed models that include dorsoventral location and housing as fixed effects with equivalent linear

regression models in which individual animals were not accounted for. Mixed models incorporating

animal identity continued to provide a better account of the data, both for features that were

dependent on housing (adjusted p<2.8�10�21) and for features that were not (adjusted

p<1.4�10�7) (Supplementary file 4).

Together, these data suggest that specific electrophysiological features of SCs may be modified

by experience of large environments. After accounting for housing, significant inter-animal variation

remains, suggesting that additional mechanisms acting at the level of animals rather than individual

neurons also determine differences between SCs.

Inter-animal differences remain after accounting for additional
experimental parameters
To address the possibility that other experimental or biological variables could contribute to inter-

animal differences, we evaluated the effects of home cage size (Supplementary files 3–4), brain

hemisphere (Supplementary file 5), mediolateral position (Figure 4—figure supplement 1 and

Supplementary file 6), the identity of the experimenter (Supplementary file 7) and time since slice

preparation (Supplementary files 8 and 9). Several of the variables influenced some measured

Figure 2 continued

the measurement of the rheobase (i); the slope of the current-frequency relationship (I-F slope) (ii); using only the

first five spikes in each response (enlarged zoom, lower left), the AHP minimum value (AHPmin) (iii); the spike

maximum (Spk. max) (iv); the spike threshold (Spk. thr.) (v); and the spike width at half height (Spk. HW) (vi).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Large environment for housing.
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Figure 3. Distinct and dorsoventrally organized properties of layer 2 stellate cells. (A) Representative action

potential after hyperpolarization waveforms from a SC (left), a pyramidal cell (middle) and an unidentified cell

(right). The pyramidal and unidentified cells were both positively labelled in Wfs1Cre mice. (B) Plot of the first

versus the second principal component from PCA of the properties of labelled neurons in Wfs1Cre mice reveals

two populations of neurons. (C) Histogram showing the distribution of rheobase values of cells positively labelled

in Wfs1Cre mice. The two groups identified in panel (B) can be distinguished by their rheobase. (D) Plot of the first

Figure 3 continued on next page
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electrophysiological features, for example properties primarily related to the action potential wave-

form depended on the mediolateral position of the recorded neuron (Supplementary file

6; Canto and Witter, 2012; Yoshida et al., 2013), but significant inter-animal differences remained

after accounting for each variable. We carried out further analyses using models that included hous-

ing, mediolateral position, experimenter identity and the direction in which sequential recordings

were obtained as fixed effects (Supplementary file 10), and using models fit to minimal datasets in

which housing, mediolateral position and the recording direction were identical (Supplementary file

11). These analyses again found evidence for significant inter-animal differences.

Inter-animal differences could arise if the health of the recorded neurons differed between brain

slices. To minimize this possibility, we standardized our procedures for tissue preparation (see

’Materials and methods’), such that slices were of consistent high quality as assessed by low numbers

of unhealthy cells and by visualization of soma and dendrites of neurons in the slice. Several further

Figure 3 continued

two principal components from PCA of the properties of the L2PC (n = 44, green) and SC populations (n = 836,

black). Putative pyramidal cells (x) and SCs (+) are colored according to their dorsoventral location (inset shows the

scale). (E) Proportion of total variance explained by the first five principal components for the analysis in panel (D).

(F) Histograms of the locations of recorded SCs (upper) and L2PCs (lower). (G) All values of measured features

from all mice are plotted as a function of the dorsoventral location of the recorded cells. Lines indicate fits of a

linear model to the complete datasets for SCs (black) and L2PCs (green). Putative pyramidal cells (x, green) and

SCs (+, black). Adjusted R2 values use the same color scheme.

Figure 4. Inter-animal variability and dependence on environment of intrinsic properties of stellate cells. (A)

Examples of rheobase as a function of dorsoventral position for two mice. (B, C) Each line is the fit of simulated

data from a different subject for datasets in which there is no inter-subject variability (B) or in which intersubject

variability is present (C). Fitting data from each subject independently with linear regression models suggests

intersubject variation in both datasets (left). By contrast, after fitting mixed effect models (right) intersubject

variation is no longer suggested for the dataset in which it is absent (B) but remains for the dataset in which it is

present (C). (D) Each line is the fit of rheobase as a function of dorsoventral location for a single mouse. The fits

were carried out independently for each mouse (left) or using a mixed effect model with mouse identity as a

random effect (right). (E) The intercept (I), sum of the intercept and slope (I + S), and slopes realigned to a

common intercept (right) for each mouse obtained by fitting mixed effect models for each property as a function

of dorsoventral position.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Properties of SCs in medial and lateral slices.
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observations are consistent with comparable quality of slices between experiments. First, if the con-

dition of the slices had differed substantially between animals, then in better quality slices, it should

be easier to record from more neurons, in which case features that depend on tissue quality would

correlate with the number of recorded neurons. However, the majority (10/12) of

the electrophysiological features were not significantly (p>0.2) associated with the number of

recorded neurons (Supplementary file 12). Second, analyses of inter-animal differences that focus

only on data from animals for which >35 recordings were made, which should only be feasible with

uniformly high-quality brain slices, are consistent with conclusions from analysis of the larger dataset

(Supplementary file 13). Third, the conditional R2 values of electrophysiological features of L2PCs

are much lower than those for SCs recorded under the same experimental conditions (Table 1 and

Supplementary file 1), suggesting that inter-animal variation may be specific to SCs and cannot be

explained by slice conditions. Together, these analyses indicate that differences between animals

remain after accounting for experimental and technical factors that might contribute to variation in

the measured features of SCs.

The distribution of intrinsic properties is consistent with a continuous
rather than a modular organization
The dorsoventral organization of SC integrative properties is well established, but whether this

results from within animal variation consistent with a small number of discrete set points that under-

lie a modular organization (Figure 1B) is unclear. To evaluate modularity, we used datasets with

n � 34 SCs (N = 15 mice, median age = 37 days, age range = 18–43 days). We focus initially on

rheobase, which is the property with the strongest correlation to dorsoventral location, and resonant

frequency, which is related to the oscillatory dynamics underlying dorsoventral tuning in some mod-

els of grid firing (e.g. Burgess et al., 2007; Giocomo et al., 2007). For n � 34 SCs, we expect that if

properties are modular, then this would be detected by the modified gap statistic in at least 50% of

animals (Figure 1—figure supplements 2C and 3). By contrast, we find that for datasets from the

majority of animals, the modified gap statistic identifies only a single mode in the distribution of

Table 1. Dependence of the electrophysiological features of SCs on dorsoventral position.

