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Abstract

Purpose—The appearance of anterior cruciate ligament (ACL) grafts on magnetic resonance 

imaging (MRI) is related to graft maturity and mechanical strength after ACL reconstruction 

(ACLR). Accordingly, the purpose of this review was to quantitatively analyze reports of serial 

MRI of the ACL graft during the first year following ACLR; the hypothesis tested was that 

normalized MRI signal intensity would differ significantly by ACL graft type, graft source, and 

postoperative time.

Methods—PubMed, Scopus, and CINAHL were searched for all studies published prior to June 

2018 reporting MRI signal intensity of the ACL graft at multiple time points during the first 

postoperative year after ACLR. Signal intensity values at 6 and 12 months post-ACLR were 

normalized to initial measurements and analyzed using a least-squares regression model to study 

the independent variables of postoperative time, graft type, and graft source on the normalized 

MRI signal intensity.

Results—An effect of graft type (P = 0.001) with interactions of graft type * time (P = 0.012) 

and graft source * time (P = 0.001) were observed. Post hoc analyses revealed greater predicted 
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normalized MRI signal intensity of patellar tendon autografts than both hamstring (P = 0.008) and 

hamstring with remnant preservation (P = 0.001) autografts at postoperative month 12.

Conclusion—MRI signal varies with graft type, graft source, and time after ACLR. Enhanced 

graft maturity during the first postoperative year was associated with hamstring autografts, with 

and without remnant preservation. Serial MRI imaging during the first postoperative year may be 

clinically useful to identify biologically or mechanically deficient ACL grafts at risk for failure.
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Introduction

The optimal graft source for anterior cruciate ligament (ACL) reconstruction (ACLR) 

remains controversial. Common tissues used for ACLR include semitendinosus and gracilis 

tendons, bone–patellar tendon–bone constructs, quadriceps tendon with or without patellar 

bone block, tibialis anterior, or tibialis posterior tendon grafts [19]. Furthermore, autogenous 

versus allogenic graft sources must be weighed in light of differences in cost [7], biological 

incorporation [22], and intra-articular functional adaptation [37].

After surgical reconstruction, ACL grafts undergo a sequential remodeling process termed 

ligamentization [5] which may be monitored by magnetic resonance imaging (MRI). The 

chronological postoperative changes to the graft begin with central hypocellularity without 

revascularization and normal cellularity and vascularity at the periphery [34]. A fibroblast 

and myofibroblast-driven proliferative phase subsequently occurs 6 weeks to 4 months after 

surgery [16, 34]. During this time, collagen orientation appears disorganized [1, 16, 34], 

reflecting a trough in mechanical strength. These extracellular matrix changes permit 

increased water molecule motion which corresponds to an increased signal on T2-weight 

MRI images [13]. Histologic maturation of the ACL graft follows, evidenced by collagen 

fibril alignment between 6 and 12 months [1, 36] with concurrent reports of hypo- [1] to 

hypervascularity [34, 36] for up to 3 years after surgery. The architectural changes to the 

ACL graft during this period promote T2 signal decay and low signal intensity on T2-

weighted MRI images [11]. A fourth, quiescent phase has been reported at 3 years 

postoperatively, with cellularity and vascularity similar to the native ACL [34]. Thus, the 

ACL graft exhibits dynamic histological changes that produce measurable differences in 

MRI signals [9, 41].

Because the histological changes occurring during graft ligamentization may be evaluated by 

MRI, serial MRI in the postoperative period may offer non-invasive methods to monitor 

graft maturation in the clinical setting. Additionally, this knowledge of graft maturation 

patterns may inform pre-operative clinical decisions about graft type and source for ACLR. 

Previous investigations have described observational sequential MRI imaging in the 

postoperative period [18, 21, 32, 38], and a limited subset of reports directly compared 

imaging results by graft type [17, 24–26, 30] or graft source [12, 33]. Accordingly, the 

purpose of this study was to conduct a systematic review of MRI studies imaging the 

maturation of different types of ACL grafts from various sources during the first 
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postoperative year. The hypothesis tested was that there would be a significant effect of time, 

graft type, and graft source on normalized MRI signal intensity of the ACL graft.

Materials and methods

Search strategy

Electronic searches of PubMed, Scopus, and CINAHL databases were performed for all 

articles published prior to June 2018. A manual search of the reference lists was performed 

on studies identified for final inclusion in the systematic review. Publication lists derived 

from search criteria were stored in EndNote bibliographic software. The search strategy, 

inclusion and exclusion criteria are described in Table 1; the results of the literature search 

are depicted in Fig. 1. The tertiary review of studies for final inclusion was conducted and 

agreed upon by all authors.

