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Abstract
Cerebral collateral circulation and age are critical factors in determining outcome from acute ischemic stroke. Aging may lead to
rarefaction of cerebral collaterals, and thereby accelerate ischemic injury by reducing penumbral blood flow. Dynamic changes in
pial collaterals after onset of cerebral ischemia may vary with age but have not been extensively studied. Here, laser speckle
contrast imaging (LSCI) and two-photon laser scanningmicroscopy (TPLSM) were combined tomonitor cerebral pial collaterals
between the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) in young adult and aged male Sprague Dawley
rats during distal middle cerebral artery occlusion (dMCAo). Histological analysis showed that aged rats had significantly greater
volumes of ischemic damage than young rats. LSCI showed that cerebral collateral perfusion declined over time after stroke in
aged and young rats, and that this decline was significantly greater in aged rats. TPLSM demonstrated that pial arterioles
narrowed faster after dMCAo in aged rats compared to young adult rats. Notably, while arteriole vessel narrowing was compa-
rable 4.5 h after ischemic onset in aged and young adult rats, red blood cell velocity was stable in young adults but declined over
time in aged rats. Overall, red blood cell flux through pial arterioles was significantly reduced at all time-points after 90 min post-
dMCAo in aged rats relative to young adult rats. Thus, collateral failure is more severe in aged rats with significantly impaired
pial collateral dynamics (reduced diameter, red blood cell velocity, and red blood cell flux) relative to young adult rats.
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Introduction

Stroke disproportionately affects the elderly, with risk of
stroke doubling every decade after the age of 55 in both sexes
[1–3]. Moreover, elderly stroke patients exhibit significantly
worse functional recovery and higher mortality compared to
younger patients [1–3]. Thus, preclinical studies of the

pathophysiology of stroke should be performed in aged ani-
mals whenever possible.

After occlusion of a cerebral vessel, tissue surrounding the
nonviable infarct core in the penumbra remains viable due to
blood flow via the cerebral collateral circulation [4]. Cerebral
collaterals are auxiliary vascular pathways that can partially
maintain blood flow to ischemic tissue when primary vascular
routes are blocked [5–8]. Pial (or leptomeningeal) collaterals
are anastomotic connections on the cortical surface that con-
nect distal branches of the anterior cerebral artery (ACA) and
posterior cerebral artery (PCA) with distal branches of the
middle cerebral artery (MCA) [4, 9]. Clinically, blood flow
through the pial collaterals defines the degree of ischemia in
the penumbra of cortical infarcts, and thus influences infarct
growth, prognosis, and response to therapy [7, 10–12].
Among recent trials of endovascular thrombectomy [13–17],
data from the ESCAPE trial that included multiphase CT an-
giography demonstrated a strong association between robust
pial collateral flow before recanalization and favorable out-
come after recanalization [13, 18]. The DAWN and
DEFUSE3 trials that evaluated patients following late
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thrombectomy (6 to 24 h after stroke onset) reported signifi-
cant benefits of delayed endovascular treatment [19, 20].
Notably, patients with Bslow-growing infarcts^ due to good
collateral circulation were selected into DAWN and
DEFUSE3 trials [19–21].

Thus, collaterals are a primary predictor of stroke prognosis
and response to treatment, but the interactions between collat-
eral dynamics and aging are not known. Rarefaction of cere-
bral collaterals with aging has been reported in preclinical
models [22], and in some cases, collateral therapies have re-
ported differential efficacy based on age [23]. However, age-
related changes in the dynamics of collateral flow are not well
described, particularly at the level of visually identified pial
collaterals. Here, laser speckle contrast imaging (LSCI) and
two-photon laser scanningmicroscopy (TPLSM) were used to
evaluate the dynamics of pial collateral circulation in young
adult (2 months) and aged (16 months) rats during the first
4.5 h after distal middle cerebral artery occlusion (dMCAo).
Retrograde collateral flow was apparent immediately after
dMCAo. While collateral vessels narrowed over time in both
groups, overall flow was more impaired and failed over time
in aged rats relative to adult young rats.

