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Abstract

INTRODUCTION: Preventing dementia, or modifying disease course, requires identification of 

pre-symptomatic or minimally symptomatic high-risk individuals.

METHODS: We utilized longitudinal electronic health records from two large academic medical 

centers and applied a validated natural language processing tool to estimate cognitive 

symptomatology. We used survival analysis to examine the association of cognitive symptoms 

with incident dementia diagnosis during up to 8 years of follow-up.

RESULTS: Among 267,855 hospitalized patients with 1,251,858 patient-years of follow-up data, 

6,516 (2.4%) received a new diagnosis of dementia. In competing risk regression, increasing 

cognitive symptom score was associated with earlier dementia diagnosis (HR 1.63; 1.54 – 1.72). 

Similar results were observed in the second hospital system, and in subgroup analysis of younger 

and older patients.

DISCUSSION: A cognitive symptom measure identified in discharge notes facilitated 

stratification of risk for dementia up to 8 years before diagnosis.
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1. INTRODUCTION1

While currently marketed treatments for dementia exhibit modest efficacy overall, they are 

thought to be most effective when used early in the disease course.[1–3] As such, early 

detection of those who will develop dementia is a public health priority.[4]

To date, the only validated in vivo markers of early or preclinical disease rely on PET 

imaging, although such imaging is not definitive in diagnosis[5,6] and widespread clinical 

deployment of PET is not feasible at present. In a research context, minimally burdensome 

risk-enriched recruitment, particularly by primary care doctors, is a recognized essential 

component of the National Plan to Address Alzheimer’s Disease.[7] Challenges in study 

recruitment in this context have been implicated in past failures to bring new compounds to 

market.[8] Although numerous cognitive screening measures for dementia have been 

developed, their reliability and scalability are variable.[9,10] As such, additional low-cost 

high-scale means of dementia risk stratification would be useful in prioritizing next-step 

assessment in clinical care and facilitating clinical research on early intervention. The aim of 

this report is to assess an electronic health record (EHR)-based screening approach that 

could help to meet this need.

In particular, we sought to determine whether concepts derived from narrative hospital 

discharge notes enable risk stratification of future dementia diagnosis. Narrative free text is 

widely available in EHRs but unwieldy to work with in conventional analytic paradigms; as 

such, tools for quantifying concepts within these documents for subsequent analysis are an 

area of active research.[11] We have recently demonstrated that natural language processing 

(NLP) applied to EHR documentation may capture useful elements of clinical presentation 

not necessarily reflected in coded data. For example, non-coded psychiatric symptoms 

captured in clinical documentation improve prediction of suicide risk,[12,13] the subjective 

valence of notes predict all-cause mortality,[14] and symptoms or symptom domains predict 

future utilization.[15,16] To extend the literature on the utility of NLP in the clinical 

prediction of dementia risk stratification, we applied a recently-validated approach to 

estimating cognitive symptoms in narrative notes from two large academic medical centers 

with distinct clinical populations.[17,18] To evaluate the derived cognitive symptom scores 

we examined the extent to which cognitive score associated with subsequent dementia risk 

among hospitalized individuals without a prior diagnosis of dementia. Secondarily, we 

examined the association between this score and death among hospitalized individuals 

already diagnosed with dementia, hypothesizing that a common set of features might also 

represent a marker of disease progression and severity, shown to associate with mortality.

[19,20]
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2. MATERIALS AND METHODS

2.1 Study design and cohort derivation

This study used a retrospective cohort design drawing on inpatient discharges documented in 

the EHR of two large academic medical centers for adults (age 18 years and older) 

hospitalized between January 1, 2005 and December 31, 2017. In addition to 

sociodemographic features (age at admission, sex, and race/ethnicity), we extracted 

administrative diagnostic codes and narrative hospital discharge summary notes. The 

primary study cohort (used to examine dementia onset, referred to subsequently as the 

incident dementia cohort) included all individuals who had not received a structured 

diagnosis of dementia during the index hospitalization, or at any point prior to that 

hospitalization in either hospital’s EHR. After primary analysis of the sites individually, 

their data were pooled for a merged analysis. The secondary study cohort (used to examine 

mortality, referred to subsequently as the prevalent dementia cohort) included individuals 

who received a structured diagnosis of dementia at or preceding the index hospitalization. 

