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Abstract 

Purpose:  Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promis-
ing real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic 
review and meta-analysis.

Methods:  A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe 
sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learn-
ing model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recom-
mendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of 
Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve 
of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model 
performance.

Results:  After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The 
majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 
25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, 
diagnostic test accuracy assessed by the AUROC ranged from 0.68–0.99 in the ICU, to 0.96–0.98 in-hospital and 0.87 to 
0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically 
implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contrib-
uted most to model performance.

Conclusion:  This systematic review and meta-analysis show that on retrospective data, individual machine learning 
models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring 
systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical 
implementation studies are needed to bridge the gap between bytes and bedside.
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Introduction

Sepsis is one of the leading causes of death worldwide 
[1], with incidence and mortality rates failing to decrease 
substantially over the last few decades [2, 3]. While the 
Surviving Sepsis international consensus guidelines rec-
ommend starting antimicrobial treatment within 1  h 
from sepsis onset given the association between treat-
ment delay and mortality [4–8], early recognition can be 
difficult due to disease complexity in clinical context [9, 
10] and heterogeneity of the septic population [11].

In recent years, medicine has witnessed the emer-
gence of machine learning as a novel tool to analyze 
large amounts of data [12, 13]. Machine learning mod-
els to diagnose sepsis ahead of time are typically left or 
right aligned (Fig. 1) [14]. Left-aligned models predict the 
onset of sepsis following a fixed point in time, with vary-
ing time points such as on admission [15] or preopera-
tively [16, 17]. Right-aligned models continuously predict 
whether sepsis will occur after a distinct period of time 
and are also known as real-time or continuous prediction 
models. From a clinical perspective, they are particularly 
useful as they could trigger direct clinical action such 
as administration of antibiotics. Given their potential of 
prospective implementation and the large variety of left-
aligned models, we focus on right-aligned models in this 
paper.

Interpretation of machine learning studies predict-
ing sepsis can be confusing, as some predict sepsis at 
its onset, which may seem counterintuitive and of little 
practical use. Their goal, however, is to identify whether 
a patient fulfills a predefined definition of sepsis, includ-
ing proxies for infection such as antibiotic use or culture 
sampling. During development, these proxies are availa-
ble to the model, while in a test set or new clinical patient, 
these are unknown. A model has therefore trained to 
predict whether sepsis is present in a new patient based 
on all other variables. In clinical practice, recognition of 
sepsis may be delayed and timely detection could expe-
dite diagnosis and treatment. While we prefer the terms 
identification or detection in this context, we will use the 
term prediction throughout this work for brevity.

Considering the potential of machine learning in sepsis 
prediction, we set out to perform a systematic review of 
published, real-time (i.e. right aligned) machine learning 
models that predict sepsis including aggravate forms such 
as septic shock in any hospital setting. We hypothesized 
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Take‑home message 

Retrospective studies demonstrate that machine learning models 
can accurately predict sepsis and septic shock onset. Prospective 
clinical studies at the bedside are needed to assess their effect on 
patient-relevant outcomes.

Fig. 1  Left versus right alignment. Left alignment (top) versus right alignment (bottom). Cases are aligned at the alignment point, in the feature 
window data are collected, the prediction window is the time of the prediction ahead of sepsis onset. Red sepsis cases, green non-septic cases
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that these models show excellent performance retrospec-
tively, but that few prospective studies have been carried 
out. In addition, we aimed to identify the most impor-
tant factors that determine predictive performance in a 
meta-analysis.

Methods
This systematic review was conducted in accordance with 
the Preferred Reporting Items for a Systematic Review 
and Meta-analysis of Diagnostic Test Accuracy Studies 
(PRISMA-DTA) statement [18]. The study protocol was 
registered and approved on the international prospec-
tive register of systematic reviews PROSPERO before the 
start of the study (reference number CRD42019118716).

Search strategy
A comprehensive search was performed in the biblio-
graphic databases PubMed, Embase.com, and Scopus up 
until September 13th, 2019, in collaboration with a medi-
cal librarian (LS). Search terms included controlled terms 
(MesH in PubMed and Emtree in Embase), as well as 
free-text terms. The following terms were used (includ-
ing synonyms and closely related words) as index terms 
or free-text words: ‘sepsis’ and ‘machine learning’ and 
‘prediction’. A search filter was used to limit the results 
to humans and adults. Only peer-reviewed articles were 
included. Conference abstracts were included to identify 
models that were published in full text elsewhere, but 
were excluded from the review. The full search strategies 
for all databases can be found in Online Resource 1.