Materials and Methods

Male Sprague–Dawley rats (young group, 2–3 months of age;
aged group, 16–18 months of age) were used. Prior to exper-
imental procedures, animals were housed in pairs on a 12-h
day/night cycle and had access to food and water ad libitum.
Procedures conformed to guidelines established by the
Canadian Council on Animal Care and were approved by
the Health Sciences Animal Care and Use Committee at the
University of Alberta. Procedures and results reporting are
consistent with the ARRIVE guidelines [24]. The experimen-
tal timeline is illustrated in Fig. 1a. A total of 13 aged rats and
12 young adult rats underwent implantation of an imaging
window. Two rats (1 aged, 1 young adult) were excluded
due to poor quality cranial windows and image quality (prior
to poststroke imaging), and one aged rat died during imaging.
Thus, the data set for the aged and young adult groups in-
cludes 11 rats each.

Anesthesia and Monitoring

Light anesthesia was induced using an induction chamber
with 4–5% isoflurane (in 70% nitrogen and 30% oxygen)
prior to intraperitoneal injections of urethane (1.25 g/kg, di-
vided into four doses delivered at 30-min intervals). Isoflurane
was discontinued after the first urethane injection, and rats
remained anesthetized until euthanasia. During all surgery
and imaging, temperature was maintained at 36.5–37.5 °C
with a thermostatically controlled warming pad, and heart

rate, oxygen saturation, and breath rate were monitored using
a pulse oximeter (MouseOx, STARR Life Sciences).

Cranial Window

LSCI and TPLSM were performed through cranial win-
dows implanted after craniotomy. A midline incision was
made on the scalp to expose the surface of the skull. A
5 × 5 mm section of the skull over the distal regions of the
right MCA territory was thinned until translucent using a
dental drill (frequently flushing with saline to dissipate
heat) and then gently removed. The dura matter was re-
moved, then the cranial window was covered with a thin
layer of 1.3% low-melt agarose and sealed with a glass
coverslip as previously described [5, 25].

dMCAo

Cerebral ischemia was induced by bilateral common carotid
artery (CCA) ligation in addition with distal MCA ligation
[26, 27]. Distal MCA ligation and imaging protocols were
performed by different individuals, and surgeons inducing
ischemia were blind to the experimental group for each rat.
CCAs were accessed through ventral midline cervical inci-
sions and ligated with 4–0 prolene sutures below the carotid
bifurcation. A temporal incision was then made and the right
temporalis muscle was gently separated from the bone. A burr
hole of 1.5 mm in diameter was made through the squamosal
bone, the dura was removed, and the cortical MCAwas visu-
alized. The exposed distal MCA was isolated with a loose
square knot by atraumatic 9–0 prolene suture above the rhinal
fissure before stroke. After pre-stroke imaging, the knot was
ligated to induce permanent dMCAo.

LSCI

LSCI measures real-time changes in cerebral blood flow with
high spatial and temporal resolution over a wide field of view
[28–30]. To collect LSCI data, rats were secured in ear bars on
a custom-built stereotaxic plate under a Leica SP5 MP laser
scanning microscope. A Thorlabs LDM 785S laser (20 mW,
wavelength of 785 nm) was used to illuminate the rat cortex at
approximately 30° incidence. Stacks of 101 sequential images
(1024 × 1024 pixels) were acquired at 20 Hz (5 ms exposure
time) during each imaging session. All processing and analy-
sis of laser speckle images were performed using ImageJ soft-
ware (NIH) by a blinded experimenter. Maps of speckle con-
trast were made from the collected images of raw speckling by
determining the speckle contrast factor K for each pixel in an
image. K is calculated as the ratio of the standard deviation to
the mean intensity (K = σs/I) in a small (5 × 5 pixels) region of
the speckle image [28–30]. Plots of K show maps of blood
flow with darker vessels illustrating faster blood flow velocity
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[31, 32]. For quantification of penumbral flow, K was mea-
sured in a contiguous ROI consisting of an 800 × 800 pixel
square positioned to include the distal MCA and ACA seg-
ments. Because cerebral blood flow (CBF) velocity in
the selected region of interest was inversely proportional to
the square of speckle contrast value K [33, 34]:

v∝
1

k2

Therefore, 1/K2 is also used to illustrate CBF velocity
change in LSCI figures [31, 35].