Key statistical parameters from analyses of the relationship between each measured electrophysiological feature and dorsoventral

location. The data are ordered according to the marginal R2 for each property’s relationship with dorsoventral position. Slope is the

population slope from fitting a mixed effect model for each feature with location as a fixed effect (mm�1), with p(slope) obtained by

comparing this model to a model without location as a fixed effect (c2 test). For all properties except the spike thereshold, the slope

was unlikely to have arisen by chance (p<0.05). The marginal and conditional R2 values, and the minimum and maximum slopes across

all mice, are obtained from the fits of mixed effect models that contain location as a fixed effect. The estimate p(vs linear) is obtained

by comparing the mixed effect model containing location as a fixed effect with a corresponding linear model without random effects

(c2 test). The values of p(slope) and p(vs linear) were adjusted for multiple comparisons using the method of Benjamini and Hochberg

(1995). Units for the slope measurements are units for the property mm�1. The data are from 27 mice.

Feature Slope P (slope) Marginal R2 Conditional R2 Slope (min) Slope (max) P (vs linear)

IR (MW) 11.794 8.39e-17 0.383 0.532 9.630 14.262 4.33e-40

Rheobase (pA) �119.887 9.07e-15 0.382 0.652 �153.873 �76.130 6.55e-43

I-F slope (Hz/pA) 0.036 6.06e-10 0.228 0.561 0.019 0.087 6.82e-34

Tm (ms) 2.646 3.70e-12 0.192 0.343 1.809 3.979 1.20e-29

Res. frequency (Hz) �1.334 4.13e-09 0.122 0.553 �2.299 �0.342 6.37e-65

Sag 0.033 6.06e-10 0.121 0.347 0.016 0.043 1.91e-38

Spike maximum (mV) 1.900 1.85e-05 0.064 0.436 �1.288 3.297 1.14e-50

Res. magnitude �0.114 6.34e-08 0.064 0.198 �0.138 �0.087 9.13e-20

Vm (mV) �0.884 3.67e-05 0.046 0.348 �1.965 0.150 8.73e-35

Spike AHP (mV) �0.645 1.93e-02 0.011 0.257 �1.828 0.408 1.82e-17

Spike width (ms) 0.017 1.93e-02 0.010 0.643 �0.021 0.055 7.04e-139

Spike threshold (mV) 0.082 8.20e-01 0.000 0.510 �2.468 2.380 2.03e-17
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rheobase values (Figure 5A and Figure 6) (N = 13/15) and of resonant frequencies (Figure 5B and

Figure 6) (N = 14/15), indicating that these properties have a continuous rather than a modular dis-

tribution. Consistent with this, smoothed distributions did not show clearly separated peaks for

either property (Figure 5). The mean and 95% confidence interval for the probability of evaluating a

dataset as clustered (pdetect) was 0.133 and 0.02–0.4 for rheobase and 0.067 and 0.002–0.32 for res-

onant frequency. These values of pdetect were not significantly different from the proportions

expected given the false positive rate of 0.1 in the complete absence of clustering (p=0.28 and 0.66,

Figure 5. Rheobase and resonant frequency do not have a detectable modular organization. (A, B) Rheobase (A)

and resonant frequency (B) are plotted as a function of dorsoventral position separately for each animal. Marker

color and type indicate the age and housing conditions of the animal (‘+’ standard housing, ‘x’ large housing).

KSDs (arbitrary bandwidth, same for all animals) are also shown. The number of clusters in the data (kest) is

indicated for each animal (k̂).
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binomial test). Thus, the rheobase and resonant frequency of SCs, although depending strongly on a

neuron’s dorsoventral position, do not have a detectable modular organization.

When we investigated the other measured integrative properties, we also failed to find evidence

for modularity. Across all properties, for any given property, at most 3 out of 15 mice were evalu-

ated as having a clustered organization using the modified gap statistic (Figure 6). This does not dif-

fer significantly from the proportion expected by chance when no modularity is present (p>0.05,

binomial test). Consistent with this, the average proportion of datasets evaluated as modular across

all measured features was 0.072 ± 0.02 (± SEM), which is similar to the expected false-positive rate.

By contrast, the properties of grid firing fields previously recorded with tetrodes in behaving animals

(Stensola et al., 2012) were detected as having a modular organization using the modified gap sta-

tistic (Figure 1—figure supplement 5). For seven grid-cell datasets with n � 20, the mean for pdetect

is 0.86, with 95% confidence intervals of 0.42 to 0.996. We note here that discontinuity algorithms

that were previously used to assess the modularity of grid field properties (Giocomo et al., 2014;

Stensola et al., 2012) did indicate significant modularity in the majority of the intrinsic properties

measured in our dataset (N = 13/15 and N = 12/15, respectively), but this was attributable to false

positives resulting from the relatively even sampling of recording locations (see Figure 1—figure

supplement 4A). Therefore, we conclude that it is unlikely that any of the intrinsic integrative prop-

erties of SCs that we examined have organization within individual animals resembling the modular

organization of grid cells in behaving animals.

Multiple sources of variance contribute to diversity in stellate cell
intrinsic properties
Finally, because many of the measured electrophysiological features of SCs emerge from shared

ionic mechanisms (Dodson et al., 2011; Garden et al., 2008; Pastoll et al., 2012a), we asked

whether dorsoventral tuning reflects a single core mechanism and whether inter-animal differences

are specific to this mechanism or manifest more generally.