Data extraction and synthesis

The primary outcome of interest was the MRI signal intensity of the ACL graft as a function 

of time after ACLR. Data were further analyzed by graft type: (1) bone–patellar tendon–

bone graft (BPTB); (2) hamstring graft (HS); (3) hamstring graft with minimal debridement/

remnant preservation surgical technique (HS-RP); (4) tibialis anterior graft (TA); and (5) 

quadriceps bone graft (QUAD) and by graft source: (1) autologous; and (2) allogenic.

Data analysis

In humans, the remodeling phase of the ACL graft has been reported to begin at 3 [34], 5 

[1], 6 [16], or 12 [36] months after ACLR. To capture the full spectrum of graft remodeling, 

MRI signal intensity data were recorded at three time points for each study: the earliest 

reported time period closest to 3 months, at 6 months, and at 12 months. The normalized 

MRI signal intensity was calculated as the quotient of the MRI signal intensity of the 6 or 12 

month time point divided by the MRI signal intensity at the initial time point. A ratio greater 

than 1 reflects an increase in the normalized MRI signal intensity away from graft maturity; 

a ratio less than 1 reflects a decrease in the normalized MRI signal intensity towards graft 

maturity.

Development of an MRI signal intensity prediction model

Statistical analyses were performed in JMP 13 (SAS Institute). For each data point, 

normalized MRI signal intensity values, graft type, graft source, time point, and the 

corresponding number of imaged patients were recorded. A weighted least-squares 

regression model using independent variables of graft type, graft source, and time point was 

constructed to generate predicted normalized MRI signal intensity values at 6 and 12 

months. The number of patients imaged at each data point was used as a weight in the 

model. Analysis of variance (ANOVA) testing was performed on the predicted normalized 

MRI signal intensity values at 6 and 12 months. Post hoc 2 sample Student’s t tests were 

performed on predicted normalized MRI signal intensities between graft types and graft 

sources; 1 sample Student’s t tests were performed on predicted normalized MRI signal 

intensities for each graft source between graft types at each time point to assess the change 

from the normalized ratio of 1. P < 0.05 was established for statistical significance.
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Effect size meta‑analysis

To compare the trends in predicted normalized MRI signal intensity, mean effect sizes and 

95% confidence intervals (CI) for the difference from baseline for the 6 and 12 month time 

period and the difference between the 12 and 6 month normalized MRI signal intensity data 

were calculated for BPTB, HS, and HS-RP autografts. The effect size for each study was 

calculated using an effect size meta-analysis with random effects model using Stats Direct 

Software (Version 2.8, Altrincham, U.K.). Where no measures of variability were reported, 

the mean standard deviation from other trials that reported this statistic was imputed. This 

imputation was performed only for the Gohil et al. study.

Quality assessment

Methodologic quality of the studies included in the quantitative analysis was assessed using 

a 27 item checklist for methodological and reporting quality of both randomized and non-

randomized studies of healthcare interventions [14].

Results

Data pooling

A total of 412 subjects at initial time points, 397 at 6 months, and 388 at 12 months were 

pooled for the quantitative analysis. MRI scans of 590 HS autografts (initial: N = 197; 6 

month: N = 196; 12 month: N = 197), 60 HS allografts (initial: N = 20; 6 month: N = 20; 12 

month: N = 20), 112 for HS-RP autografts (initial: N = 41; 6 month: N = 37; 12 month: N = 

34), 236 BPTB autografts (initial: N = 77; 6 month: N = 77; 12 month: N = 82), 72 BPTB 

allografts (initial: N = 24; 6 month: N = 24; 12 month: N = 24), 76 QUAD autografts (initial: 

N = 36; 6 month: N = 26; 12 month: N = 14), and 51 TA allografts (initial: N = 17; 6 month: 

N = 17; 12 month: N = 17) were included in the analysis. A summary of the twelve pooled 

studies included in the quantitative analysis, with MRI acquisition sequences and image 

analysis methods, is provided in Table 2.

Six studies reported a signal-to-noise quotient (SNQ) calculated at a discrete point at the 

intra-articular portion of the ACL graft [12, 17, 24, 30, 33, 38], one study reported the SNQ 

as an average of the proximal, middle, and distal intra-articular portions of the ACL graft 

[26], one study reported the SNQ as the average of a region of interest that encompassed the 

entire intra-articular portion of the ACL graft [18], and four studies reported the raw signal 

intensity of the mid-substance or intra-articular portion of the ACL graft [20, 21, 25, 32]. 