TPLSM

TPLSM was performed using a Leica SP5 MP TPLSM and
Coherent Chameleon Vision II pulse laser tuned to 800 nm.
Blood plasma was labeled with fluorescein isothiocyanate–
dextran (70,000 MW, Sigma-Aldrich) injected (0.3 mL (5%
(w/v) in saline, 0.2 mL supplements as required) via the tail
vein [36, 37]. Z-stacks through the first 0.15 mm of cortical
tissue were acquired through the cranial window using a 10 ×
water dipping objective (Leica HCX APO L10×/0.3 W) and
vessel diameter measurements were made from maximum
intensity projections of these stacks using ImageJ plug-in
(full-width at half-maximum algorithm) [38]. For acquisition
of red blood cell (RBC) velocity, line scans were performed in
the lumen of arterioles over a length of 50–100 pixels at scan
rates of 1200 Hz. While the repeated imaging schedule (30-
min intervals) did not allow a comprehensive analysis of

blood flow velocity in all vessels within these regions of in-
terest, RBC velocity was via line scans in three identifiable
arterioles (> 0.05 mm diameter) per region. RBC velocity was
determined from line scan images by calculating the slope of
streaks [36, 37]. RBC flux, which provides an overall measure
of flow through each vessel, was calculated using the follow-
ing equation:

Flux ¼ π=8ð Þ d2
� �

vð Þ

where v is the RBC velocity along the central axis of the
vessel, and d is the vessel diameter.

Hematoxylin and Eosin Staining

All rats were euthanized 6 h after induction of the dMCAo.
Tissue damage was assessed in digital images of hematox-
ylin and eosin (H&E)-stained cryosections by a blinded
experimenter using ImageJ (NIH) software. Volume of tis-
sues showing early ischemic damage was calculated for
each tissue slice using the indirect method [39, 40] to con-
trol for tissue distortion due to edema using the following
equation:

Volume of ischemic damage % hemisphere = [Σ(AC-ANI)/
Σ(AC)]*100

where AC is the area of the hemisphere contralateral to
stroke in a given tissue slice and ANI is the area of the non-
injured tissue in the ipsilateral stroke (affected) hemisphere of
the same slice.
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Fig. 1 a Experimental timeline. b–d Average of physiological parameters of young and aged rats during the entire poststroke imaging period



Statistical Analysis

Statistical analyses were performed using Graph Pad Prism
(GraphPad Software, San Diego, CA, USA). RBC velocity
and RBC flux data exhibited a right-skewed distribution. To
reduce skewness, a cubed-root transformation was applied.
The cubed-root transformwas selected as it is a standard trans-
form for right skewness and can be applied to zero values
(which occurred in some instances for velocity measure-
ments). Normality was confirmed for all blood flow data sets
(i.e., LSCI data in Fig. 3 and TPLSM data in Fig. 5) using the
D’Agostino-Pearson normality test. Two-way analysis of var-
iance (ANOVA) with repeated measures was used to compare

the time course of aged and young rats on LSCI measures
(speckle value, relative blood flow) and TPLSM measures
(vessel diameter, RBC velocity, and RBC flux). Post hoc com-
parisons were performed using the Holm-Sidak multiple
comparisons test. Volumes of ischemic tissue infarct (%
of contralateral hemisphere) and physiological parameters
(pulse, respiratory rate, and oxygen saturation) were
compared using an unpaired Student’s t test. Values are
expressed as mean ± S.E.M. Sample size was estimated
using published and unpublished data that suggested 10
rats were sufficient to detect a 10% difference in vessel
diameter using TPLSM (μ1 = 100, μ2 = 90, σs = 7.8%,
β = 0.80, α = 0.05).
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Fig. 2 LSCI and TPLSM were used to create high-spatiotemporal–
resolution maps of blood flow in pial vessels in the region of ischemia.
A cranial window was placed over the cortex at the distal ends of the
vascular territories of the ACA and MCA (a). Red dotted lines and
shading show the approximate locations of ACA-MCA anastomoses.
This window placement allows visualization of changes in collateral flow
after distal MCAO. b LSCI data clearly demonstrate that pial collaterals
become patent immediately after ligation of distal MCA (see yellow
boxes in b), representing retrograde flow from the distal branches of the
ACA into the MCA territory. c, d TPLSM was used to map the

angioarchitecture of anastomoses and distal MCA segments. Maximum
intensity projections of pial vessels located within a depth of 100–150 μm
from the surface of the region demarcated by the red box in (b), including
distal MCA segments S1 and S2, are shown in (c) to illustrate analyses of
vessel diameter. d Center line RBC velocity was measured in vessel
segments measured for diameter, allowing determination of velocity
and direction of blood flow. The reversed direction of blood flow in
collaterals after MCAO is apparent in both segments (see reversed slope
of dashed lines in d). Figure 2a modified with permission from Winship
et al. [5]. Scale bar, 100 μm