Estimation of conditional independence for measurements at the level of individual neurons

(Figure 7A) or individual animals (Figure 7B) was consistent with the expectation that particular clas-

ses of membrane ion channels influence multiple electrophysiologically measured features. The first

five dimensions of a principal components analysis (PCA) of all measured electrophysiological

Figure 6. Significant modularity is not detectable for any measured property. (A, B) Histograms showing the

kest (k̂) counts across all mice for each different measured sub-threshold (A) and supra-threshold (B) intrinsic

property. The maximum k evaluated was 8. The proportion of each measured property with kest>1 was compared

using binomial tests (with N = 15) to the proportion expected if the underlying distribution of that property is

always clustered with all separation between modes �5 standard deviations (pink text), or if the underlying

distribution of the property is uniform (purple text). For all measured properties, the values of kest (k̂) were

indistinguishable (p>0.05) from the data generated from a uniform distribution and differed from the data

generated from a multi-modal distribution (p<1�10�6).

Pastoll et al. eLife 2020;9:e52258. DOI: https://doi.org/10.7554/eLife.52258 11 of 25

Research Article Neuroscience

https://doi.org/10.7554/eLife.52258


features accounted for almost 80% of the variance (Figure 7C). Examination of the rotations used to

generate the principal components suggested relationships between individual features that are

consistent with our evaluation of the conditional independence structure of the measured features

(Figure 7D and A). When we fit the principal components using mixed models with location as a

fixed effect and animal identity as a random effect, we found that the first two components

depended significantly on dorsoventral location (Figure 7E and Supplementary file 14) (marginal

R2 = 0.50 and 0.09 and adjusted p=1.09�10�15 and 1.05 � 10�4, respectively). Thus, the depen-

dence of multiple electrophysiological features on dorsoventral position may be reducible to two

core mechanisms that together account for much of the variability between SCs in their intrinsic

electrophysiology.

Is inter-animal variation present in PCA dimensions that account for dorsoventral variation? The

intercept, but not the slope of the dependence of the first two principal components on dorsoven-

tral position depended on housing (adjusted p=0.039 and 0.027) (Figure 7E,F and

Supplementary file 15). After accounting for housing, the first two principal components were still

better fit by models that include animal identity as a random effect (adjusted p=3.3�10�9 and 4.1 �

10�86), indicating remaining inter-animal differences in these components (Supplementary file 16).

A further nine of the next ten higher-order principal components did not depend on housing

(adjusted p>0.1) (Supplementary file 15), while eight differed significantly between animals

(adjusted p<0.05) (Supplementary file 16).

Figure 7. Feature relationships and inter-animal variability after reducing dimensionality of the data. (A, B) Partial

correlations between the electrophysiological features investigated at the level of individual neurons (A) and at the

level of animals (B). Partial correlations outside of the 95% basic bootstrap confidence intervals are color coded.

Non-significant correlations are colored white. Properties shown are the resting membrane potential (Vm), input

resistance (IR), membrane potential sag response (sag), membrane time constant (Tm), resonance frequency (Rm),

resonance magnitude (Rm), rheobase (Rheo), slope of the current frequency relationship (FI), peak of the action

potential after hyperpolarization (AHP), peak of the action potential (Smax) voltage threshold for the action

potential (Sthr) and half-width of the action potential (SHW). (C) Proportion of variance explained by each principal

component. To remove variance caused by animal age and the experimenter identity, the principal component

analysis used a reduced dataset obtained by one experimenter and restricted to animals between 32 and 45 days

old (N = 25, n = 572). (D) Loading plot for the first two principal components. (E) The first five principal

components plotted as a function of position. (F) Intercept (I), intercept plus the slope (I + S) and slopes aligned to

the same intercept, for fits for each animal of the first five principal components to a mixed model with location as

a fixed effect and animal as a random effect.
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Together, these analyses indicate that the dorsoventral organization of multiple electrophysiologi-

cal features of SCs is captured by two principal components, suggesting two main sources of vari-

ance, both of which are dependent on experience. Significant inter-animal variation in the major

sources of variance remains after accounting for experience and experimental parameters.

Discussion
Phenotypic variation is found across many areas of biology (Geiler-Samerotte et al., 2013), but has

received little attention in investigations of mammalian nervous systems. We find unexpected inter-

animal variability in SC properties, suggesting that the integrative properties of neurons are deter-

mined by set points that differ between animals and are controlled at a circuit level (Figure 8). Con-

tinuous, location-dependent organization of set points for SC integrative properties provides new

constraints on models for grid cell firing. More generally, the existence of inter-animal differences in

set points has implications for experimental design and raises new questions about how

the integrative properties of neurons are specified.

A conceptual framework for within cell type variability
Theoretical models suggest how different cell types can be generated by varying target concentra-

tions of intracellular Ca2+ or rates of ion channel expression (O’Leary et al., 2014). The within cell

type variability predicted by these models arises from different initial conditions and may explain

the variability in our data between neurons from the same animal at the same dorsoventral location

(Figure 8A). By contrast, the dependence of integrative properties on position and their variation

between animals implies additional mechanisms that operate at the circuit level (Figure 8B). In prin-

ciple, this variation could be accounted for by inter-animal differences in dorsoventrally tuned or

Figure 8. Models for intra- and inter-animal variation. (A) The configuration of a cell type can be conceived of as a

trough (arrow head) in a developmental landscape (solid line). In this scheme, the trough can be considered as a

set point. Differences between cells (filled circles) reflect variation away from the set point. (B) Neurons from

different animals or located at different dorsoventral positions can be conceptualized as arising from different

troughs in the developmental landscape. (C) Variation may reflect inter-animal differences in factors that establish

gradients (upper left) and in factors that are uniformly distributed (lower left), combining to generate set points

that depend on animal identity and location (right). Each line corresponds to schematized properties of a single

animal.
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spatially uniform factors that influence ion channel expression or target points for intracellular Ca2+

(Figure 8C).

The mechanisms for within cell type variability that are suggested by our results may differ from

inter-animal variation described in invertebrate nervous systems. In invertebrates, inter-animal vari-

ability is between properties of individual identified neurons (Goaillard et al., 2009), whereas in

mammalian nervous systems, neurons are not individually identifiable and the variation that we

describe here is at the level of cell populations. From a developmental perspective in which cell

identity is considered as a trough in a state-landscape through which each cell moves (Wang et al.,

2011b), variation in the population of neurons of the same type could be conceived as cell autono-

mous deviations from set points corresponding to the trough (Figure 8A). Our finding that variability

among neurons of the same type manifests between as well as within animals, could be explained by

differences between animals in the position of the trough or set point in the developmental land-

scape (Figure 8B).