Two review authors (LF and CZ) independently per-
formed the title-abstract and full text screening. Disa-
greement was resolved by an independent intensivist 
(PE) and data scientist (MH). For the full text article 
screen, reasons for exclusion per article were recorded. 
References of the identified articles were checked for 
additional papers. Data were extracted by LF and con-
firmed by CZ. Discrepancies were revisited by both the 
authors to guarantee database accuracy.

Eligibility criteria and study selection
Studies were eligible if they aimed to predict the onset 
of sepsis in real time, i.e., right alignment, in adult 
patients in any hospital setting. Both prospective and 
retrospective studies were eligible for inclusion. The tar-
get condition was the onset of sepsis, severe sepsis, or 
septic shock. Although the 2016 consensus statement 
abandoned the term severe sepsis [19], papers prior to 
the consensus statement targeting severe sepsis were 
included. The target condition (gold standard) is defined 
per paper and serves to establish model performance 
(i.e., how well the model predicts sepsis versus non-sepsis 
cases). We collected these definitions per paper, as well 

as the components of these definitions: use of interna-
tional classification of diseases (ICD) codes, SIRS/SOFA 
criteria, initiation of antibiotics, or sampling of blood 
cultures.

Supervised machine learning models were the index 
test of interest, defined as any machine learning classi-
fying technique to predict the onset of the target condi-
tion, through some type of learning from presented data 
in a training dataset. Scikit Learn is one of the most used 
packages to code machine learning models in the popular 
programming language Python. Pragmatically, all super-
vised learning models found in this package were consid-
ered machine learning models [20]. A statement that the 
paper belongs to the machine learning domain, or any of 
its synonyms, was required for inclusion. An extensive 
list of commonly used machine learning model names 
was added to the search to cover any papers that failed to 
mention machine learning in their title or abstract.

Other items that were collected from the papers 
included the year of publication, study design, privacy 
statements, the origin of the model development and 
test dataset, use of an online database, description of the 
study population, the country of origin, the dataset split, 
the inclusion and exclusion criteria used, data granular-
ity, methods for dealing with missing values, size of the 
database, number of patients with the outcome, the num-
ber of hours the model predicted ahead of time, the fea-
tures used in the model, whether cross-validation was 
performed and its number of folds and the length of the 
sliding window, i.e. hours of data that were continuously 
fed to the model and the type of machine learning model.

Quality of evidence and risk of bias
As of yet, there exists no widely accepted checklist for 
assessing the quality of diagnostic machine learning 
papers in a medical setting. This paper used the Grad-
ing of Recommendations Assessment, Development and 
Evaluation (GRADE) methodology to assess the quality 
of evidence per hospital setting for all studies reporting 
the area under the curve of the receiver operating char-
acteristic (AUROC) as their performance metric [21]. In 
line with the GRADE guidelines for diagnostic test accu-
racy, we included the domains risk of bias (limitations), 
comparison of patients, setting, and outcome across 
studies (indirectness of comparisons), and imprecision 
of the results. As we do not compute point estimates for 
multiple studies combined, judgment of inconsistency 
was omitted. One level of evidence was deducted for each 
domain with serious concerns or high risk of bias, no fac-
tors increased the level of evidence (see Online Resource 
2). Overall level of evidence is expressed in four catego-
ries (high, moderate, low, very low).
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To evaluate risk of bias, the Quality Assessment of 
Diagnostic Accuracy Studies (QUADAS-2) criteria [22] 
were combined with an adapted version of the Joanna 
Briggs Institute Critical Appraisal checklist for analyti-
cal cross-sectional studies [23]. The latter has been used 
in previous work to assess machine learning papers [24]. 
Domains included patient selection, index test, refer-
ence standard, flow and timing, and data management. 
In line with the recommendations from the QUADAS-2 

guidelines, questions per domain were tailored for this 
paper and can be found in Online Resource 3. Two review 
authors (LF and CZ) independently piloted the ques-
tions to ascertain between-reviewer agreement. If one of 
the questions was scored at risk of bias, the domain was 
scored as high risk of bias. At least one domain at high 
risk of bias resulted in an overall score of high risk of bias, 
only one domain scored as unclear risk of bias resulted in 
an overall score of unclear risk of bias for that paper.