That is, individuals with and without dementia at or before index hospitalization were 

separated into distinct cohorts, to allow investigation of emergence of dementia in those not 

previously diagnosed, and then progression of dementia to death among those who had been 

previously diagnosed. Diagnosis was ascertained using clinical billing data in terms of 

International Statistical Classification of Diseases and Related Health Problems versions 9 

and 10 codes as well as structured problem list codes for dementia.[21–24]

In this context, index hospitalization refers either to the only hospitalization during the risk 

period, or for individuals with multiple hospitalizations, to a randomly-selected 

hospitalization. Random selection is consistent with prior work and avoids the bias of 

selecting the first (or last) observed hospitalization from the observation period at the 

expense of total follow-up duration.[12] (See section 2.4, below, for description of 

sensitivity analyses incorporating all admissions).

Datamart generation used Informatics for Integrating Biology and the Bedside, or i2b2, 

server software.[25,26] The Partners HealthCare Human Research Committee reviewed and 

approved the study protocol, waiving the requirement for informed consent as a retrospective 

health care utilization study with no participant contact.

2.2 Scoring clinical text for cognition symptom burden

We have previously described derivation and validation of a method for estimating 

neuropsychiatric symptom domains from narrative text.[17] In brief, this method relies on 

recognizing a prespecified set of terms within a given symptom domain, cognition in this 

case. This term list was developed in an iterative process which began with consensus term 

lists developed by a group of clinical experts, including the NIMH Research Domain 

Criteria working group, which were subsequently expanded through unsupervised machine 

learning to enhance coverage of the clinical lexicon. The final symptom score is simply the 

percent of terms that appear in any given note: for example, if there are 20 possible 

cognition-related terms, and 5 appear in a note, the note would be assigned a score of 5/20, 

or 25%. The scoring approach is implemented as freely available software for inspection and 
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the full list of tokens is available online at https://github.com/thmccoy/CQH-Dimensional-

Phenotyper and described in the initial validation publication.[17] Of note, this tool was not 

developed or trained to predict emergence of dementia in any way, but simply to capture 

dimensions of neuropsychiatric symptoms reflecting interest in conceptualizing illness as 

dimensional rather than categorical.[27,28]

2.3 Outcome

The primary study outcome was time to receipt of a diagnostic code of dementia at any 

inpatient or outpatient visit, among individuals who had not received such a code at or prior 

to the index hospitalization (i.e., incident dementia). In the second, distinct cohort composed 

of those with a diagnosis of dementia at or before the index hospitalization (i.e., prevalent 

dementia), the outcome was time to death. For the secondary study in prevalent dementia 

cases, all-cause mortality was determined by integrating federal Social Security registry data 

with public death certificate data available from the Massachusetts Department of Public 

Health.

2.4 Analysis

In primary analysis, we examined time from hospital discharge to incident dementia 

diagnosis, censoring at end of follow-up, death, or 8 years, whichever came first, using 

survival methodology. As death precludes the incident diagnosis of dementia we approached 

death a competing risk and analyzed the association between cognitive symptom burden 

score and time to incident dementia diagnosis in a Fine-Gray subdistribution hazard model 

adjusting for age, sex, white race, and Charlson comorbidity index.[29–31] This analysis 

used the package fastcmprsk v1.02.[32] In this analysis continuous covariate were included 

directly. In keeping with prior work, we multiple the cognitive burden score by 10 to 

simplify communication and reduce the size of model coefficients.[33–35] To visualize 

censored data we plotted Kaplan-Meier curves by quartile of symptom burden score using 

ggplot2 v3.1 and tested time to event differences among these groups using both univariate 

and stratified analysis with survival v2.43.[36] Where used, the stratified Kaplan-Meier log-

rank tests were stratified by cognitive burden quartile, age and Charlson comorbidity index 

tertile, white race, and sex. To assess the performance of the cognitive symptom burden 

score as a classifier of censored data we report the C index of the symptom score with 

respect to the dementia outcome using survival v2.43.[37–39] To further characterize the 

magnitude of risk associated with the cognitive symptom score captured by the Fine-Gray 

analysis and depicted in Kaplan-Meyer curves in a more familiar cross sectional paradigm, 

we created sub-cohorts including only those individuals with adequate follow up time to 

observe dementia at five years and evaluated dementia within five years as a binary outcome. 