Our comparison of neurons from animals in standard and large cages provides evidence for the

idea that within cell-type excitable properties are modified by experience (Zhang and Linden,

2003). For example, granule cells in the dentate gyrus that receive input from SCs increase their

excitability when animals are housed in enriched environments (Green and Greenough, 1986;

Ohline and Abraham, 2019). Our experiments differ in that we increased the size of the environ-

ment with the goal of activating more ventral grid cells, whereas previous enrichment experiments

have focused on increasing the environmental complexity and availability of objects for exploration.

Further investigation will be required to dissociate the influence of each factor on excitability.

Implications of continuous dorsoventral organization of stellate cell
integrative properties for grid cell firing
Dorsoventral gradients in the electrophysiological features of SCs have stimulated cellular models

for the organization of grid firing (Burgess, 2008; Giocomo and Hasselmo, 2008b; Grossberg and

Pilly, 2012; O’Donnell and Nolan, 2011; Widloski and Fiete, 2014). Increases in spatial scale fol-

lowing deletion of HCN1 channels (Giocomo et al., 2011), which in part determine the dorsoventral

organization of SC integrative properties (Garden et al., 2008; Giocomo and Hasselmo, 2009),

support a relationship between the electrophysiological properties of SCs and grid cell spatial

scales. Our data argue against models that explain this relationship through single cell computations

(Burgess, 2008; Burgess et al., 2007; Giocomo et al., 2007), as in this case, the modularity of inte-

grative properties of SCs is required to generate modularity of grid firing. A continuous dorsoventral

organization of the electrophysiological properties of SCs could support the modular grid firing gen-

erated by self-organizing maps (Grossberg and Pilly, 2012) or by synaptic learning mechanisms

(Kropff and Treves, 2008; Urdapilleta et al., 2017). It is less clear how a continuous gradient would

affect the organization of grid firing predicted by continuous attractor network models, which can

instead account for modularity by limiting synaptic interactions between modules (Burak and Fiete,

2009; Bush and Burgess, 2014; Fuhs and Touretzky, 2006; Guanella et al., 2007; Shipston-

Sharman et al., 2016; Widloski and Fiete, 2014; Yoon et al., 2013). Modularity of grid cell firing

could also arise through the anatomical clustering of calbindin-positive L2PCs (Ray et al., 2014;

Ray and Brecht, 2016). Because many SCs do not appear to generate grid codes and as the most

abundant functional cell type in the MEC appears to be non-grid spatial neurons (Diehl et al., 2017;

Hardcastle et al., 2017), the continuous dorsoventral organization of SC integrative properties may

also impact grid firing indirectly through modulation of these codes.

Our results add to previous comparisons of medially and laterally located SCs (Canto and Witter,

2012; Yoshida et al., 2013). The similar dorsoventral organization of subthreshold integrative prop-

erties of SCs from medial and lateral parts of the MEC appears consistent with the organization of

grid cell modules recorded in behaving animals (Stensola et al., 2012). How mediolateral differen-

ces in firing properties (Figure 4—figure supplement 1; Canto and Witter, 2012;

Yoshida et al., 2013) might contribute to spatial computations within the MEC is unclear.

The continuous dorsoventral variation of the electrophysiological features of SCs suggested by

our analysis is consistent with continuous dorsoventral gradients in gene expression along layer 2 of

the MEC (Ramsden et al., 2015). For example, labelling of the mRNA and protein for the HCN1 ion

channel suggests a continuous dorsoventral gradient in its expression (Nolan et al., 2007;

Ramsden et al., 2015). It is also consistent with single-cell RNA sequencing analysis of other brain
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areas, which indicates that although the expression profiles for some cell types cluster around a

point in feature space, others lie along a continuum (Cembrowski and Menon, 2018). It will be

interesting in future to determine whether gene expression continua establish corresponding con-

tinua of electrophysiological features (Liss et al., 2001).

Functional consequences of within cell type inter-animal variability
What are the functional roles of inter-animal variability? In the crab stomatogastric ganglion, inter-

animal variation correlates with circuit performance (Goaillard et al., 2009). Accordingly, variation in

intrinsic properties of SCs might correlate with differences in grid firing (Domnisoru et al., 2013;

Gu et al., 2018; Rowland et al., 2018; Schmidt-Hieber and Häusser, 2013) or behaviors that rely

on SCs (Kitamura et al., 2014; Qin et al., 2018; Tennant et al., 2018). It is interesting in this

respect that there appear to be inter-animal differences in the spatial scale of grid modules (Figure 5

of Stensola et al., 2012). Modification of grid field scaling following deletion of HCN1 channels is

also consistent with this possibility (Giocomo et al., 2011; Mallory et al., 2018). Alternatively, inter-

animal differences may reflect multiple ways to achieve a common higher-order phenotype. Accord-

ing to this view, coding of spatial location by SCs would not differ between animals despite lower

level variation in their intrinsic electrophysiological features. This is related to the idea of degeneracy

at the level of single-cell electrophysiological properties (Marder and Goaillard, 2006; Mittal and

Narayanan, 2018; O’Leary et al., 2014; Swensen and Bean, 2005), except that here the electro-

physiological features differ between animals whereas the higher-order circuit computations may

nevertheless be similar.

In conclusion, our results identify substantial within cell type variation in neuronal integrative

properties that manifests between as well as within animals. This has implications for experimental

design and model building as the distribution of replicates from the same animal will differ from

those obtained from different animals (Marder and Taylor, 2011). An important future goal will be

to distinguish causes of inter-animal variation. Many behaviors are characterized by substantial inter-

animal variation (e.g. Villette et al., 2017), which could result from variation in neuronal integrative

properties, or could drive this variation. For example, it is possible that external factors such as social

interactions may affect brain circuitry (Wang et al., 2011a; Wang et al., 2014), although these

effects appear to be focused on frontal cortical structures rather than circuits for spatial computa-

tions (Wang et al., 2014). Alternatively, stochastic mechanisms operating at the population level

may drive the emergence of inter-animal differences during the development of SCs (Donato et al.,

2017; Ray and Brecht, 2016). Addressing these questions may turn out to be critical to understand-

ing the relationship between cellular biophysics and circuit-level computations in cognitive circuits

(Schmidt-Hieber and Nolan, 2017).

