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Effects of Hypertension, Diabetes, 
and Smoking on Age and Sex 
Prediction from Retinal Fundus 
Images
Yong Dae Kim   1,2,7, Kyoung Jin Noh1,7, Seong Jun Byun1,7, Soochahn Lee3, Tackeun Kim   4, 
Leonard Sunwoo   5, Kyong Joon Lee5, Si-Hyuck Kang   6, Kyu Hyung Park1 & Sang Jun Park   1*

Retinal fundus images are used to detect organ damage from vascular diseases (e.g. diabetes mellitus 
and hypertension) and screen ocular diseases. We aimed to assess convolutional neural network 
(CNN) models that predict age and sex from retinal fundus images in normal participants and in 
participants with underlying systemic vascular-altered status. In addition, we also tried to investigate 
clues regarding differences between normal ageing and vascular pathologic changes using the CNN 
models. In this study, we developed CNN age and sex prediction models using 219,302 fundus images 
from normal participants without hypertension, diabetes mellitus (DM), and any smoking history. The 
trained models were assessed in four test-sets with 24,366 images from normal participants, 40,659 
images from hypertension participants, 14,189 images from DM participants, and 113,510 images from 
smokers. The CNN model accurately predicted age in normal participants; the correlation between 
predicted age and chronologic age was R2 = 0.92, and the mean absolute error (MAE) was 3.06 years. 
MAEs in test-sets with hypertension (3.46 years), DM (3.55 years), and smoking (2.65 years) were 
similar to that of normal participants; however, R2 values were relatively low (hypertension, R2 = 0.74; 
DM, R2 = 0.75; smoking, R2 = 0.86). In subgroups with participants over 60 years, the MAEs increased 
to above 4.0 years and the accuracies declined for all test-sets. Fundus-predicted sex demonstrated 
acceptable accuracy (area under curve > 0.96) in all test-sets. Retinal fundus images from participants 
with underlying vascular-altered conditions (hypertension, DM, or smoking) indicated similar MAEs and 
low coefficients of determination (R2) between the predicted age and chronologic age, thus suggesting 
that the ageing process and pathologic vascular changes exhibit different features. Our models 
demonstrate the most improved performance yet and provided clues to the relationship and difference 
between ageing and pathologic changes from underlying systemic vascular conditions. In the process of 
fundus change, systemic vascular diseases are thought to have a different effect from ageing. Research 
in context. Evidence before this study. The human retina and optic disc continuously change with 
ageing, and they share physiologic or pathologic characteristics with brain and systemic vascular status. 
As retinal fundus images provide high-resolution in-vivo images of retinal vessels and parenchyma 
without any invasive procedure, it has been used to screen ocular diseases and has attracted significant 
attention as a predictive biomarker for cerebral and systemic vascular diseases. Recently, deep neural 
networks have revolutionised the field of medical image analysis including retinal fundus images and 
shown reliable results in predicting age, sex, and presence of cardiovascular diseases. Added value 
of this study. This is the first study demonstrating how a convolutional neural network (CNN) trained 
using retinal fundus images from normal participants measures the age of participants with underlying 
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vascular conditions such as hypertension, diabetes mellitus (DM), or history of smoking using a large 
database, SBRIA, which contains 412,026 retinal fundus images from 155,449 participants. Our 
results indicated that the model accurately predicted age in normal participants, while correlations 
(coefficient of determination, R2) in test-sets with hypertension, DM, and smoking were relatively low. 
Additionally, a subgroup analysis indicated that mean absolute errors (MAEs) increased and accuracies 
declined significantly in subgroups with participants over 60 years of age in both normal participants 
and participants with vascular-altered conditions. These results suggest that pathologic retinal vascular 
changes occurring in systemic vascular diseases are different form the changes in spontaneous ageing 
process, and the ageing process observed in retinal fundus images may saturate at age about 60 
years. Implications of all available evidence. Based on this study and previous reports, the CNN could 
accurately and reliably predict age and sex using retinal fundus images. The fact that retinal changes 
caused by ageing and systemic vascular diseases occur differently motivates one to understand the 
retina deeper. Deep learning-based fundus image reading may be a more useful and beneficial tool for 
screening and diagnosing systemic and ocular diseases after further development.