Results

LSCI and TPLSM were used to assess changes pial collateral
flow immediately before and for 4.5 h after dMCAO (at
intervals of 30min, Figs. 1a and 2a). Physiological parameters
remained stable throughout imaging (Fig. 1b–d). LSCI and
TPLSM were used to create high-spatiotemporal resolution
maps of blood flow in pial vessels in the region of ischemia,
including measures of regional flow (LSCI) as well as pial
vessel diameter, RBC velocity, and RBC flux (TPLSM)
(Fig. 2) [5].

LSCI Reveals Reduced Penumbral Blood Flow in Aged
Rats Relative to Young Rats

Figure 3 shows LSCI-derived maps of speckle contrast show-
ing flow changes over 270 min (4.5 h) poststroke for aged and
young rats. Immediately after dMCAo, robust anastomotic
connections between distal segments of the ACA and MCA
were observed in both groups. However, pial collaterals were

more robust in young rats (Fig. 3b, note the number of visible
vessels following dMCAo in young vs. aged rats), and pen-
umbral blood flow in young rat persisted through the imaging
sessions in young rats. In aged rats, penumbral flow decreased
during the imaging period (as indicated by a consistent
increase in speckle contrast during the imaging period in the
aged rats, and relatively few visible pial vessels, Fig. 3a).
Speckle contrast normalized to pre-dMCAo values is shown
in Fig. 3c. Two-way ANOVA revealed a significant main ef-
fect of time and age on speckle contrast, as well as a signifi-
cant time × age interaction (all P < 0.0001). Post hoc compar-
isons confirmed that speckle contrast was significantly greater
in aged rats relative to young rats at all time-points after
30 min post-dMCAo. A more proportional measure of blood
flow can be attained by determining the inverse square of the
speckle contrast values (Fig. 3d) [31, 35].While blood flow of
young rats remained between 60 and 80% of baseline (pre-
dMCAo) during all imaging sessions, flow in aged rats
dropped rapidly to less than 40% and remained low through-
out imaging. Again, a two-way ANOVA revealed a significant
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Fig. 3 a, b Representative LSCI-derived image sequences of speckle
contrast showing flow on the cortical surface before and after dMCAo.
Images showing flow changes over 270 min (4.5 h) post are illustrated for
aged (a) and young adult rats (b). Immediately after dMCAo, robust
anastomotic connections between distal segments of the ACA and
MCA become visible in both groups (see yellow arrowheads showing
absent or low flow in distal ACA-MCA anastomoses before stroke (left-
most panel) and enhanced flow after dMCAo in next panel). Pial collat-
erals were more robust and persistent in young adult rats (n = 11) relative
to aged rats (n = 11). Note the consistent increase in speckle contrast

during the imaging period in the aged rats (a), which reflects decreasing
flow over time, and relatively few visible pial vessels. Contrasting this
decreased flow in aged rats, speckle contrast remains relatively stable
during imaging after stroke in young adult rats (b). Speckle contrast (k)
and relatively blood flow (1/k2) for aged and young adult rats are shown
in (c) and (d), respectively. Two-way ANOVA on k and 1/k2 identified
significant main effects of age and time × age interactions (all P < .0001),
and post hoc comparisons identified significantly group differences at all
time-points 60 min or more after ischemic onset in both measures. *
P < .05, ***P < .001, **** P < .0001



main effect of time and age on speckle contrast, as well as a
significant time × age interaction (all P < 0. 0001). Post hoc
comparisons confirmed significantly reduced flow in aged
animals (relative to young animals) at all time-points after
60 min post-dMCAo.