Materials and methods

Mouse strains
All experimental procedures were performed under a United Kingdom Home Office license and with

approval of the University of Edinburgh’s animal welfare committee. Recordings of many SCs per

animal used C57Bl/6J mice (Charles River). Recordings targeting calbindin cells used a Wfs1Cre line

(Wfs1-Tg3-CreERT2) obtained from Jackson Labs (Strain name: B6;C3-Tg(Wfs1-cre/ERT2)3Aibs/J;

stock number:009103) crossed to RCE:loxP (R26R CAG-boosted EGFP) reporter mice (described in

Miyoshi et al., 2010). To promote expression of Cre in the mice, tamoxifen (Sigma, 20 mg/ml in

corn oil) was administered on three consecutive days by intraperitoneal injections, approximately 1

week before experiments. Mice were group housed in a 12 hr light/dark cycle with

unrestricted access to food and water (light on 07.30–19.30 hr). Mice were usually housed in stan-

dard 0.2 � 0.37 m cages that contained a cardboard roll for enrichment. A subset of the mice was

instead housed from pre-weaning ages in a larger 2.4 � 1.2 m cage that was enriched with up to 15

bright plastic objects and eight cardboard rolls (Figure 2—figure supplement 1). Thus, the large

cages had more items but at a slightly lower density (large cages — up to 1 item per 0.125 m2; stan-

dard cages — 1 item per 0.074 m2). All experiments in the standard cage used male mice. For

experiments in the large cage, two mice were female, six mice were male and one was not identi-

fied. Because we did not find significant effects of sex on individual electrophysiologically properties,
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all mice were included in the analyses reported in the text. When only male mice were included, the

effects of housing on the first principal component remained significant, whereas the effects of hous-

ing on individual electrophysiologically properties no longer reach statistical significance after cor-

recting for multiple comparisons. Additional analyses that consider only male mice are provided in

the code associated with the manuscript.

Slice preparation
Methods for preparation of parasagittal brain slices containing medial entorhinal cortex were based

on procedures described previously (Pastoll et al., 2012b). Briefly, mice were sacrificed by cervical

dislocation and their brains carefully removed and placed in cold (2–4˚C) modified ACSF, with com-

position (in mM): NaCl 86, NaH2PO4 1.2, KCl 2.5, NaHCO3 25, glucose 25, sucrose 75, CaCl2 0.5,

and MgCl2 7. Brains were then hemisected and sectioned, also in modified ACSF at 4–8˚C, using a

vibratome (Leica VT1200S). To minimize variation in the slicing angle, the hemi-section was cut along

the midline of the brain and the cut surface of the brain was glued to the cutting block. After cutting,

brains were placed at 36˚C for 30 min in standard ACSF, with composition (in mM): NaCl 124,

NaH2PO4 1.2, KCl 2.5, NaHCO3 25, glucose 20, CaCl2 2, and MgCl2 1. They were then allowed to

cool passively to room temperature. All slices were prepared by the same experimenter

(HP), who followed the same procedure on each day.

Recording methods
Whole-cell patch-clamp recordings were made between 1 to 10 hr after slice preparation using pro-

cedures described previously (Pastoll et al., 2013; Pastoll et al., 2012a; Pastoll et al., 2012b;

Sürmeli et al., 2015). Recordings were made from slice perfused in standard ACSF maintained at

34–36˚C. In these conditions, we observe spontaneous fast inhibitory and excitatory postsynaptic

potentials, but do not find evidence for tonic GABAergic or glutamatergic currents. Patch electrodes

were filled with the following intracellular solution (in mM): K gluconate 130; KCl 10, HEPES 10,

MgCl2 2, EGTA 0.1, Na2ATP 2, Na2GTP 0.3 and NaPhosphocreatine 10. The open tip resistance was

4–5 MW, all seal resistances were >2 GW and series resistances were <30 MW. Recordings were

made in current clamp mode using Multiclamp 700B amplifiers (Molecular Devices, Sunnyvale, CA,

USA) connected to PCs via Instrutech ITC-18 interfaces (HEKA Elektronik, Lambrecht, Germany) and

using Axograph X acquisition software (http://axographx.com/). Pipette capacitance and series resis-

tances were compensated using the capacitance neutralization and bridge-balance amplifier con-

trols. An experimentally measured liquid junction potential of 12.9 mV was not corrected for.

Stellate cells were identified by their large sag response and the characteristic waveform of their

action potential after hyperpolarization (see Alonso and Klink, 1993; Gonzalez-Sulser et al., 2014;

Nolan et al., 2007; Pastoll et al., 2012a).

To maximize the number of cells recorded per animal, we adopted two strategies. First, to mini-

mize the time required to obtain data from each recorded cell, we measured electrophysiological

features using a series of three short protocols following initiation of stable whole-cell recordings.

We used responses to sub-threshold current steps to estimate passive membrane properties

(Figure 2A), a frequency modulated sinusoidal current waveform (ZAP waveform) to estimate imped-

ance amplitude profiles (Figure 2B), and a linear current ramp to estimate the action potential

threshold and firing properties (Figure 2C). From analysis of data obtained with these protocols, we

obtained 12 quantitative measures that describe the sub- and supra-threshold integrative properties

of each recorded cell (Figure 2A–C). Second, for the majority of mice, two experimenters

made recordings in parallel from neurons in two sagittal brain sections from the same hemisphere.