The initial time point for 12 of the 16 experimental groups included in the quantitative 

analysis corresponded to 3 months. For two studies, which corresponded to four 

experimental groups and 94 subjects, the MRI signal data were normalized to 2 [17] and 4 

[33] month time points, which were the earliest reported time period closest to 3 months.

Regression modeling

The model equation and fit for predicted normalized MRI signal intensity are given in Fig. 2. 

The predicted normalized MRI signal intensity at 6 months was 1.05 ± 0.11, 1.08 ± 0.08, 

0.48 ± 0.18, and 0.86 ± 0.21 for BPTB, HS, HS-RP, and QUAD autografts, respectively (P = 

0.013). Post hoc t test revealed significantly decreased predicted normalized MRI signal 
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intensity for HS-RP compared to BPTB (P = 0.013) and HS (P = 0.005) autografts; no 

differences were observed between BPTB and HS autografts (n.s.). The predicted 

normalized MRI signal intensity at 12 months was 1.20 ± 0.12, 0.81 ± 0.08, 0.40 ± 0.18, and 

0.94 ± 0.27 for BPTB, HS, HS-RP, and QUAD autografts, respectively (P = 0.004). Post hoc 

t tests revealed significantly increased predicted normalized MRI signal intensity for BPTB 

grafts compared to HS (P = 0.008) and HS-RP (P = 0.001). At postoperative month 12, the 

predicted normalized MRI signal intensity of HS grafts was significantly less than the initial 

value (P = 0.021). The predicted normalized MRI signal intensity of the HS-RP graft was 

significantly less than the initial value at 6 (P = 0.008) and 12 (P = 0.003) months. Between 

6 and 12 months, predicted normalized MRI signal intensity of HS grafts decreased (P = 

0.018); no changes between 6 and 12 months were observed for BPTB (n.s.), QUAD (n.s.), 

or HS-RP (n.s.) autografts (Fig. 3).

The predicted normalized MRI signal intensity at 6 months was 1.05 ± 0.11, 1.08 ± 0.08, 

and 2.08 ± 0.25 for BPTB, HS, and TA allografts, respectively (P < 0.001). Post hoc t tests 

revealed significantly increased predicted normalized MRI signal intensity for TA compared 

to BPTB (P = 0.001) and HS (P < 0.001) allografts; no differences were observed between 

BPTB and HS allografts (n.s.). At postoperative month 12, predicted normalized MRI signal 

intensity was 1.82 ± 0.17, 1.43 ± 0.17, and 1.28 ± 0.25 for BPTB, HS, and TA allografts, 

respectively (n.s.). Between 6 and 12 months, predicted normalized MRI signal intensity of 

BPTB increased (P < 0.001), TA decreased (P = 0.017), and HS did not significantly change 

(P = 0.072) (Fig. 4).

Effect size

The mean effect size for the difference in normalized MRI signal intensity between 6 

months and baseline was 0.0004 (CI − 0.711–0.711; n.s.), − 1.295 (CI − 2.079–0.511; P = 

0.001), and 0.108 (CI − 0.453–0.669; n.s.) for HS autografts, HS-RP autografts, and BPTB 

autografts, respectively (Fig. 5a–c). The mean effect size for the difference between 12 

months and baseline was − 0.525 (CI − 1.356–0.306; n.s.), −1.285 (CI − 2.216–0.355; P = 

0.007), and 0.743 (CI − 0.584–2.069; n.s.) for HS autografts, HS-RP autografts, and BPTB 

autografts, respectively (Fig. 5d–f). The mean effect size for the difference between 12 and 6 

months in HS autografts, HS-RP autografts, and BPTB autografts was − 0.562 (CI − 0.825–

0.301; P < 0.001), − 0.070 (CI − 0.537–0.397; n.s.), and 0.572 (CI − 0.275–1.420; n.s.) (Fig. 

5g–i).

Quality

Quality assessment scores ranged from 12 to 23 (of a possible 28). While the vast majority 

of studies were adequate in their reporting measures, only two [12, 26] of the twelve studies 

included power analyses, illustrating the uncertainty in defining statistically and, more 

importantly, clinically significant effects in postoperative imaging measures (Table 2).

Discussion

This study demonstrates that the postoperative MRI appearance of the ACL changes with 

time after reconstructive surgery and differs by ACL graft type and graft source. The effect 
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of individual and interactional variables graft type, graft source, and time after 

reconstruction on the normalized MRI signal was determined by the development and 

utilization of a least-squares regression model. Between postoperative months 6 and 12, the 

predicted normalized MRI signal intensity for HS autografts significantly decreased, while 

BPTB allograft signal significantly increased. By 12 months, BPTB autograft predicted 

normalized MRI signal intensity was significantly greater than HS and HS-RP autograft 

values. Predicted normalized MRI signal intensity for HS and HS-RP autografts were 

significantly less than initial values by 12 months.