TPLSM Reveals Dynamic Changes in Pial Arteriole
Diameter, RBC Velocity, and Flux After dMCAo

TPLSM revealed a reduction in pial arteriole diameter over
time after dMCAo in both groups (representative images in
Fig. 4, group quantification in Fig. 5). Two-way ANOVA
confirmed a significant time × age interaction in pial arteriole
diameter (P < 0.0001). Notably, aged rats show more rapid
Bcollapse^ or narrowing of pial arterioles relative to young
rats. Interestingly, diameters at the completion of imaging
were not different between experimental groups, and post
hoc comparisons only revealed a significant difference in
MCA segment diameters at 90 min after dMCAo, suggesting
that the dynamics of collateral failure are accelerated in aged
rats but the degree of collateral narrowing is comparable.
Figure 5b shows mean changes in red blood cell (RBC)

velocity relative to baseline (pre-dMCAo). There was a sig-
nificant main effect of time and age (P < 0.0001 and P =
0.0061, respectively) and a significant age × time interaction
(P = 0.0002). Post hoc comparisons confirmed that RBC ve-
locity in pial arerioles downstream of anastomoses was signif-
icantly reduced in aged rats relative to young rats at all time-
points after 120 min post-dMCAo. Finally, because the
oxygen- and nutrient-carrying capacities of a blood vessel
are proportional to their RBC flux [41, 42], mean RBC flux
for arteriole segments downstream of collateral anastomoses
in aged and young rats are shown in Fig. 5c. Analysis of RBC
flux between groups revealed a significant main effect of time
(P < 0.0001) and age (P = 0.0057), and a significant age ×
time interaction (P = 0.0159). Post hoc comparisons con-
firmed significantly reduced RBC flux in aged rats relative
to young rats at all time-points after 90 min post-dMCAo.

Early Ischemic Damage in Aged Rats and Young Rats

Figure 6 shows that a significant larger volume of early ische-
mic damage was found in aged rats relative to young rats
(P < 0.001).
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Fig. 4 Representative TPLSM data before and after dMCAo. The
rectangular box in the LSCI images from an aged rat (a) and young
adult rat (c) demonstrates the location of the representative TPLSM
images in (b) and (d). Scale bar, 1 mm. b and d show maximum
intensity projections from region demarcated in (a) and (c). TPLSM
revealed reduced flow in pial arteriole and diameter over time after
dMCAo in both groups, though it was more severe in aged rats.

Representative line scans show reduced RBC velocity in the MCA
segment highlighted with a red line from the aged rat (b) and the young
adult rat (d). Reversal in the direction of flow is apparent in both groups.
Increasing slope in the aged rats shows reduced RBC velocity in this
segment, as compared to more stable RBC velocity (and faster,
indicated by a lower slope) in the young adult animal. Scale bar,
500 μm. R, rostral; L, lateral



Discussion

Aging is a multifaceted process associated with cellular,
metabolic, and structural changes in the brain [43, 44].
Many factors, such as increased oxidative stress, pro-
inflammatory cytokine expression, and reduced cell sur-
vival, have been considered important factors contributing
to increased ischemic brain injury in aged animals [43, 45].
The effects of age on cerebral circulation are additional
factors to be considered. Although there is some debate
in the field [46–50], most published literature suggest that
there is a rarefaction of cerebral arterioles and decrease in
capillary density in aged humans, aged nonhuman pri-
mates, and different species of aged rodents (such as
Wistar, Wistar-Kyoto, spontaneously hypertensive,

Brown-Norway, and F344 rats) [51–56]. An age-related
decrease in the number of venules and arteriole-to-
arteriole anastomoses has also been reported in both
Brown-Norway and F344 rats [51]. Such rarefaction would
reduce aged animals’ ability to maintain blood flow during
ischemia, resulting in increasing risk of neuronal loss in
brain regions where vessel rarefaction is prominent [51].
Increasing age is also associated with significantly de-
creased lumen diameter at the arteriole level and more tor-
tuous cerebral vessels [46, 57, 58]. The net result of these
alterations in the cerebral circulation is increased vascular
resistance, which leads to impaired tissue perfusion and
larger infarcts [59]. A loss of collateral number and diam-
eter and increased tortuosity has been observed in aged
mice, resulting in a 6-fold increase in calculated resistance
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Fig. 5 Quantification of the mean diameter (a), RBC velocity (b), and
RBC flux (c) in aged rats (n = 11) and young rats (n = 11) after distal
MCAO. a Aged rats exhibited a more rapid narrowing of pial arterioles
relative to young adult rats, though diameters at the completion of
imaging were not different between aged and young rats. Two-way
ANOVA confirmed a significant time × age interaction in pial arteriole
diameter (P < 0.0001). b A greater reduction of RBC velocity over time
after dMCAo was apparent in aged rats relative to young adult rats, and