In secondary analyses of these sub-cohorts with follow up sufficient to study a five-year 

dementia outcome, we report the area under the receiver operating characteristics curve 

(AUC) for cognitive symptom burden as a univariate classifier.[40,41] AUCs were calculated 

using the pROC v1.15 package. In the same 5-year follow up sub-cohorts we applied 

Youden’s method to select the optimal cut point in the cognitive symptom burden score for 

identification of five-year dementia risk and then calculated sensitivity and specificity based 

on this cut point.[42,43] Cut point analysis used cutpointr v0.7.6. Finally, we calculated lift 

– the rate of outcome in a strata relative to that in the group overall – by quartile of cognitive 
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symptom burden score for each cohort.[44] All analysis for the primary aim of assessing 

association between cognitive symptom scale and new dementia diagnosis was were 

performed for each site cohort individually and then with the two pooled. Thereafter the 

pooled cohort was used for a range of supplemental and sensitivity analyses which are 

reported primarily in the supplemental materials. As an assessment of age effects, the pooled 

sample was stratified into an older cohort (age 50 and greater) and a younger cohort (those 

less than 50 years old) and analyzed as censored survival data. Patients who were primarily 

admitted for stroke were sub analyzed in a survival paradigm. The five-year sub-cohort of 

the two-site pooled cohort was then analyzed using logistic regression minimally adjusting 

for age, sex, race, and Charlson for comparison in sensitivity analysis allowing multiple 

encounters per patient. excluding diagnosis within two years of index hospitalization, adding 

primary discharge diagnostic information categorized based on Agency for Healthcare 

Research and Quality Clinical Classification Software ICD10 level 1 codes, primary 

diagnosis of stroke, and finally in models stratified by quartile of age.

To better understand the timing of incident dementia diagnosis, we capitalized on the 

inspectability of the pre-specified term list approach and evaluated the impact of the 

individual terms contributing to the cognitive symptom score. To do so, we divided cases of 

incident dementia into near term (initial diagnosis within 1 year) and long term (initial 

diagnosis greater than 1 year after index hospitalization) and compared the proportion of 

discharges with each term present using chi squared testing and crude odds ratio. Although 

this analysis decomposes the previously validated composite score, it provides visibility into 

the potential clinical features associated with outcomes. This analysis was limited to those 

tokens from the cognition score that occurred in at least 10 cases of near-term and long-term 

dementia.

In a second and distinct cohort, as a secondary aim, we sought to understand the relationship 

between the cognitive symptom burden and mortality risk. In this prevalent dementia cohort 

(i.e., individuals with an existing dementia diagnosis at the randomly index hospitalization 

used for all primary analysis), we repeated stratified Kaplan-Meier analysis as described in 

the description of the primary aim methods above using all-cause mortality over the 8-year 

follow up period as the lone endpoint. This analysis gives insight into the potential for the 

computed cognitive symptom burden score to stratify the risk of progression from diagnosis 

to death, whereas the primary analysis focuses on the risk of progression to dementia 

diagnosis.

All analyses utilized R v3.5.2 and the specific packages described above.[45] As we tested 

two independent hypotheses (association with incident dementia, and then association with 

mortality), uncorrected p-values are reported with alpha set at 0.05. In the exploratory 

analysis of individual terms among the cases of incident dementia, Bonferroni-corrected p-

values were used to control type 1 error.