Fig. 2  Flow diagram. Papers identified in databases, title/abstract screened, read full text, and included in the synthesis. Reasons for exclusion are 
listed
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Performance metric and meta‑analysis
Substantial heterogeneity was observed between stud-
ies regarding the setting, index test, and outcome. We 
therefore refrained from computing a point estimate for 
overall model performance. However, the large number 
of studies and models did allow for analysis of study char-
acteristics’ and model parameters’ contribution to model 
performance. Multiple models were reported per paper, 
introducing collinearity in their performance. A linear 
random effect model was built with a paper-specific ran-
dom effect to account for correlations between models 
published in the same paper. For clarity, we refer to all 
study characteristics that served as input to this analysis 
as covariates, while variables to develop the presented 
models are referred to as features.

The machine learning field distinguishes numerous 
metrics to gauge model performance, none of which 
gives a complete picture. The AUROC, a summary meas-
ure of sensitivity and specificity, has been customary to 
the field of diagnostic test accuracy. Since 24 out of 28 
papers (86%) reported the AUROC, this was pragmati-
cally selected as the main performance metric. Other 

metrics were collected, but unsystematically reported. As 
AUROCs are constrained to the interval 0.5 to 1.0, they 
were transformed and linearized to a continuous scale by 
taking the logit transformation of the result of the for-
mula 

(

AUROC

0.5
− 1

)

 . Because only 43 models (33%) 
reported confidence intervals, within-study variability 
was omitted from the analysis. For studies that did report 
confidence intervals, one-sided AUROC confidence 
intervals did not exceed 0.02.

All items collected from the presented studies were 
added as covariates to the random effects model, 
including components of the target condition. Miss-
ing values in the continuous covariates were imputed 
with the column median. To account for the high ratio 
of covariates to number of models, some of the fea-
tures identified in the models were grouped (lab values, 
blood gas values, co-morbidities, department informa-
tion), only covariates with 10% variance in their val-
ues were included and models that aimed to predict 
combined outcomes were removed as they were too 

Fig. 3  Prospective versus retrospective models. Percentages specified per paper and for all models
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scarce in the database. One outlier reference model was 
excluded [25].

All covariates were first tested in a univariate model 
for a significant contribution to the transformed 
AUROC using a likelihood ratio test against an empty 
model containing only the intercept and the variance 
components. All significant covariates (p < 0.05) were 
then considered for a multivariate model. Through 
backward Akaike information criterion (AIC) selec-
tion, a parsimonious model was selected. Covariate 

coefficients, standard error, and p values are reported. 
All analyses were carried out in R [26].

Results
Study selection
After removing duplicates and reference checking for 
extra papers, a total of 2.684 papers were screened. 
Among these, 130 papers were read full text resulting in 
28 papers that met the inclusion criteria for synthesis. 
Reasons for exclusion at this stage were recorded and 

Table 1  Prospective models

Paper Design Target condition Patient encoun‑
ters

Machine learning model Comparators

Validation

ED Brown et al. Prospective valida-
tion

Severe sepsis and 
Septic shock

93,773 (15 months) Cut05
Primary outcome
Sensitivity: 0.764
False positive rate: 0.47
Secondary outcome
AUC: 0.859

Nurse triage
Primary outcome
Sensitivity: 0.543
False positive rate: 0.31
Secondary outcome
AUC: 0.756

SIRS
Primary outcome
Sensitivity: 0.216
False positive rate: 0.004
Secondary outcome
AUC: 0.606

In-hospital Thiel et al. Prospective valida-
tion

Septic shock 27,674 (24 months) RPART​a 2006
Primary outcome
Misclassification rate: 8.4%

None

RPART​a 2007
Primary outcome
Misclassification rate: 8.8%

Paper Design Target condition Patient encoun‑
ters

Machine learning group Control group

Interventional

In-hospital Giannini et al. Pre-post implemen-
tation

Severe sepsis and  
septic shock

54,464 (6 pre-
months, 1 post-
month)

EWS 2.0
Primary/secondary outcome
Hospital LOS: 9 days
Time to ICU transfer after alert: 

8 he

In-hospital mortality: 10.3%

Unclear
Primary/secondary outcome
Hospital LOS: 9 days
Time to ICU transfer after alert: 

16 he

In-hospital mortality: 10.6%

McCoy et al. Pre-post 
implementationb

Severe sepsis 611 (3 pre-months, 
2 post-months)

Linear model (Insight)
Primary outcome
In-hospital mortality: 2.94%
Secondary outcome
Hospital LOS: 2.92 days
Readmission rate: 7.84%

Manual nurse scoringc

Primary outcome
In-hospital mortality: 7.37%
Secondary outcome
Hospital LOS: 3.35 days
Readmission rate: 46.19%

ICU Shimabukuro 
et al.