Changes occur naturally in human retina and optic disc over the lifetime in a human1–6. The retina and optic 
disc, in addition to the final structures in itself in a visual system, share some physiological characteristics 
with the brain as they differentiate from diencephalon during embryonic development7. Therefore, the effect of 
normal ageing changes have been studied through histological or multimodal imaging techniques8. Age is the 
single most reliable surrogate as the milestone in ageing and growing; therefore, researchers have attempted to 
predict patients’ chronologic age from their medical examinations and images (e.g., X-rays, facial photographs, 
and DNA), aiming to reflect the status of a target organ and/or the whole body9–14. In particular, as retinal 
fundus images provide high-resolution in-vivo images of retinal vessels and parenchyma without any invasive 
procedure15, retinal fundus images have been used to detect target organ damage in vascular diseases (e.g., 
hypertension and diabetes mellitus [DM]), to screen retinal and optic disc diseases (e.g., age-related macular 
degeneration and glaucoma), and to predict cerebral/cardiovascular diseases16–21. Recently, deep neural net-
works have revolutionised the field of medical image analysis including retinal fundus images; deep-learning 
algorithms presented discriminative performances comparable to those of an ophthalmologist in diagnosing 
diabetic retinopathy, age-related macular degeneration, and glaucoma, as well as in predicting age, sex, and 
presence of cardiovascular diseases22–26. Previous study reported highly accurate results of a mean absolute 
error of 3.26 years for age prediction and receiver operating characteristic curve (AUC) of 0.97 for gender pre-
diction25, however, there were several limitations including a low proportion of Asian, a lack of analysis of the 
differences in accuracy with age, and a lack of discussion of which parts of the fundus image were used for age 
prediction. Virtually nothing is known regarding how a neural network predicts age and sex through fundus 
images, and which compartments of retinal fundus images are crucial for discrimination and identification. 
In addition, many systemic diseases are known to be associated with retinal diseases, and studies on the ret-
ina changes in patients with systemic diseases are actively conducted. However, how systemic diseases change 
retina and optic nerves and how these changes differ from age-related changes are still unclear. That is, the 
common features and differences between pathologic changes in and the ageing process of the retinal fundus 
are not well known16.

The convolutional neural network (CNN) proposed by Krizhevsky et al.27 demonstrated high performance 
in image recognition, many models for medical image recognition tasks have been developed and showed good 
results28,29. We expected the CNN to find the proper feature for the task from the retinal fundus images and to 
produce accurate results. We investigated how well a CNN predicts age and sex through retinal fundus images, 
and subsequently investigated according to the participants’ age, sex, smoking status, as well as whether the pres-
ence of hypertension and DM. Furthermore, we investigated the role of retinal vessels in predicting age and sex 
by inpainting vessels from retinal fundus images.

Materials and Methods
Dataset Organisation.  We used the retinal fundus images from the Seoul National University Bundang 
Hospital Retina Image Archive (SBRIA) after de-identification except the age, sex, and underlying diseases at 
the study date; details are described in our previous study26,30. We included 412,026 retinal fundus images from 
155,449 participants obtained at the health promotion centre in Seoul National University Bundang Hospital 
(SNUBH) between June 1st, 2003, and June 30th, 2016, in which detailed information regarding the presence 
of hypertension, DM, and the smoking status was presented. Among them, 243,668 images from normal par-
ticipants without hypertension, DM, and smoking history, 40,659 images from participants with hypertension, 
14,189 images from participants with DM, and 113,510 images from participants with smoking exist. The number 
of participants and images in each group, and the number of participants and images with overlapping diseases 
are shown in the Supplementary Table S1. In addition, the number and percentage of retinal fundus images 
according to the age and sex of each test-set are shown in Supplementary Table S2. As the participants underwent 
fundus photographs at least 1-year or more intervals, the fundus photographs of the same patient captured on 
different dates were considered to be distinct from each for age prediction. Retinal fundus images were acquired 
using various fundus cameras (Kowa VX-10, Kowa VX-10a, Kowa nonmyd7, Canon CF60Uvi, Canon CR6-
45NM). This study was approved by the Institutional Review Board (IRB) of the SNUBH (IRB no. B-1703-386-
103), and the requirement of informed consent was waived from the IRB. The study complied with the guidelines 
of the Declaration of Helsinki.
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Pre-processing and experimental setup.  Every RGB channel of each input image was normalised to a 
z-score31. This ensures the classification results to be invariant of intensities and colour contrasts of the images, 
thereby enabling the model to make predictions solely based on the shape configurations of the fundi. The black 
background of the fundus images was excluded in normalisation.