The median dorsal-ventral extent of the recorded SCs was 1644 mm (range 0–2464 mm). Each experi-

menter aimed to sample recording locations evenly across the dorsoventral extent of the MEC, and

for most animals, each experimenter recorded sequentially from opposite extremes of the dorsoven-

tral axis. Each experimenter varied the starting location for recording between animals. For several

features, the direction of recording affected their measured dependence on dorsoventral location,

but the overall dependence of these features on dorsoventral location was robust to this effect

(Supplementary file 9).
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Measurement of electrophysiological features and neuronal location
Electrophysiological recordings were analyzed in Matlab (Mathworks) using a custom-written semi-

automated pipeline. We defined each feature as follows (see also Nolan et al., 2007; Pastoll et al.,

2012a): resting membrane potential was the mean of the membrane potential during the 1 s prior

to injection of the current steps used to assess subthreshold properties; input resistance was the

steady-state voltage response to the negative current steps divided by their amplitude; membrane

time constant was the time constant of an exponential function fit to the initial phase of membrane

potential responses to the negative current steps; the sag coefficient was the steady-state divided

by the peak membrane potential response to the negative current steps; resonance frequency was

the frequency at which the peak membrane potential impedance was found to occur; resonance

magnitude was the ratio between the peak impedance and the impedance at a frequency of 1 Hz;

action potential threshold was calculated from responses to positive current ramps as the membrane

potential at which the first derivative of the membrane potential crossed 20 mv ms�1 averaged

across the first five spikes, or fewer if fewer spikes were triggered; rheobase was the ramp current at

the point when the threshold was crossed on the first spike; spike maximum was the mean peak

amplitude of the action potentials triggered by the positive current ramp; spike width was the dura-

tion of the action potentials measured at the voltage corresponding to the midpoint between the

spike threshold and spike maximum; the AHP minimum was the negative peak membrane potential

of the after hyperpolarization following the first action potential when a second action potential also

occurred; and the F-I slope was the linear slope of the relationship between the spike rate and the

injected ramp current over a 500 ms window.

The location of each recorded neuron was estimated as described previously (Garden et al.,

2008; Pastoll et al., 2012b). Following each recording, a low magnification image was taken of the

slice with the patch-clamp electrode at the recording location. The image was calibrated and then

the distance measured from the dorsal border of the MEC along the border of layers 1 and 2 to the

location of the recorded cell.

Analysis of location-dependence, experience-dependence and inter-
animal differences
Analyses of location-dependence and inter-animal differences used R 3.4.3 (R Core Team, Vienna,

Austria) and R Studio 1.1.383 (R Studio Inc, Boston, MA).

To fit linear mixed effect models, we used the lme4 package (Bates et al., 2014). Features of

interest were included as fixed effects and animal identity was included as a random effect. All

reported analyses are for models with the minimal a priori random effect structure, in other words

the random effect was specified with uncorrelated slope and intercept. We also evaluated models in

which only the intercept, or correlated intercept and slope were specified as the random effect.

Model assessment was performed using Akaike Information Criterion (AIC) scores. In general, mod-

els with either random slope and intercept, or correlated random slope and intercept, had lower

AIC scores than random intercept only models, indicating a better fit to the data. We used the for-

mer set of models for all analyses of all properties for consistency and because a maximal effect

structure may be preferable on theoretical grounds (Barr et al., 2013). We evaluated assumptions

including linearity, normality, homoscedasticity and influential data points. For some features, we

found modest deviations from these assumptions that could be remedied by handling non-linearity

in the data using a copula transformation. Model fits were similar following transformation of the

data. However, we focus here on analyses of the untransformed data because the physical interpre-

tation of the resulting values for data points is clearer.

To evaluate the location-dependence of a given feature, p-values were calculated using a c2 test

comparing models to null models with no location information but identical random effect specifica-

tion. To calculate marginal and conditional R2 of mixed effect models, we used the MuMin package

(Bartoń, 2014). To evaluate additional fixed effects, we used Type II Wald c2 test tests provided by

the car package (Fox and Weisberg, 2018). To compare mixed effect with equivalent linear models,

we used a c2 test to compare the calculated deviance for each model. For clarity, we have reported

key statistics in the main text and provide full test statistics in the Supplemental Tables. In addition,

the code from which the analyses can be fully reproduced is available at https://github.com/
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MattNolanLab/Inter_Intra_Variation (Nolan, 2020; copy archived at https://github.com/elifescien-

ces-publications/Inter_Intra_Variation).

To evaluate partial correlations between features, we used the function cor2pcor from the R pack-

age corpcor (Schafer et al., 2017). Principal components analysis used core R functions.

Implementation of tests for modularity
To establish statistical tests to distinguish ‘modular’ from ‘continuous’ distributions given relatively

few observations, we classified datasets as continuous or modular by modifying the gap statistic

algorithm (Tibshirani et al., 2001). The gap statistic estimates the number of clusters (kest) that best

account for the data in any given dataset (Figure 1—figure supplement 1A-C). However, this esti-

mate may be prone to false positives, particularly where the numbers of observations are low. We

therefore introduced a thresholding mechanism for tuning the sensitivity of the algorithm so that the

false-positive rate, which is the rate of misclassifying datasets drawn from continuous (uniform) distri-

butions as ‘modular’, is low, constant across different numbers of cluster modes and insensitive to

dataset size (Figure 1—figure supplement 1D-G). With this approach, we are able to estimate

whether a dataset is best described as lacking modularity (kest = 1), or having a given number of

modes (kest > 1). Below, we describe tests carried out to validate the approach.

To illustrate the sensitivity and specificity of the modified gap statistic algorithm, we applied it to

simulated datasets drawn either from a uniform distribution (k = 1, n = 40) or from a bimodal distri-

bution with separation between the modes of five standard deviations (k = 2, n = 40,

sigma = 5) (Figure 1—figure supplement 2A). We set the thresholding mechanism so that kest for

each distinct k (where kest �2) has a false-positive rate of 0.01. In line with this, testing for

2 � kest � 8 (the maximum k expected to occur in grid spacing in the MEC), across multiple

(N = 1000) simulated datasets drawn from the uniform distribution, produced a low false-positive

rate (P(kest)�2 = ~0.07), whereas when the data were drawn from the bimodal distribution, the ability

to detect modular organization (pdetect) was good (P[kest]�2 = ~0.8) (Figure 1—figure supplement

2B). The performance of the statistic improved with larger separation between clusters and with

greater numbers of data points per dataset (Figure 1—figure supplement 2C) and is relatively

insensitive to the numbers of clusters (Figure 1—figure supplement 2D). The algorithm maintains

high rates of pdetect when modes have varying densities and when sigma between modes varies in a

manner similar to grid spacing data (Figure 1—figure supplement 3).