RCT​ Severe sepsis 142 (3 months) Elastic net reg.d (Insight)
Primary outcome
Hospital LOS: 10.3 dayse

Secondary outcome
ICU LOS: 6.3 dayse

In-hospital mortality: 8.96%e

SIRS detector
Primary outcome
Hospital LOS: 13.0 dayse

Secondary outcome
ICU LOS: 8.4 dayse

In-hospital mortality: 21.3%e

a  Recursive partitioning and regression tree (RPART) analysis
b  Only baseline and steady state are reported
c  Nurses scored patient twice daily to see if they met the SIRS criteria
d  Elastic net regularization (generalized linear model)
e  Significant results



390

can be found in the flow diagram in Fig.  2. From these 
papers, 130 models were retrieved (range 1–16 models 
per paper). All studies reported retrospective diagnostic 
test accuracy. In addition, models were prospectively val-
idated in two papers (7%) and clinically implemented in 
three papers (11%), as depicted in Fig. 3. Out of all papers, 
24 reported AUROC as their performance metric.

Study characteristics
Most of the studies were carried out in the ICU (n = 15; 
54%), followed by hospital wards (n = 7; 25%) and the 
emergency department (ED, n = 4; 14%). Two studies by 
Barton et  al., and Mao et  al., examined all of these set-
tings [25, 27]. In the intensive care, most of the studies 
modeled sepsis as their target condition (n = 10; 67%), 
compared to severe sepsis (n = 3; 20%) or septic shock 
(n = 2; 13%). This contrasts the in-hospital studies, where 
almost half of the papers aimed to predict septic shock 
(n = 3; 43%). Figure 4 gives an overview of key character-
istics per study.

Retrospective diagnostic test accuracy varied per set-
ting and target condition. For the studies that reported 
AUROCs, best predictions of sepsis ranged from 0.87 
to 0.97 in the emergency department, to 0.96–0.98 in-
hospital and 0.68–0.99 in the intensive care unit. Sep-
tic shock predictions in an in-hospital setting ranged 
between 0.86–0.94 and 0.83–0.96 in the ICU at best. 
Other outcome measures such as positive predictive 
value (n = 11; 39%), accuracy (n = 10; 36%), and nega-
tive predictive value (n = 6; 21%) were unsystematically 
reported. The minimum, mean, and maximum AUROC 
values with relevant study characteristics are visualized 
per paper in Fig. 4.

Prospective studies included two clinical validation 
studies (ED and in-hospital) and three interventional 
studies (in-hospital and ICU). One clinical validation 
study in the ED showed the machine learning model 
outperformed manual scoring by nurses and the SIRS 
criteria when identifying severe sepsis and septic shock 
[28], the other study made no comparison [29]. The inter-
ventional studies included two pre-post implementation 
studies (in-hospital) [30, 31] and one ICU randomized 
controlled trial [32]. All looked at mortality and hospital 
length of stay, but results are mixed as shown in Table 1.

For the target condition, different definitions of sepsis, 
severe sepsis, and septic shock were used. Definitions 
and their components are reported in Table  2. Defini-
tions that had been used before are named according to 
the first paper they appeared in. Calvert et  al. [33] was 
one of the first to study machine learning to identify sep-
sis in an ICU population and Seymour et al. [34] assessed 
the sepsis-3 criteria. Nine studies (32%) employed a defi-
nition for sepsis that had been previously used.

A breakdown of the paper and model characteristics 
per setting can be found in Table 3. The number of fea-
tures used in the models ranges from 2 to 49 and the 
most common features are shown in Fig. 5. Thirty six per-
cent of papers used MIMIC data; others used non-freely 
available hospital datasets. Three papers using their own 
hospital data reported inquiries for data sharing were 
possible [28, 32, 35], two papers reported data would not 
be shared [25, 31]. None of the studies mentioned their 
code was released and only one paper reported adhering 
to a reporting standard [36].

Quality of evidence and risk of bias
In accordance with the publication guidelines of the 
QUADAS-2 criteria, results for the risk of bias for ret-
rospective diagnostic test accuracy studies are shown 
in Table  4. Nine out of 28 (32%) papers were scored as 
unclear risk of bias; all other papers were scored as high 
risk of bias. Papers scored a high risk of bias for failing 
to describe their study population (patient selection), not 
reporting their data split or cross-validation strategies 
(index test), or failing to specify ethical approval (data 
management). As there exists no gold standard in diag-
nosing sepsis, the variety in definitions may increase the 
risk of bias of the models. All papers therefore have an 
unclear risk of bias concerning the reference standard.