3. RESULTS

In the first hospital system, there were 267,855 index hospitalizations of individuals without 

a prior dementia diagnosis and no dementia diagnosis during hospitalization, with 1,251,858 
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patient-years of follow-up data (Table 1). Among them, 6,516 (2.4%) received a diagnosis of 

dementia during up to 8 years of follow-up. In competing risk regression, cognitive score at 

discharge was positively associated with subsequent dementia diagnosis (aHR 1.63, 95% CI 

1.54 – 1.72; Table 2A). In Kaplan-Meier survival models (Figure 1A), quartile of cognitive 

score was associated with emergence of dementia (log-rank chi square (3df)=570; p<1e-6); 

significant association persisted in models stratified for age, sex, white race, and Charlson 

comorbidity score (log-rank chi square (3df)=309; p<1e-6). The C index for cognitive 

burden score in the primary cohort was 0.61 (95% CI 0.60 – 0.61). In the primary cohort, 

99th percentile dementia-free survival (i.e., time to 1% incidence of dementia) occurred at 

1,160 days (95% CI 1041–1289 days) in the lowest quartile of cognitive symptom burden 

versus 189 days (95% CI 161–229 days) in the highest symptom burden quartile.

Next, we examined the generalizability of this cognitive dimension to a second academic 

medical center (Table 1). For 267,959 hospitalizations of individuals without a prior 

diagnosis of dementia, 3,902 (1.5%) subsequently received this diagnosis during 1,319,935 

patient-years of follow-up data. As in the first hospital, cognitive risk score was positively 

associated with dementia risk in competing risk regression (aHR 1.37, 95% CI 1.29 – 1.46; 

Table 2B). Statistically significant differences were likewise observed using unstratified 

analysis of Kaplan-Meier survival curves (log-rank chi square (3df)=879; p<1e-6; Figure 

1B) and in stratified analysis (log-rank chi square (3df)=232; p<1e-6). The C index for 

cognitive burden score predicting dementia in the second hospital was 0.65 (95% CI 0.64 – 

0.66). In this site’s cohort, 99th percentile dementia-free survival occurred at 2,186 days 

(95% CI 2037–2356 days) in the lowest quartile of cognitive symptom burden versus 347 

days (95% CI 298–399 days) in the highest symptom burden quartile.

In follow-up pooled analysis over the two hospital systems that included 535,814 

hospitalized patients, 10,418 (1.9%) of whom went on to an eventual dementia diagnosis, 

spanning 2,571,793 patient-years of follow-up data, the cognitive symptom burden score 

was significantly associated with hazard for dementia diagnosis (aHR 1.5; 95% CI 1.44 – 

1.56) in competing risk regression (eTable 1) and cognitive symptom burden score by 

quartile in both stratified (log-rank chi squared (3df)=429; p<1e-6) and unstratified (log-rank 

chi squared (3df)=1464; p<1e-6) log rank tests (eFigure 1). The C index in the pooled cohort 

was 0.62 [0.62 – 0.63]. In the pooled analysis, 99th percentile dementia-free survival 

occurred at 1,618 days (95% CI 1519–1772 days) in the lowest quartile of cognitive 

symptom burden versus 257 days (95% CI 230–293 days) in the highest symptom burden 

quartile.

In a subgroup analysis splitting the pooled cohort at 50 years of age, cognitive burden score 

remained associated with risk of dementia in both groups. Among older patients (n = 307, 

525) with a median follow up of 1,565 days higher quartile of cognitive symptom score was 

associated with earlier diagnosis of dementia (log-rank chi squared (3df)=430; p<1e-6; 

eFigure 2a). The same pattern was observed in younger patients (n = 228,289) with higher 

cognitive score associated with earlier diagnosis (log-rank chi squared (3df)= 109; p<1e-6; 

eFigure 2b) over a median follow up of 2,392 days. The older sub-group C index was 0.58 

(95% CI 0.58 – 0.59) in whereas the younger sub-group C index was 0.71 (95% CI 0.68 – 

0.74). In sub-group analysis limiting to those patients who had a primary discharge 
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diagnosis of stroke (n = 18,681) from their index hospitalization the C index for cognitive 

symptom score was 0.59 (95% CI 0.57 – 0.61) and higher cognitive symptom score quartile 

was associated with earlier dementia diagnosis in stratified analysis (log-rank chi squared 

(3df)=45; p<1e-6; eFigure 3) over a median follow up of 1,779 days.