The images from normal participants are distributed randomly into training-set, validation-set, and test-set of 
ratios 89% (216,866), 1% (2,436), and 10% (24,366) by uniform sampling, respectively. We developed and trained 
CNN for the prediction of age and sex using the training-set from normal participants and verified the models 
using the validation-set while training the models. We assessed the performance of the models using the test-set 
of 24,366 normal images (normal test-set) and the groups of images from participants having hypertension, DM, 
and smoking history, separately. By performing the same number of every epoch time, we obtained the sample 
mean of the resulting prediction probabilities. Figure 1 shows a flow chart for the experimental setup.

Convolutional neural network (CNN) as regressor and classifier.  Separate CNNs were trained for 
age and sex prediction, respectively. We used Pytorch (ver. 0.4.1, https://pytorch.org/) as the deep-learning library 
to implement the software to train, validate, and test the CNN. The network structure of the CNN adopted the 
structure of the residual network (ResNet), which had previously demonstrated high performance in a classifi-
cation task32. ResNet has five versions (ResNet-18, 34, 50, 101, 152) depending on the depth of the convolution. 
We chose ResNet-152 because the deeper the convolution, the better performance. ResNet-152 has a total of 152 
layers and its configuration is as follows. The set consists of a convolution layer, batch normalization, and ReLU 
(activation function) with 151 layers, and a fully connected last layer. Only the first convolution layer is set to 7×7 
kernel with stride 2 and padding 3, and the kernel size of all subsequent convolution layers is 3×3. In addition, 
by setting stride 2 in 4 convolution layers, multi-scale can be considered without additional pooling layer. We 
used ResNet-152 as a backbone network, which was pre-trained in general image classification from ImageNet 
database. We used the parameters of the convolution layers in pre-trained network as our initial values, except 
for the fully connected last layer. The pre-trained network had learned various features through the huge amount 
of images from the ImageNet database. Therefore, the transfer learning method from the pre-trained network is 
faster than the scratched method and shows better performance33. While the overall structure is similar, some 
details were modified regarding the average pooling layer (changed kernel size from 7 to 16) and the fully con-
nected layer (changed output dimension from 1000 to 1) to tailor the CNN to our data and desired output (Fig. 2). 
We define the unprocessed numerical output of the CNN as the predicted age, making the CNN for age predic-
tion a direct regressor, while the output of the sigmoid function for the numerical output of the CNN is defined as 
the probability of predicted sex, making the CNN for sex prediction a classifier. As a loss function for training and 
error calculation, the smooth L1 loss function was adopted in the age prediction model because it has the appro-
priate properties of both regular features of L1 and L234–36, and the binary cross-entropy function was adopted 

Figure 1.  Flow chart illustrating the processes of data partitioning, training, validation, and testing. SBRIA, 
Seoul National University Bundang Hospital Retina Image Archive; DM, diabetes mellitus.
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in the sex prediction models for binary classification. In addition, Adam was used as the optimization scheme 
(learning rate = 1e−5, beta1 = 0.9, and beta2 = 0.999)37. One epoch is defined as performing backpropagation 
once for all images in the total training-set, and both CNNs for age and sex prediction were learned through 10 
epochs. The CNNs were verified for each epoch using the validation-set; finally, the best results were built into 
the prediction model.

Class activation map analysis.  To identify the region used in CNN, we used the class activation map 
(CAM) technique to highlight the core regions that the network focuses on for the age and sex prediction via 
Bayesian approximation for estimation of uncertainty in predictions31,38,39.

Prediction of age and sex in retinal fundus images after inpainting retinal blood vessels.  To 
determine the effect of retinal blood vessels in retinal fundus images on predicting age and sex, we created 
vessel-erased images. First, the blood vessel region was extracted using the scale-space approximated CNN 
(SSANet) that was previously reported by our group and demonstrated state of the art performance in retinal 
vessel segmentation40. Subsequently, we used the inpainting technique, which naturally fills holes or some regions 
in the image by extrapolation from the surrounding background. We applied the method previously reported 
by Telea et al.41, to inpaint the vascular regions, that is, to essentially erase the vessels from the retinal image. 
All images of the training-set, validation-set, and test-set were first pre-processed identically to the original 
training-set, then reconstructed as stated above, and our age and sex prediction models were trained, validated, 
and tested again in the same manner described above.