The GRADE evidence profile can be found in Table 5. 
Results are shown when at least two studies reported the 
same target condition. All study aggregates were con-
sidered to be at high risk of bias, only five studies were 
considered at unclear risk of bias (included in brackets in 
Table 5). One level of evidence was deducted for high risk 
of bias and one level was deducted for indirectness of the 
outcome. Consequently, the quality of evidence for each 
of the settings was scored as low. Additionally, the out-
come column distinguishes AUROC values for high and 
unclear risk of bias studies. Consistently, high risk of bias 
studies reported the highest AUROC values, although 
ranges are wide and relatively few unclear risk of bias 
studies were identified.

Meta‑analysis
A total of 111 models were included in the meta-analysis 
after removal of an outlier (n = 1; 1%), combined out-
comes (n = 3; 2%), and models without an AUROC out-
come measure (n = 15; 12%). Initially, 103 covariates were 
included in the model. To reduce the ratio of covariates to 
the number of models, features used in the models were 
grouped (n = 41; 40%) and covariates with low variance 
(n = 24; 23%) and perfectly colinear covariates (n = 1; 1%) 
removed. This amounted to a total of 39 covariates in the 
meta-analysis random effect model.
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Table 3  Description of the data per paper and per model

ICD International Statistical Classification of Diseases and Related Health Problems, SIRS systemic inflammatory response syndrome, SOFA sequential organ failure 
assessment
a  Study by Mao et al. (2017) with an ED, In-hospital, ICU setting has been omitted for brevity
b  Studies that included MIMIC in at least one of their reported models
c  Others: proxy variable, removal of variable, and predictive mean matching

EDa

4 papers
22 models

In-hospitala

7 papers
43 models

ICUa

15 papers
52 models

Absolute Proportion Absolute Proportion Absolute Proportion

Per paper

Prospective design 1 0.25 2 0.29 1 0.07

Privacy statement 0 0.00 3 0.43 5 0.33

MIMICb – – – – 9 0.60

Description of patients 4 1.00 2 0.29 5 0.33

Inclusion criteria 3 0.75 4 0.57 12 0.80

Country—USA 4 1.00 7 1.00 15 1.00

Per model

Target condition

 Sepsis 20 0.91 10 0.23 37 0.71

 Severe sepsis 0 0.00 1 0.02 12 0.23

 Severe sepsis & septic shock 2 0.09 1 0.02 0 0.00

 Septic shock 0 0.00 31 0.72 3 0.06

Components of target condition definition

 ICD 20 0.91 32 0.74 17 0.33

 SIRS 0 0.00 4 0.09 19 0.37

 SOFA 0 0.00 1 0.02 21 0.40

Data split design

 Train-(validate)-test 20 0.91 15 0.35 21 0.40

 Cross-validation 0 0.00 25 0.58 28 0.54

Data granularity

 1-hourly values – – 6 0.14 30 0.58

 > 1/hourly values – – 0 0.00 18 0.35

 Not described – – 31 0.72 4 0.08

Missing values strategies

 Feedforward 0 0.00 8 0.19 14 0.27

 Mean imputation 0 0.00 9 0.21 12 0.23

 Zero imputation 0 0.00 16 0.37 0 0.00

 Nearest neighbor 0 0.00 0 0.00 16 0.31

 Physiological imputation 13 0.59 0 0.00 0 0.00

 Otherc 7 0.32 3 0.07 2 0.04

 Not described 2 0.09 7 0.16 8 0.15

Model

 Generalized linear model 3 0.14 6 0.14 15 0.29

 Naïve Bayes 11 0.50 3 0.07 0 0.00

 Ensemble methods 4 0.18 9 0.21 7 0.13

 Proportional hazard 0 0.00 0 0.00 9 0.17

 Decision tree 0 0.00 9 0.21 0 0.00

 Support vector machines 4 0.18 3 0.07 11 0.21

 Neural network 0 0.00 8 0.19 6 0.12

 Long short-term memory (LSTM) 0 0.00 5 0.12 4 0.08
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Univariate and multivariate random effect model 
results are shown in Table 6. Coefficients are logit trans-
formed AUROC values and represent the expected mean 
change in AUROC, when the sepsis prediction model 
exhibited the respective characteristic (e.g. used lab 
values). Univariate analysis of the 39 covariates shows 
heart rate, respiratory rate, temperature, lab and arte-
rial blood gas values, and neural networks (relative to 
ensemble methods) positively contributed to the AUROC 
(range 0.344–0.835). Only temperature, lab values, and 
model type remained in the multivariate model. On the 
contrary, defining sepsis using the definition coined by 
Seymour et  al., using SOFA scores in the target condi-
tion definition, or any other model but ensemble meth-
ods or neural networks negatively impacts AUROC in 