To estimate size of stratification effect, an indication of the capacity of this measure to 

enrich for a high-risk patient subset, we examined cumulative incident of dementia at five 

years, by quartile of index hospitalization cognitive symptom burden, as compared to the 

overall rate both per hospital and pooled (eFigure 4). In the pooled cohort, individuals in the 

highest-risk quartile were three times more likely to receive a diagnosis of dementia than the 

cohort overall (that is, the ‘lift’ afforded by this model was 3). In the subset of the pooled 

cohort with adequate follow up to observe dementia at five years the identified ideal 

cognitive burden score cut point was 0.049 which produced a sensitivity of 0.65 (95% CI 

0.64 – 0.67) and specificity of 0.66 (95% CI 0.65 – 0.66) (eTable 2). The cognitive burden 

score AUC for five-year dementia risk in the pooled cohort was 0.71 (95% CI 0.7 – 0.71). 

Full cut point analysis results for the pooled cohort, both the individual site cohorts, as well 

as the younger and older sub-cohorts of the pooled cohort are presented in eTable 2 along 

with AUCs. In cross sectional sensitivity analysis for the primary aim of assessing 

association between cognitive burden score and incident dementia diagnosis the odds of 

dementia at five years per unit increase in cognitive burden score were 3.6 (95% CI 3.4 – 

3.7) adjusting for age, sex, race, and comorbidity index (eTable 3). Cognitive burden score 

remained significantly associated in all sensitivity checks: including multiple encounters per 

patient (cognitive aOR 3.5, 95% CI 3.4 – 3.6), excluding diagnosis within two years of index 

admission (cognitive aOR 2.4, 95% CI 2.2 – 2.6), including primary diagnosis category 

adjustment (cognitive aOR 3.1, 95% CI 3.0 – 3.3), and including primary diagnosis of stroke 

adjustment (cognitive aOR 3.6, 95% CI 3.4 – 3.8). Finally, logistic regression on five-year 

dementia risk stratified by quartile of age risk produced consistently positive associations 

between cognitive burden score and dementia diagnosis risk (eTable 4).

To understand timing of dementia diagnosis and clarify the individual terms contributing to 

the cognitive symptom score, we next examined whether individual terms from the cognitive 

score associated with early incident dementia diagnosis (diagnosis within 1 year, versus 

greater than 1 year) in the pooled cohort. Figure 2 shows the odds of significant (chi square 

with Bonferroni corrected p < .0007) associations between individual term presence and 

early (<1 year) versus late (>1 year) diagnosis. Those individual terms with greatest effect 

on odds of early versus late diagnosis included ‘impulsive’; ‘answer’; ‘forgetful’; 

‘cognitive’; and ‘conversation’. Only one term was associated with greater odds of later 

diagnosis: ‘exercise’.

Finally, as a secondary study we analyzed the cohort of individuals (n=9,872) with a 

diagnosis of dementia at or before the index hospitalization (i.e., the prevalent dementia 

cohort), to test whether the cognitive symptom score was associated with all-cause mortality, 

as a potential marker of disease severity and progression. Characteristics of this cohort, 

which resulted in 18,232 patient-years of follow-up data and median follow up of 373 days, 

are summarized in Table 3. In models stratified for age, sex, white race, and Charlson 

comorbidity score, cognition score quartile was associated with mortality (chi square 
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(3df)=283; p<1e-6). Median survival ranged from 622 days (95% CI 577–676 days) for the 

lowest quartile of cognitive symptom scores to 282 days (95% CI 253–310 days) for the 

highest quartile.

4. DISCUSSION

In this investigation of 535,814 hospitalized individuals without a prevalent diagnosis of 

dementia and followed for 2,571,793 patient-years, we found that a readily-implemented and 

interpretable NLP measure of cognitive symptoms, derived in previous work in an 

independent cohort, was associated with risk for subsequent dementia diagnosis. Individuals 

in the greatest risk quartile who survived at least five years following hospitalization were 

7.4 times more likely to receive a diagnosis of dementia than those in the lowest risk quartile 

and reached a 1% diagnosis incidence 1,361 days sooner.