Graft type

Histologic irregularities in collagen orientation, which may influence MRI signal, persist at 

12 months after ACLR in HS and BPTB grafts [23]. The distribution of collagen fibril size 

in HS grafts is unimodal at 1 year postoperatively, which is distinct from both the native 

ACL and BPTB grafts [42, 43]. Neovascularization occurs at 3 weeks in autogenous BPTB 

grafts [35] with focal areas of acellularity at 8 weeks, and degeneration at 6–10 months, 

resolving at 1–3 years postoperatively [34]. The current MRI imaging results and well 

characterized histological changes to HS grafts support relatively static remodeling during 

the first postoperative year. Conversely, the increased MRI signal of BPTB grafts at 1 year 

observed in this study, in addition to histologic reports of BPTB grafts, could represent a 

remodeling state of the graft due to dynamic cellular, vascular, and tissue changes.

HS-RP autografts were associated with decreased normalized MRI signal at 6 and 12 

months. Preservation of the ACL remnant has been hypothesized to promote 

revascularization of the ACL graft and accelerated progression through ligamentization [3, 

6, 39]; however, to the authors’ knowledge, no human studies have correlated MRI findings 

with graft histology. While the inclusion of multiple studies in this review may allow for 

greater power to observe a difference in HS-RP grafts, it is possible that the 3 month time 

point to which MRI signal data were normalized represents an early, revascularized stage for 

HS-RP grafts after which time the graft matures and remodels to establish a low signal 

intensity structure with high mechanical strength. Thus, the lower predicted normalized MRI 

signal intensities observed in HS-RP grafts may represent maturation from the initial 3 

month time point, possibly due to the contribution of the ACL remnant.

Graft source

Previous studies using MRI to measure graft maturity report differences between allografts 

and autografts [28]. Contrast-enhanced MRI revealed elevated MRI signal between 4 and 6 

months for autografts and persistently elevated signal from 4 to 24 months in allografts [33]; 

these MRI imaging differences suggest delayed re-establishment of vascularity in allografts 

compared to autografts, which may impede ligamentization. These findings are corroborated 

histologically in post-mortem ACL allograft retrieval studies that demonstrate areas of 

acellularity 2 years postoperatively [31]. Thus, allogeneic grafts may undergo incomplete or 

delayed revascularization that hinders cellular repopulation and tissue re-organization, 

manifested as an increased MRI signal intensity, as reported in this study. Conversely, an 

autologous graft source may promote accelerated graft maturity, possibly through earlier and 

complete revascularization, and allow for sequential progression and completion of 
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ligamentization. Due to known differences in vascularization, cellular repopulation, MRI 

signal intensity, and clinical rates of failure between allografts and autografts, future studies 

should examine the possible mechanisms, immunological or otherwise, which cause these 

findings.

Effect sizes and model comparisons

The trends predicted by the least-squares regression model were generally mirrored in the 

calculation of effect sizes from sample data. The model was able to replicate accurately the 

majority of trends for normalized MRI graft signal intensity for HS, BPTB, and HS-RP 

autografts. In one instance, the effect size for HS autografts did not differ significantly from 

the initial measurement at 12 months (Fig. 5e), but the predicted normalized MRI signal 

intensity for HS autografts was significantly lower than initial values at 12 months (Fig. 3). 

The observed difference could be due to the standard deviation of initial normalized MRI 

signal intensity values, accounted for the effect size calculation.

This study had multiple limitations. First, graft SNQ is influenced by anatomic factors, knee 

position within the MRI machine [15, 27], surgical technique [4], and graft bending angle [2, 

20, 40]. These differences could confound MRI signal intensity measurements, limiting MRI 

as a quantitative method to measure graft maturation. Second, the heterogeneity of methods 

in measuring signal intensities prevented the direct comparison between studies, graft types, 

and graft sources; however, normalization of reported signal intensity values for each study 

allowed for the comparison of general trends in graft appearance on MRI during the first 

postoperative year. Finally, the signal intensity of MRI is influenced by multiple technical 

factors, which include sequence and scanner characteristics, reconstruction algorithms, and 

grey scale displays [10]. This limitation is mitigated by the use of a uniform imaging 

protocol, pulse sequence, and static magnetic field for each of the studies included in this 

review.