the univariate analysis (range 0.168–1.039). Since the 
AUROC was logit transformed, it was back-transformed 
to the AUROC scale by taking the anti-logit. The rela-
tionship between AUROC and the hours before onset of 
the prediction is visualized for three models in Fig. 6.

Discussion
This is the first study to systematically review the use of 
machine learning to predict sepsis in the intensive care 
unit, hospital wards, and emergency department. Twenty 
eight papers reporting 130 machine learning models 
were included, each showing excellent performance on 
retrospective data. The most predictive covariates in 
these models are clinically recognized for their impor-
tance in sepsis detection. Assessment of overall pooled 

Fig. 5  Features used in the papers. Features are grouped by type. ESR erythrocyte sedimentation rate, HR heart rate, MAP mean arterial pressure
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performance, however, is hampered by varying sepsis 
definitions across papers. Clinical implementation stud-
ies that demonstrate improvement in patient outcomes 
using machine learning are scarce.

Performance and clinical relevance of individual models
Clinically, accurate identification of sepsis and predic-
tion of patients at risk of developing sepsis is essential 
to improve treatment [37]. Current approaches to iden-
tify septic patients have centered around biomarkers and 
(automated) clinical decision rules such as the SIRS and 
(q)SOFA criteria [38, 39]. However, concerns have been 
raised regarding the poor sensitivity of the qSOFA possi-
bly leading to delays in sepsis identification [40]. The high 

sensitivity of the SIRS criteria, on the other hand, could 
lead to over diagnosis of sepsis resulting in inappropriate 
antibiotics use [41]. Additionally, most of the investigated 
biomarkers failed to show discriminative power or clini-
cal relevance [42, 43]. The presented machine learning 
models provide a novel approach to continuously iden-
tify sepsis ahead of time with excellent individual perfor-
mance. These models present an alternative to the widely 
used SIRS and SOFA criteria and clinicians may be faced 
with these models in the near future. Therefore, it is 
important that they understand the strengths and limita-
tions of these models.

Table 4  QUADAS-2 risk of bias assessment per setting

 low risk,  high risk, ? unclear risk

Paper Setting Risk of bias

Patient selection Index test Reference 
standard

Flow 
and timing

Data man‑
agement

ED Horng et al. [35] Sepsis ?

Haug et al. [62] Sepsis ?

Delahanty et al. [63] Sepsis ?

Brown et al. [28] Severe sepsis and 
septic shock

?

In-hospital Khojandi et al. [64] Sepsis ?

Futoma et al. [65] Sepsis ?

McCoy et al. [31] Severe sepsis, Sepsis ?

Lin et al. [66] Septic shock ?

Khoshnevisan et al. [14] Septic shock ?

Thiel et al. [29] Septic shock ?

Giannini et al. [30] Severe sepsis and 
septic shock

?

ICU Wang et al. [57] Sepsis ?

Shashikumar II et al. [67] Sepsis ?

Shashikumar I et al. [68] Sepsis ?

Scherpf et al. [59] Sepsis ?

Desautels et al. [54] Sepsis ?

Nemati et al. [55] Sepsis ?

Calvert II et al. [52] Sepsis ?

Kam et al. [53] Sepsis ?

Van Wyk I et al. [69] Sepsis ?

Van Wyk II et al. [70] Sepsis ?

Moss et al. [36] Severe sepsis ?

Guillén et al. [58] Severe sepsis ?

Shimabukuro et al. [32] Severe sepsis ?

Henry et al. [56] Septic shock ?

Calvert I et al. [33] Septic shock ?

ED/In-hospital/ICU Barton et al. [27] Sepsis ?