two-way ANOVA confirmed a significant main effect of time and age
(P < 0.0001 and P = 0.0061, respectively) and a significant age × time
interaction (P = 0.0002). c Mean RBC flux for MCA segments down-
stream of collateral anastomoses was significantly reduced in aged rats
relative to young rats. Two-way ANOVA revealed a significant main
effect of time (P < 0.0001) and age (P = 0.0057), and a significant age ×
time interaction (P = 0.0159). * P < .05, ** P < .01



and 3-fold increase in severity of infarct volume after
MCAO in 24- versus 3-month-old mice [22, 60]. These
s tudies used postmortem cerebral ar tery micro-
angiography to estimate rarefaction, however, so collateral
extent and compensatory flow were not directly verified
during ischemia. Notably, age-related biochemical alter-
ations in the peripheral and mesenteric collaterals suggest
altered hemodynamics in the days following stroke.
Specifically, endothelial nitric oxide synthase (eNOS) sig-
naling appears to be dysfunctional in endothelial cells in
mice 3 days after MCAO, as indicated by increased protein
nitrosylation and reduced concentration of phosphorylated
endothelial nitric oxide synthase [22]. Moreover, expres-
sion of vasodilator-stimulated phosphoprotein (VASP) is
altered in collateral wall cells [22]. Decreases in
phospho-eNOS (necessary for eNOS activation) and
phospho-VASP (which undergoes phosphorylation when
NO is increased) would impair collateral remodeling dur-
ing this subacute period, but reduced eNOS could also
impair vasodilation and could lead to reduced collateral
diameter during acute stroke. This would agree with pre-
clinical and clinical studies in the peripheral and cerebral
circulation that suggest impaired vasodilation and
vasoreactivity with aging [61–63].

Collateral status at the time of occlusion (i.e., number and
diameter) is the strongest independent predictor of final infarct
volume and is considered crucial for clinical decision-making
in stroke treatment [8, 60, 64–67]. The hemodynamic evolu-
tion of the collateral circulation is also important since collat-
erals are thought to be time limited and can fail over time [25,
26, 68]. The dropout of collaterals during stroke is related to
the progression of penumbra to irreversible ischemic infarct
and impaired response to treatment [25, 26, 68]. However, the
effects of aging on the dynamics of collaterals circulation are

not well defined. The data presented here show that pial col-
laterals are patent immediately after ligation of a distal branch
of MCA, with clear retrograde flow to ischemic territories.
LSCI showed that cerebral collateral perfusion was impaired
after stroke (Bcollateral failure^) in both aged and young rats,
but this decline was more severe in aged rats. TPLSM showed
that pial arterioles narrowed to around 80% of pre-stroke di-
ameter at 4.5 h poststroke in both young and aged rats, but this
collateral constriction was accelerated in aged rats. More spe-
cifically, the narrowing of pial vessels occurred over 90 min
poststroke in aged rats, while more gradual narrowing oc-
curred over the full 270 min imaging period in young rats.
Notably, RBC velocity remained near baseline values (though
the direction of flow was reversed) in young rats, such that
overall RBC flux downstream of pial anastomoses was stable
over the imaging period. Contrasting this, RBC velocity de-
clined steadily in aged rats after ischemic onset. Thus, while
arteriole vessel narrowing reached comparable endpoints,
RBC velocity and the overall flux of blood through pial arte-
rioles was significantly reduced at time-points after 120 and
90 min, respectively, after occlusion in aged rats relative to
young adult rats. Thus, collateral narrowing occurs more
quickly in aged rats than young adult rats, and only young
adults compensate for increased vascular resistance with an
increase in flow velocity. In addition to changes in the diam-
eter and velocity of flow in pial arterioles, a progressive re-
duction in perfused vessels on and below the cortical surface
was apparent in both aged and young adult rats, but was more
severe in aged rats. While potential fading of fluorescence and
a slight reduction in the quality of the optics through the cra-
nial window could potentially contribute to reduced density of
flowing vessels over time, the consistency of the LSCI and
TPLSM images and the progressive reductions in arteriole
flux suggest that this reflects an impairment in microvascular

Fig. 6 H&E staining was used to
visualize early ischemic damage
in aged (n = 11) and young adult
(n = 11) rats. A significantly
larger volume of early ischemic
damage was found in aged rats
relative to young rats (P < 0.001).
Means of the infarct volumes are
presented as percentage of their
corresponding contralateral sides
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perfusion due to failing collateral flow. The more severe re-
ductions in collateral and microvascular flow apparent in aged
rats likely account for the significantly greater volumes of
ischemic damage relative to young adult rats 6 h after ische-
mic onset.