Statistical analysis.  To analyse the relationship between predicted age and chronologic age, the absolute 
values of error and their distributions were obtained from each test-set including normal, hypertension, DM, 
and smoking status. To further assess the statistical significance of the performance of our age prediction model, 
we used linear regression to obtain their coefficients of determination (R2) and 95% confidence interval (CI). 
The mean absolute error (MAE) from the chronologic age was calculated for the testing-sets, for the age subsets 
that are divided by decade. Additionally, to obtain the accuracy for age prediction, each result was interpreted as 
correct if the predicted age was concordant with the chronologic age with certain error margins of ±1, ±3, and 
±5 years. The analysis of variance (ANOVA) was conducted to compare the values of squared error according to 
the underlying vascular conditions. Tukey’s post-test was used for pairwise group comparison. The area under 
a receiver operating characteristic curve (AUC) and 95% CI were used to report the performance of sex predic-
tion. All statistical analysis was performed using Python; in particular, 95% CI were estimated by the bootstrap 
technique42.

Results
Table 1 shows the baseline demographics of each dataset. The mean chronologic age (years ± standard deviation) 
was 46.70 ± 16.67 in the normal training-set, 46.63 ± 15.86 in the normal validation-set, and 46.64  ±  15.83 in 
the normal test-set. The mean chronologic age (years) in the fundus photographs from participants with under-
lying vascular conditions was 56.71  ±  9.66 in the hypertension test-set, 56.56  ±  9.75 in the DM test-set, and 
49.35  ±  10.05 in the smoking test-set. All test-sets consisted of more males than females, especially in the smok-
ing group (normal, male 55.1%; hypertension, male 77.4%; DM, male 74.1%; smoking, male 93.5%).

The normal test-set of 24,366 images indicated a MAE of 3.06 (95% CI, 3.03-3.09) years. The MAE increased 
significantly in the hypertension test-set (3.46 [95% CI, 3.44-3.49] years) and DM test-set (3.55 [95% CI, 3.50-
3.60] years), while it decreased in the smoking test-set (2.76 [95% CI, 2.75-2.77] years). Figure 3 presents a scatter 
plot of the linear relationship between chronologic age and predicted age in each test-set. Supplementary Fig. S1 
presents a box plot of the squared error values ([predicted age – chronologic age]2) of the four groups. ANOVA 
showed significant difference at the P < 0.05 level for the squared error values of the four underlying vascular 
conditions, and post hoc comparisons also indicated that the means of squared error values for each vascular 
condition were different. (P < 0.05, Supplementary Table S3). The normal test-set demonstrated a fairly linear 

Figure 2.  Schematics of convolutional neural network. The retinal image is an anonymous image.
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relationship (R2 = 0.92 [95% CI, 0.92-0.93]), and other test-sets demonstrated relatively low coefficients of deter-
mination: R2 of 0.74 (95% CI, 0.75-0.76), 0.75 (95% CI, 0.74-0.75), and 0.86 (95% CI, 0.86-0.86) in hypertension, 
DM, and smoking test-sets, respectively. Based on the assumption that age prediction was correct when the pre-
dicted and chronologic ages differed by an error margin of ±5 years, we observed an 82.8% correct prediction 
in the normal test-set. The accuracies of prediction were 77.6%, 77.0%, and 85.6% in the hypertension, DM, and 
smoking test-set, respectively. The accuracy for the prediction of age within ±1 year was less than 30% in all 
groups, and that within ±3 years was more than 55% in all groups (Table 2).