Mao et al. [71] Sepsis, severe sepsis, 
septic shock

?
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Heterogeneity and pooled performance
Ideally AUROC values across all presented models would 
be pooled to estimate overall machine learning perfor-
mance. However, considerable heterogeneity in the sepsis 
definitions between studies hampers such computation. 
The lack of a gold standard for sepsis allows for a variety 
of definitions to be adopted. Many studies use ICD coding, 
which may be an unreliable instrument to identify septic 
patients [44, 45]. Arguably, all papers should use the most 
recent consensus definition [19]. Only a minority of papers 
used the latest sepsis-3 criteria and within these studies, 
we found differences in the way the sepsis onset time was 
defined. Due to these varying definitions, we refrained 
from computing overall performance of machine learn-
ing models and we consequently judged the quality of evi-
dence as low for each of the hospital settings. Nonetheless, 

each of the definitions is a clinically relevant entity that 
might justify early antibiotic and supportive treatment.

Additionally, heterogeneity is observed in machine 
learning models, preprocessing of the data, and hospital 
setting. While this further limits pooling of the overall 
performance, it does allow for meta-analysis of the mod-
els to identify the most important factors that contribute 
to model performance. Most predictive covariates from 
our meta-analysis such as heart rate and temperature are 
recognized for their clinical importance in sepsis detec-
tion. Variables that are part of the SIRS and SOFA crite-
ria were expected to correlate with model performance, 
since they are frequently part of the sepsis definitions. 
Interestingly, some other factors that are not part of these 
criteria, such as arterial blood gas variables, were also 

Table 5  GRADE evidence profile for area under the receiving operating characteristic curve (AUROC)

Only settings with at least two studies are reported
a  Calvert et al. (2016) had no information on total number of patients studied
b  Evidence profile is binned per setting
c  Confidence intervals were inconsistently reported, and therefore no heterogeneity assessment was performed

Study Characteristics Quality Assessment Outcome

No of stud‑
ies

Design Limitations 
(Unclear risk 
of bias stud‑
ies/total)

Indirectness 
of patients, 
settingb

Indirectness 
of outcome

Inconsist‑
encyc

Imprecision AUROC high 
risk of bias/
unclear risk 
of bias

Quality 
of evidence

ED Sepsis
3 studies 

(3.270.608 
patients)

Cohort stud-
ies

High risk of 
bias (2/3)

None Serious indi-
rectness—
differences 
in outcome 
definition

Not available None 0.95–
0.97/0.65–
0.97

⊕ ⊕ ⊙ ⊙ Low

In-hospital Septic shock
2 studies 

(51,540 
patients)

Cohort stud-
ies

High risk of 
bias (0/2)

None Serious indi-
rectness—
differences 
in outcome 
definition

Not available None 0.86–0.94 ⊕ ⊕ ⊙ ⊙ Low

ICU Sepsis
8 studies 

(125.162 
patients)

Cohort stud-
ies

High risk of 
bias (2/8)

None Serious indi-
rectness—
differences 
in outcome 
definition

Not available None 0.70–
0.99/0.81–
0.88

⊕ ⊕ ⊙ ⊙ Low

Severe sepsis
3 studies 

(6.647 
patients)

Cohort stud-
ies

High risk of 
bias (0/3)

None Serious indi-
rectness—
differences 
in outcome 
definition

Not available None 0.68–0.95 ⊕ ⊕ ⊙ ⊙ Low

Septic shock
2 studies 

(16.234 
patientsa)

Cohort stud-
ies

High risk of 
bias (1/2)

None Serious indi-
rectness—
differences 
in outcome 
definition

Not available None 0.89–
0.96/0.83–
0.83

⊕ ⊕ ⊙ ⊙ Low
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strong predictors univariately. Lab values are often not 
considered in early warning scores [46], but our results 
imply that these scores may miss predictive information.

Clinical model performance
It is important to investigate, whether improved sepsis 
predictions lead to better clinical outcomes for patients. 
We distinguish prospective clinical validation stud-
ies that assess model performance in a clinical setting 

and interventional studies, where the effect of exposing 
healthcare professionals to model predictions on patient 
outcomes is investigated. Only one study clinically vali-
dated their model and showed that these models outper-
formed nurse triaging and SIRS criteria in the emergency 
room [47].

Interventional studies using traditional SIRS and SOFA 
alarm systems have not shown significant changes in 
clinical outcomes [48–50]. Only three interventional 
studies have been identified in this review, which were 
carried out in different clinical settings and show mixed 
results [31, 32, 51]. None of the studies, however, inves-
tigated a direct clinical action associated with the sepsis 
prediction, but left treatment decisions at the discretion 
of the clinician. Prior to sepsis onset, however, clinically 
overt signs of sepsis may be subtle or absent and false 
positive alerts in these studies may create alarm fatigue. 
Nonetheless, as of yet, there is no compelling evidence 
that machine learning predictions lead to better patient 
outcomes in sepsis.