Notably, the native pial collateral circulation (number and
size) varies greatly among humans and among rodents from
different genetic backgrounds, even within a species [60, 69,
70]. Pial collaterals’ formation begins primarily between em-
bryonic day 13.5 and 14.5 and their maturation continues
through the first 3 weeks after birth [4, 71, 72]. Gene expres-
sion of Vegfa and CLIC4 shapes the development of collateral
vessels [4, 71, 73, 74]. However, it is not known how these
genetic factors influence collaterals across the lifespan, and if
changes in gene expression contribute to accelerated collateral
failure. Recent studies of isolated collateral vessels after fila-
ment MCAO in rats suggest that the elevation of intracranial
pressure (ICP) may be responsible for collateral failure after
stroke [75]. While ICP was not monitored in our study, dy-
namic difference in ICP may occur during acute between aged
and young rats and may contribute to accelerated collateral
failure observed here. Notably, Beard et al. [75–77] stated that
changes in collateral flow poststroke appear to be primarily
driven by the pressure drop across the collateral vessel, and
were not due to changes in vessel diameter. That is, as ICP
increases, cerebral perfusion pressure is reduced and collateral
flow declines, providing a possible explanation for collateral
failure. In our study, aged rats showed a more rapid narrowing
of collateral vessels that was associated with a rapid and
sustained decrease in collateral flow. Young adult rats had a
slower decline in pial vessel diameter, though diameters at the
final endpoint were comparable between groups. However, in
young adult rats, blood flow velocity and flux remained rela-
tively stable over time, perhaps implicating a more severe
increase in ICP in aged rats that reduces cerebral perfusion
pressure as a mechanism of impaired collaterals in the aged.
Strategies to reduce ICP may therefore be effective to main-
tain collateral flow in the aged. Metabolic risk factors, like
metabolic syndrome and hyperuricemia, are known to contrib-
ute in poor leptomeningeal collateral status of patients with
acute ischemic stroke [78]. Menon et al. [78] hypothesized
that endothelial dysfunction results from metabolic syndrome
and hyperuricemia and leads to pial collateral deterioration
[78]. In addition, Faber et al. [22] postulated that endothelial
dysfunction could lead to a reduction in the density of cerebral
native collaterals in mice. However, the effect of endothelial
dysfunction in regulating hemodynamic of pial collaterals
poststroke is still unknown, and the degree to which age con-
tributes to this dysfunction remains to be confirmed.

Our finding of rapid failure of collaterals in aged rats may
help partially explain worse clinical outcome in elderly rela-
tive to young patients. Moreover, our data may help explain
results of the completed Safety and efficacy of NeuroFlo

Technology in Ischemic Stroke (SENTIS) trial [23]. Notably,
the SENTIS trial showed that transient aortic occlusion (TAO)
with the NeuroFlo catheter is safe in stroke patients and could
improve outcome through augment cerebral blood flow after
stroke onset in a subgroup of patients older than 70 years of
age [23]. Enhanced efficacy in the elderly may reflect amelio-
ration of ischemia induced by earlier cerebral collateral col-
lapse after ischemic onset in the aged. Accelerated collateral
failure as demonstrated here therefore reinforces the impor-
tance of early recanalization in the elderly, and suggests that
the development of collateral therapeutics to preserve collat-
eral flow might be particularly important for aged patients
[23]. Notably, our study did not include reperfusion, and fu-
ture studies could address the importance of collateral flow
prior to recanalization in aged and young rats by incorporating
a transient model of MCAo to model stroke with recanaliza-
tion. Incorporation of approaches to reduce ICP in these stud-
ies could highlight the potentially important role of ICP in
collateral failure and its potential as a target for collateral
therapeutics.
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