Previous studies seeking to predict incident dementia have focused on coded EHR data. In 

the largest such study, using a Taiwanese database of 387,595 individuals hospitalized for 

heart failure, two claims-based models performed modestly in predicting dementia.[46] In a 

smaller-scale German health insurance study of 3,547 individuals, clinician-reported 

cardiovascular health was associated with incident dementia.[47] Finally, in one preliminary 

study of 605 medical records, incorporation of NLP-derived features improved 

discrimination of individuals with dementia from healthy controls.[48]

We further explored the individual terms loading onto this cognitive measure by comparing 

terms enriched among those diagnosed in the year following discharge rather than 

subsequently. The associated terms suggest change in features of social interaction (e.g., 

impulsivity, conversation). Conversely, only one term - ‘exercise’ - was associated with 

longer time to diagnosis. Although modest protective effects of exercise on dementia have 

been reported,[49] whether the present finding reflects a protective factor, a feature leading 

to later diagnosis, reverse causation, or a proxy for another confounder, merits further study.

Finally, in a second cohort of individuals already diagnosed with dementia at time of 

hospitalization, we examined whether the cognitive measure was associated with subsequent 

mortality risk, recognizing that dementia progression as commonly characterized represents 

a mortality risk factor.[19] Indeed, greater cognitive symptom scores were associated with a 

greater than 50% reduction in median survival, from 622 days to 282 days. In general, our 

results comport with other investigations using systematic measures of cognition or 

measures of frailty or physical functioning[50–52] and adds to the established literature on 

symptom severity predicting mortality in dementia.[20] While we could not identify a 

comparable hospital-based study, a recent Taiwanese claims-based study identified 

predominantly comorbidities and overall utilization to be associated with mortality risk in 

37,000 dementia patients.[53] In future work the natural language processing method 

reported here could be evaluated for disease severity monitoring in cases of recognized 

dementia allowing for incorporation of patient trajectory through multiple encounters to be 

studied.
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We note several key limitations to be considered. First, while this study suggests the utility 

of a novel risk factor - cognition symptom burden estimated from NLP - it is entirely 

possible, even likely, that this prediction could be improved further with the inclusion of 

additional measures or biomarkers. That is, a more focused set of features might well 

improve prediction further, and an optimized and targeted machine learning approach to the 

problem of forecasting future dementia would be an important next step. Our results suggest 

the utility of incorporating NLP applied to discharge summaries in future accuracy-focused 

forecasting efforts while at the same time providing an interpretable and accessible symptom 

score for both risk stratification and severity monitoring. Although NLP gives important 

insights into non-diagnostic symptoms, the generalizability of models incorporating NLP 

across health systems remains a challenge; our finding that the same measure exhibits 

discrimination in two distinct systems is promising in this regard. Although the specific 

discrimination across sites differs on visual inspection, the two systems are distinct in 

population and practice and thus variability is to be expected. As this is a feature, not a 

model, it is possible that this difference could be accounted for through site specific 

calibration of a predictive model including multiple clinical variables beyond quantified 

symptoms from the text of a note. Finally, the claims-based outcome is likely imperfect, and 

may be particularly so for earlier-onset or less common forms of dementia; however, we 

note that dementia is typical underdiagnosed (which would bias the present study toward the 

null hypothesis) and prior formal validation has found positive predictive value of dementia 

codes to be >75% in most health systems.[54,55] Further work is needed on highly scalable 

computed phenotypes as many existing approaches consume a full medical record and thus 

are poorly suited to time-to-event analysis.[56,57] The NLP approach reported here could 

contribute to that effort.

Second, large-scale practice-based evidence of the sort presented here is not a replacement 

for, or directly comparable to, prospective cohorts with formal longitudinal neuropsychiatric 

testing and evaluation. The comprehensive representation of two large hospital-based 

cohorts is a strength of the present work; however, the approach requires use of a coded 

diagnostic outcome that likely underestimates clinically recognized, but not coded, 

diagnosis. That is, application of more sensitive measures to define the clinical endpoint 

would likely identify substantial misclassification, and a prospective investigation applying 

the methodology we describe would be valuable.