Future directions and academic contribution
An important message in this paper is that system-
atic reporting is essential for reliable interpretation and 
aggregation of results. Almost none of the papers men-
tioned using a reporting standard and very few papers 
reported they accept data inquiries [32, 35, 47]. In addi-
tion, high bias studies showed highest AUROC values 
overall. We encourage the authors to strive for the shar-
ing of code and data in compliance with relevant regula-
tions. This would allow for easy data aggregation, model 

Table 6  Univariate and multivariate outcomes

Coeff coefficient, SE standard error, ref. reference model, EM ensemble methods, SOFA sequential organ failure assessment

Variables Univariate analysis Multivariate analysis

Coeff SE p value Coeff SE p value

Temperature as feature 0.788 0.239 0.002 0.812 0.218 0.000

Lab values as feature 0.835 0.311 0.008 0.842 0.291 0.003

Type of model (ref. = EM) 0.018 0.020

 Generalized linear model − 0.211 0.251 − 0.211 0.231

 Naïve Bayes − 0.651 0.312 − 0.682 0.291

 Neural network 0.344 0.300 0.172 0.278

 Proportional hazard − 0.464 0.851 − 0.506 0.673

 Support vector machines − 0.168 0.256 − 0.161 0.241

 Decision trees − 1.013 0.419 − 1.088 0.399

Target condition defined as Seymour (Sepsis-3) − 1.039 0.459 0.025

Target condition definition contains SOFA − 0.935 0.438 0.033

Respiratory rate as feature 0.672 0.250 0.008

Heart rate as feature 0.680 0.327 0.037

Arterial blood gas as feature 0.802 0.313 0.011

Fig. 6  Relative effect of hours before sepsis onset on AUROC for 
different models. Expected change in AUROC for three models at dif-
ferent prediction windows (hours before sepsis onset)
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retraining, and comparison as our insight into sepsis defi-
nitions evolves.

It should be noted that many models were developed 
on similar populations. Specifically, numerous models 
were tested on the freely accessible MIMIC database [27, 
33, 52–59] and all models were developed in the United 
States. The current trend holds risks for promoting ine-
quality in healthcare as no models were developed or val-
idates in middle or low income countries. We encourage 
developing models on data of different centers and coun-
tries to ensure generalizability.

Finally, future research is needed to determine effec-
tive integration strategies of these models into the clini-
cal workflow and assess the effect on relevant clinical 
outcomes. Interestingly, most models only use a small 
subset of the wealth of available data to clinicians, which 
may present an opportunity for future models to further 
increase predictive performance. Lastly, baseline char-
acteristics may lead to clinically relevant heterogene-
ity in sepsis trials [11]. To administer treatment to more 
homogenous patient groups, the accurate identification 
of pre-specified populations by machine learning models 
could be investigated.

Strengths and limitations
Several strengths can be identified in this study. First of 
all, this is the first study to systematically list all research 
in this area. It combines both clinical and more technical 
work and assesses performance in a clinical light, while 
studies are scrutinized through a technical and clini-
cal lens. Additionally, a large number of models resulted 
from the search, which permitted comparison and meta-
analysis of the contribution of model components to 
performance.

This study also has limitations. First, the AUROC 
was pragmatically chosen as a summary measure, 
while it may underperform in the setting of imbal-
anced datasets [60]. Nonetheless, it was the summary 
measure most frequently reported; other measures 
would have eroded the possibility to compare perfor-
mance across studies. Similarly, no contingency tables 
were feasible for the majority of papers as the neces-
sary data were too infrequently reported and very few 
papers reported measures of uncertainty such as con-
fidence intervals or standard deviations. In line with a 
previous machine learning review on imaging [61], we 
believe reporting of these studies has to be improved 
to guarantee reliable interpretation and we encourage 
guideline development in the areas of intensive care 
and emergency medicine.

Conclusion
This systematic review and meta-analysis show that 
machine learning models can accurately predict sep-
sis onset with good discrimination in retrospective 
cohorts. Important factors associated with model per-
formance include the use of variables that are well rec-
ognized for their clinical importance in sepsis. Even 
though individual models tend to outperform tradi-
tional scoring tools, assessment of their pooled per-
formance is limited by heterogeneity of studies. This 
calls for the development of reporting guidelines for 
machine learning for intensive care medicine. Clini-
cal implementation of models is currently scarce and is 
therefore urgently needed across diverse patient popu-
lations to determine clinical impact, ensure generaliza-
bility, and to bridge the gap between bytes and bedside.
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