The clinical utility of graft maturation assessment via MRI is becoming increasingly 

recognized. Measurement of the MRI signal of the ACL graft in the sixth month after 

surgery predicts patient-reported outcomes of knee function at both 6 and 12 months 

postoperatively [29]. At longer follow-up periods of 3 and 5 years, MRI measurements of 

graft volume and signal intensity predict 1-legged hop test performance and patient-reported 

measures of knee function and symptomatology [8]. The results of this study support 

previous reports that the MRI signal intensity of the ACL graft varies as a function of time, 

and further suggest significant differences by graft type and graft source. Future work to 

associate graft-specific differences in MRI signal intensity with appropriate clinical 

correlates could inform preoperative clinical decision making regarding graft selection, 

progression through rehabilitation protocols, as well as the decision to return to preoperative 

levels of activity.

Conclusion

Serial MRI of the ACL graft during the first year after ACLR demonstrates that graft type, 

graft source, and time after implantation affect the normalized MRI signal intensity of ACL 

transplants. Hamstring autograft source, with and without remnant preservation, was 
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associated with significantly decreased predicted normalized MRI signal intensity at 

postoperative month 12, below BPTB and initial values. The observed trends for the 

predicted normalized MRI signal intensity of HS and BPTB grafts correlate with 

histological reports in the literature. Thus, MRI imaging may be a useful clinical measure to 

monitor graft-specific remodeling after ACLR and better knowledge of graft-specific 

maturation patterns may inform preoperative decisions regarding graft source and selection.
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Abbreviations

ACL Anterior cruciate ligament

ACLR Anterior cruciate ligament reconstruction

MRI Magnetic resonance imaging

BPTB Bone–patellar tendon–bone graft

HS Hamstring graft

HS-RP Hamstring graft with minimal debridement/remnant preservation 

surgical technique

TA Tibialis anterior graft

QUAD Quadriceps bone graft

ANOVA Analysis of variance

CI Confidence interval

SNQ Signal-to-noise quotient
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Fig. 1. 
Literature search results. The most common reason for final exclusion from the quantitative 

analysis during tertiary review was the lack of serial imaging studies during the first 

postoperative year (descriptive synthesis; N = 20). Accordingly, all studies included in the 

quantitative analysis (N = 12) reported imaging studies at multiple time points during the 

first postoperative year
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Fig. 2. 
Validation of the weighted least-squares regression model. A significant effect of graft type 

(P = 0.001) and a significant interaction between time point*graft type (P = 0.016) and time 

point*graft source (P = 0.001) were observed on the normalized MRI signal intensity. As 

such, the model is supported by the strong correlation between observed versus predicted 

values of normalized MRI signal intensity (R2 = 0.697; P < 0.001). The coefficients for each 

level of the independent variables in the predicted normalized MRI signal intensity model 

are shown above
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Fig. 3. 
Predicted normalized MRI signal intensity by graft type and time point: autografts. HS-RP 

grafts were associated with decreased predicted normalized MRI signal intensity, an 

increased graft maturity, at all time points. Furthermore by 12 months postoperatively, 

predicted normalized MRI signal intensity was significantly greater in BPTB grafts 

compared to HS grafts without differences in HS versus HS-RP grafts (n.s.). These results 

suggest increasing graft maturation at 12 months in HS and HS-RP grafts compared to 

BPTB
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Fig. 4. 
Predicted normalized MRI graft signal intensity by graft type and time point: allografts. 

Allograft source increased predicted normalized MRI signal intensity at 12 months 

postoperatively (Fig. 2). In contrast to HS and BPTB autografts, there was not a significant 

difference between HS and BPTB allografts at 12 months; both graft types at this time point 

were significantly increased above the normalized ratio of 1, indicating a decrease in 

maturity. Furthermore, between 6 and 12 months BPTB predicted normalized MRI signal 

intensity significantly increased, suggesting a decrease in graft maturation during this time
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Fig. 5. 
Normalized MRI Signal Intensity Effect Sizes: Changes from baseline 2 and between 6 and 

12 Months. The trends in the effects of normalized MRI signal intensity parallel those 

predicted by the experimental model. In Panel E, the effect for the change between 12 

months and baseline is not significant, while the model predicts a significant decrease in 

normalized MRI signal intensity for HS autografts from the ratio of 1 at 12 months (Fig. 3). 

The observed difference between the model and effect size calculation in this trend could be 

due to variability in the normalized MRI signal, accounted for in the effect size calculation, 

but not the 1-sample T-test used to assess predicted normalized MRI signal intensity change 

from baseline
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