When each test-set was divided into age subgroups by decades, the MAEs of the estimation in age groups 
between 20 and 59 years were below 3.0 years in all test-sets. Table 3 shows a fairly consistent MAE and good 
accuracy under 60 years old; however, an increased MAE and declined accuracy were exhibited in groups aged 
above 60 years old. Table 4 shows the MAEs and accuracies of the estimations according to three age categories 
(1: <30 years; 2: 30–59 years; 3: ≥60 years) in each test-set. The MAE in category 3 were higher than that in cate-
gory 2 in all test-sets (normal, 4.96 vs. 2.60; hypertension, 4.75 vs. 2.69; DM, 4.74 vs. 2.84; smoking, 4.42 vs. 2.47). 
The accuracies for age prediction within ±5 years were more than 80% in categories 1 and 2, but less than 70% 
in category 3. Figure 4 shows the changes in accuracy of age prediction according to chronologic age subgroups 
(divided by 10 years) by error margins of ±1, ±3, and ±5 years in the four test-sets. The accuracy was the highest 
at 30–40 years of age in the normal and DM test-sets, and 20–30 years in the hypertension and smoking test-sets. 
The accuracies of age prediction declined gradually with increasing age and deteriorated after 60 years old. The 
accuracies of the age prediction did not differ according to sex in all groups. Representative images of the CAM 
heat-map in our age prediction model are shown in Fig. 5. It shows the regions that have higher influence on the 
prediction results in red, relative to the regions with lower influence, in blue. The CAM of our age prediction 
model indicated activation primarily in the vascular region.

The age prediction model trained by the vessel-erased images was assessed to obtain the MAE and accuracy in 
the vessel-erased images in all test-sets. The predicted age from the vessel-erased images indicated a similar MAE 
of 3.19 years (Table 5), and also showed similar changes with age (Fig. 4). In the retinal vessel-erased images, 
attention is still focused on the area where blood vessels are present (Fig. 6).

Our sex prediction model was trained and validated using the same training-set and validation-set that were 
tested in four test-sets; it demonstrated excellent accuracies, where the AUC was 0.97 in the normal test-set, and 
similar AUCs above 0.96 were shown in the other test-sets with underlying vascular conditions (hypertension, 
0.96; DM, 0.96; smoking, 0.98). To confirm the significance of the fovea and retinal vessels in the prediction of 
sex, we generated inpainted images with erased fovea and retinal vessels, separately. The AUC was 0.881 (95% 
CI, 0.877–0.885) in the fovea-erased image and 0.682 (95% CI, 0.676–0.688) in the retinal vessel-erased image 
(Fig. 7). Representative images of the CAM heat-map in our sex prediction model are shown in Fig. 8. The CAM 
of our sex prediction model indicated various activations in the fovea, optic disc, and retinal vessel; in particular, 
the proximal vascular region was prominently activated in females.

Discussion
Historically, researchers have sought a relevant biomarker among medical images that can reflect chronologic 
ageing or biological ageing. Retinal fundus images are easy to capture, inexpensive, non-invasive, and provide 
high-resolution images of retinal blood vessels as well as of retina and optic nerve that change according to 

Sex Number of subjects Fundus photo image, N (%) Age, mean (SD, range)

Normal

Training-set

All 84,526 216,866 46.70 (16.67, 0-105)

Male 44,714 (52.90%) 119,442 (55.08%) 46.68 (14.80, 0-105)

Female 39,812 (47.10%) 97,424 (44.92%) 46.73 (18.70, 1-98)

Validation-set

All 2,397 2,436 46.63 (15.86, 1-92)

Male 1,341 (55.94%) 1,372 (56.32%) 46.46 (15.18, 2-87)

Female 1,056 (44.06%) 1,064 (43.68%) 46.84 (16.69, 1-92)

Test-set

All 20,823 24,366 46.64 (15.83, 0-95)

Male 11,327 (54.40%) 13,427 (55.11%) 46.69 (14.90, 1-92)

Female 9,496 (45.60%) 10,939 (44.89%) 46.57 (16.91, 0-95)

Hypertension test-set

All 12,168 40,659 56.71 (9.66, 20-90)

Male 7,762 (63.79%) 27,389 (77.36%) 55.19 (9.65, 22-90)

Female 4,406 (36.21%) 13,270 (32.64%) 59.83 (8.90, 20-86)

Diabetes test-set

All 4,545 14,189 56.56 (9.75, 19-90)

Male 3,191 (70.21%) 10,509 (74.06%) 55.49 (9.40, 19-90)

Female 1,354 (29.79%) 36,80 (25.94%) 59.63 (10.06, 23-86)

Smoking test-set

All 30,990 113,510 49.35 (10.05, 18-86)

Male 28,305 (91.34%) 106,116 (93.49%) 49.69 (9.92, 18-86)