Analysis of extracellular recording data from other laboratories
Recently described algorithms (Giocomo et al., 2014; Stensola et al., 2012) address the problem

of identifying modularity when data are sampled from multiple locations and data values vary as a

function of location, as is the case for the mean spacing of grid fields for cells at different dorsoven-

tral locations recorded in behaving animals using tetrodes (Hafting et al., 2005). They generate log-

normalized discontinuity (which we refer to here as lnDS) or discreteness scores, which are the log of

the ratio of discontinuity or discreteness scores for the data points of interest and for the sampling

locations, with positive values interpreted as evidence for clustering (Giocomo et al., 2014;

Stensola et al., 2012). However, in simulations of datasets generated from a uniform distribution

with evenly spaced recording locations, we find that the lnDS is always greater than zero (Figure 1—

figure supplement 4A). This is because evenly spaced locations result in a discontinuity score that

approaches zero, and therefore the log ratio of the discontinuity of the data to this score will be pos-

itive. Thus, for evenly spaced data, the lnDS is guaranteed to produce false-positive results. When

locations are instead sampled from a uniform distribution, approximately half of the simulated data-

sets have a log discontinuity ratio greater than 0 (Figure 1—figure supplement 4A), which in previ-

ous studies would be interpreted as evidence of modularity (Giocomo et al., 2014). Similar

discrepancies arise for the discreteness measure (Stensola et al., 2012). To address these issues, we

introduced a log discontinuity ratio threshold, so that the discontinuity method could be matched to

produce a similar false-positive rate to the adapted gap statistic algorithm used in the example

above. After including this modification, we found that for a given false-positive rate, the adapted

gap statistic is more sensitive at detecting modularity in the simulated datasets (Figure 4—figure

supplement 1B).
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To establish whether the modified gap statistic detects clustering in experimental data, we

applied it to previously published grid cell data recorded with tetrodes from awake behaving ani-

mals (Stensola et al., 2012). We find that the modified gap statistic identified clustered grid spacing

for 6 of 7 animals previously identified as having grid modules and with n � 20. For these animals,

the number of modules was similar (but not always identical) to the number of previously identified

modules (Figure 1—figure supplement 5). By contrast, the modified gap statistic does not identify

clustering in five of six sets of recording locations, confirming that the grid clustering is likely not a

result of uneven sampling of locations (we could not test the seventh as location data were not avail-

able). The thresholded discontinuity score also detects clustering in the same five of the six tested

sets of grid data. From the six grid datasets detected as clustered with the modified gap statistic,

we estimated the separation between clusters by fitting the data with a mixture of Gaussians, with

the number of modes set by the value of k obtained with the modified gap statistic. This analysis

suggested that the largest spacing between contiguous modules in each mouse is always >5.6 stan-

dard deviations (mean = 20.5 ± 5.0 standard deviations). Thus, the modified gap statistic detects

modularity within the grid system and indicates that previous descriptions of grid modularity are, in

general, robust to the possibility of false positives associated with the discreteness and discontinuity

methods.
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Additional files
Supplementary files
. Supplementary file 1. Dependence of calbindin cell properties on dorsoventral position. Analyses

are as described for Table 1. Data are from GFP-positive putative pyramidal neurons (n = 42,

N = 3).

. Supplementary file 2. Dependence of SC properties on age. The distinguishing electrophysiologi-

cal features of SCs and their dorsoventral organization were apparent at all ages, with some features

depending significantly on age (left columns), consistent with the idea that SCs continue to mature

beyond P18 (Boehlen et al., 2010; Burton et al., 2008). When we considered only animals between

P33 and P44, we did not find any significant effect of age (right columns). Significance estimates for

the effects of dorsoventral position (dvloc), age (age) and interactions between dorsoventral position

and age (dvloc:age) were estimated using type II ANOVA and Wald c2 test from fits to mixed mod-

els containing age and location as fixed effects and animal identity as random effects. Significance

estimates were adjusted for multiple comparisons using the Benjamini and Hochberg method.

. Supplementary file 3. Dependence of SC properties on housing. Analyses suggesting that the

membrane potential sag, resonance frequency, and spike half-width of SCs differ between mice

housed in standard and large home cages. Significance estimates for the effects of dorsoventral

position (dvloc), housing (housing) and interactions between dorsoventral position and housing

(dvloc:housing) estimated using type II ANOVA and Wald c2 test from fits to mixed models contain-

ing age and location as fixed effects and animal identity as random effects. Initial significance esti-

mates (raw p) were adjusted for multiple comparisons (adjusted p) using the Benjamini and

Hochberg method.

. Supplementary file 4. Inter-animal differences in electrophysiological features remain after account-

ing for housing. Results from comparison of a mixed effect model incorporating dorsoventral loca-

tion and housing with an equivalent linear model. The significance estimate (p) is calculated using a

c2test and adjusted for multiple comparisons (p_adj) using the Benjamini and Hochberg method.

. Supplementary file 5. Dependence of SC properties on hemisphere. We did not find significant

effects of brain hemisphere on any features except for the relationship between dorsoventral loca-

tion and sag. Significance estimates for the effects of dorsoventral position (dvloc), brain hemisphere

(hemi) and interactions between dorsoventral position and hemisphere (dvloc:hemi) were estimated

using type II ANOVA and Wald c2 test from fits to mixed models containing age and location as

fixed effects and animal identity as random effects. Initial significance estimates (raw p) were

adjusted for multiple comparisons (adjusted p) using the Benjamini and Hochberg method.