Conversely, the use of previously derived and validated symptom features with known 

biological correlates is a key strength of this work.[18] That is, the present work is an 

example of transfer learning, in which a model built in one context is applied in another. The 

cognition measure used is conceptually simple and readily implemented in a transactional 

clinical care system or at larger scale for batch population management, making this 

computed phenotype readily translatable. It is notable that we observe association in two 

distinct hospital systems, and robust effects across multiple sensitivity analyses. Although 

limitations in cross-institutional data preclude adjustment for anticholinergic medications, 

polypharmacy, or use of anticholinesterase inhibitors, as well as other features such as 

education, this is an opportunity for further research as additional data become available. In 

addition, the extent to which incorporating data across multiple admissions may improve 

prediction remains to be explored.
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In sum, this study of more than 500,000 individuals drawn from two academic medical 

centers demonstrates the potential utility of a cognitive score derived from NLP of discharge 

summaries in predicting incident dementia, as well as mortality risk among individuals with 

dementia. Prior to formal diagnosis of dementia, symptoms documented in discharge 

summaries may facilitate identification of high-risk individuals in whom further evaluation 

or application of biomarkers may have greatest yield. More generally, our results suggest the 

extent to which scalable efforts to derive concepts from discharge notes may be used to 

supplement administrative data in clinical settings.
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Figure 1 A-B: 
Kaplan-Meier plots of time to dementia outcome in following index hospitalization over 8 

years of follow-up by quartile of cognitive symptom burden score (color) for each hospital 

system (panel).
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Figure 2: 
Terms from the cognitive symptom score where the presence or absence of which is 

individually significantly associated with early (<1 year) versus late (>1 year) incident 

dementia diagnosis in the pooled cohort.
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Table 1:

Characteristics of incident dementia cohorts studied for association between symptom burden and eventual 

diagnosis of dementia at each hospital site and pooled.

Site 1 Site 2 Pooled

N 267855 267959 535814

Sex (male, %) 124410 (46.4) 94767 (35.4) 219177 (40.9)

Race (white, %) 212670 (79.4) 196437 (73.3) 409107 (76.4)

Age (years, mean (sd)) 54.88 (18.93) 51.81 (18.75) 53.34 (18.90)

Charlson Comorbidity Index (mean (sd)) 4.05 (4.29) 3.22 (3.74) 3.63 (4.05)

Dementia Outcomes (%) 6516 (2.43) 3902 (1.46) 10418 (1.94)

Primary diagnosis of stroke (%) 11958 (4.5) 6723 (2.5) 18681 (3.5)
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Table 2a:

Fine-Gray subdistribution hazards model (death as competing risk for dementia diagnosis), adjusted for age, 

sex, race, and cognitive score at Site 1.

aHR 95% CI p-value

Age (years) 1.064 (1.062, 1.065) <0.0001

Sex (ref = female) 0.912 (0.874, 0.952) <0.0001

Race (ref = white) 1.081 (1.010, 1.157) 0.024

Charlson (log) 5.210 (4.759, 5.703) <0.0001

Cognitive Symptom 1.626 (1.535, 1.722) <0.0001
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Table 2b:

Fine-Gray subdistribution hazards model (death as competing risk for dementia diagnosis), adjusted for age, 

sex, race, and cognitive score at Site 2.

aHR 95% CI p-value

Age (years) 1.064 (1.062, 1.067) <0.0001

Sex (ref = female) 0.911 (0.860, 0.965) 0.0016

Race (ref = white) 1.603 (1.488, 1.727) <0.0001

Charlson (log) 4.674 (4.123, 5.297) <0.0001

Cognitive Symptom 1.374 (1.290, 1.463) <0.0001
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Table 3:

Characteristics of the prevalent dementia cohort studied for association between symptom burden in the 

context of recognized dementia and all-cause mortality.

Pooled

N 9872

Sex (male, %) 4393 (44.5)

Race (white, %) 8157 (82.6)

Age (years, mean (sd)) 82.55 (9.41)

Charlson Comorbidity Index (mean (sd)) 9.78 (5.07)

Mortality Outcomes (%) 8377 (84.86)
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