. Supplementary file 6. Dependence of SC properties on mediolateral position. Mediolateral as well

as dorsoventral position has been reported to determine the sub-threshold electrophysiological fea-

tures of SCs (Canto and Witter, 2012). We found significant effects of mediolateral position on all

measured electrophysiological features. However, the sizes of the effects of mediolateral position on

subthreshold features (vm, ir, sag, tau, resf, resmag, and rheo) were much smaller than for dorsoven-

tral position. By contrast, supra-threshold features (spkthr, spkmax, and ahp) were more greatly

affected by mediolateral position, with more medial neurons having a higher spike threshold, and

lower amplitudes of the spike peak and of after-hyperpolarization. Fixed effects are the intercept

and slope coefficients for mixed models containing dorsoventral and mediolateral location as fixed

effects and animal identity as random effects. Significance estimates for the effects of dorsoventral
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position (dvloc), mediolateral position (ml) and interactions between dorsoventral position and

mediolateral position (dvloc:ml) are estimated using type II ANOVA and Wald c2 tests from the fits

of the mixed models. Initial significance estimates (raw p) were adjusted for multiple comparisons

(adjusted p) using the Benjamini and Hochberg method.

. Supplementary file 7. Dependence of SC properties on experimenter. We found that for many

electrophysiological features, the identity of the experimenter affected the intercept, but not the

slope, of their relationship with dorsoventral position. All features except for spike threshold never-

theless followed a dorsoventral organization after accounting for the experimenter. Significance esti-

mates for the effects of dorsoventral position (dvloc), experimenter (exp) and interactions between

dorsoventral position and experimenter (dvloc:exp) were estimated using type II ANOVA and

Wald c2 tests from fits to mixed models containing age and location as fixed effects and animal iden-

tity as random effects. Initial significance estimates (raw p) were adjusted for multiple comparisons

(adjusted p) using the Benjamini and Hochberg method.

. Supplementary file 8. Dependence of SC properties on time since slice preparation. We antici-

pated that the interval between slice preparation and recording may influence the measured electro-

physiological features. Consistent with our expectation, analyses of the data were consistent with

changes to some electrophysiological features of SCs with time since slice preparation, but dorso-

ventral gradients could not be explained by these changes. Significance estimates for the effects of

dorsoventral position (dvloc), time since slice preparation (rect) and interactions between dorsoven-

tral position and experimenter (dvloc:rect) estimated using type II ANOVA and Wald c2 tests from

fits to mixed models containing age and location as fixed effects and animal identity as random

effects. Initial significance estimates (raw p) were adjusted for multiple comparisons (adjusted p)

using the Benjamini and Hochberg method.

. Supplementary file 9. Dependence of SC properties on direction in which sequential recordings

are made. In anticipation of the effects of the time since slice preparation on

the electrophysiological features of SCS, we varied the direction along the dorsoventral axis from

which consecutive recordings were made between experimenters and experimental days (see

’Materials and methods’). Consistent with effects of time on electrophysiological features (see

Supplementary file 7 above), we found that the direction in which sequential recordings were made

influenced the slope, but not the intercept of several electrophysiological features. Significance esti-

mates for the effects of dorsoventral position (dvloc), direction in which sequential recordings were

made (dir) and interactions between dorsoventral position and recording direction (dvloc:dir) esti-

mated using type II ANOVA and Wald c2 tests from fits to mixed models containing age and loca-

tion as fixed effects and animal identity as random effects. Initial significance estimates (raw p) were

adjusted for multiple comparisons (adjusted p) using the Benjamini and Hochberg method.

. Supplementary file 10. Inter-animal differences in extended models. Results from comparison of

a mixed effect model incorporating dorsoventral location, housing, mediolateral position, experi-

menter identity and direction in which recordings were obtained with an equivalent linear model.

Data are from animals between 32 and 45 days old. The significance estimate (p) is calculated using

a c2 test and adjusted for multiple comparisons (p_adj) using the Benjamini and Hochberg method.

. Supplementary file 11. Inter-animal differences in models fit to minimal datasets. Results from com-

parison of mixed effect models with dorsoventral location as a fixed effect and animal identity as a

random effect using minimal datasets obtained by either HP (upper) or DG (lower). Data are from

animals between 32 and 45 days old. Because of the smaller size of these datasets, the statistical

power to detect inter-animal variation is reduced. Nevertheless, in these analyses, the conditional R2

of the mixed model fit was again substantially higher than the marginal R2, and most (9/12) features

were better fit by a mixed model compared to a corresponding linear model in both datasets.

. Supplementary file 12. Electrophysiological features and the number of recorded neurons. Signifi-

cance estimates for the effects of dorsoventral position (dvloc), number of recorded neurons (counts)

and interactions between dorsoventral position and number of recorded neurons (dvloc:counts) esti-

mated using type II ANOVA and Wald c2 tests from fits to mixed models containing age and loca-

tion as fixed effects and animal identity as random effects. Initial significance estimates (raw p) were

adjusted for multiple comparisons (adjusted p) using the Benjamini and Hochberg method.
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. Supplementary file 13. Inter-animal differences for experiments with >35 recorded neurons. Analy-

ses of inter-animal differences focusing only on data from animals for which > 35 recordings were

made (N = 11, n = 459). Comparison of marginal and conditional R2 values continued to indicate

substantial inter-animal variance, and fits obtained with mixed models remained significantly differ-

ent to fits that did not account for animal identity (p<4.4�10�5). Analyses are as for

Supplementary file 1, but are restricted to experiments in which > 35 neurons were recorded from.

. Supplementary file 14. Dependence of principal components on dorsoventral position and animal

identity. Analyses are as described for Table 1, but were applied to principal components of the

electrophysiological features of SCs.

. Supplementary file 15. Dependence of principal components of SC properties on housing. Analy-

ses are as described for Supplementary file 3, but are applied to principal components of the

electrophysiological features of SCs.

. Supplementary file 16. Dependence of principal components on animal identity in models that

account for housing. Analyses are as for Supplementary file 10, but are applied to principal compo-

nents of the electrophysiological features of SCs.

. Transparent reporting form

Data availability

Processed data used for analyses and all associated code is available from the GitHub page for the

project (https://github.com/MattNolanLab/Inter_Intra_Variation, copy archived at https://github.

com/elifesciences-publications/Inter_Intra_Variation). Raw data has been made available from our

institutional repository and can be found at https://doi.org/10.7488/ds/2765.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Hugh P, Derek LG,
Matthew FN

2020 Inter- and intra-animal variation in
the integrative properties of
stellate cells in the medial
entorhinal cortex

https://doi.org/10.7488/
ds/2765

Edinburgh DataShare,
10.7488/ds/2765
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