Female 2,685 (8.66%) 7,394 (6.51%) 44.39 (10.64, 18-82)

Table 1.  Baseline demographics of normal training-set and validation set, and test-sets with various conditions: 
normal, hypertension, diabetes, and smoking. Data are expressed by means and standard deviations.
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age and vary with sex. In this respect, we developed algorithms predicting chronologic age in retinal fundus 
images using deep neural networks, and the algorithms demonstrated fair performance in predicting age and sex. 
Interestingly, the performance was the best in participants aged 20–40 years, decreased as age increased, and poor 
in participants aged 60 years or over. In addition, the performance deteriorated in participants suffering hyperten-
sion or DM with increasing age. The performance of the sex prediction model demonstrated high accuracy and 
showed no inferiority in test-sets with underlying disease.

CNN have led to a series of breakthroughs for computer vision area including image classification, seman-
tic segmentation, object detection, and bounding box regression27,43–45. Network models such as VGG net, 
GoogLeNet, and ResNet have been widely used to date46. Among them, ResNet proposed the concept of residual 
blocks to improve performance that can be degraded in very deep networks, and solved the interference with con-
vergence such as vanishing/exploding gradients47–50. Through this, ResNet showed better performance compared 
to VGG net and GoogLeNet in deep network learning. ResNet also demonstrated high performance for medical 
image recognition tasks such as retinal vessel segmentation40. Therefore we used ResNet, which has the advan-
tages mentioned above, to develop an age and sex prediction model using the retinal fundus images.

Deep-learning based age and sex estimation using retinal fundus images has been previously studied by other 
group. Poplin et al. reported the predictions of age, gender, and cardiovascular risk factors using fundus pho-
tograph data from UK Biobank and EyePACS25. In the algorithm validation using the UK Biobank validation 

Figure 3.  Predicted and chronologic ages in the four test-sets: (a) normal, (b) hypertension, (c) diabetes, (d) 
smoking. The lines represent y = x values. Fair linear relationships were indicated in normal test-set (R2 = 0.92, 
95% confidence interval [CI] 0.92-0.93), while the others indicated relatively loose relationship as follows: 
hypertension, R2 = 0.75, 95% CI 0.75–0.76; diabetes mellitus, R2 = 0.75, 95% CI 0.74–0.75; smoking, R2 = 0.86, 
95% CI 0.86–0.86.

Test-set
Mean Absolute 
Error, year (95% CI)

Coefficient of determination, 
R2 (95% CI)

Accuracy for age prediction by error margin

±1 year ±3 years ±5 years

Normal 3.06 (3.03-3.09) 0.92 (0.92-0.93) 24.00% 62.11% 82.82%

Hypertension 3.46 (3.44-3.49) 0.75 (0.75-0.76) 20.78% 56.33% 77.63%

Diabetes 3.55 (3.50, 3.60) 0.75 (0.74-0.75) 20.42% 55.09% 77.01%

Smoking 2.76 (2.75, 2.77) 0.86 (0.86-0.86) 25.25% 64.79% 85.59%

Table 2.  Mean absolute error (MAE) and its 95% confidence interval (CI); coefficient of determination (R2) and 
its 95% CI; accuracy in predicting age within maximum differences of ±1, ±3, and ±5 years in each test-set. CI, 
Confidence interval.
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dataset (n = 12,026 patients), the MAE was 3.26 (95% CI, 3.22-3.31) and R2 = 0.74 (95% CI, 0.73-0.75). In the 
algorithm validation using the EyePACS-2K validation dataset (n = 999 patients), the MAE was 3.42 (95% CI, 
3.23-3.61) and the R2 was 0.82 (95% CI, 0.79-0.84). The MAE of the age prediction validation in our study was 
3.06 (95% CI, 3.03–3.09) and the R2 was 0.92, which demonstrated a better or comparable performance than those 
of previous study. Although there are differences in the data set, the present study showed comparable results 
using a large number of Korean’s fundus images. The cross validation of each other’s dataset may be required to 
confirm the superiority of accuracy.

Vascular risk-scoring methods use equations based on large cohort studies, such as the US Framingham Heart 
and Offspring Studies51, the recent European Systematic Coronary Risk Evaluation project52, and the German 
Prospective Cardiovascular Münster study53. The Framingham score calculation, a well-known algorithm, con-
siders age, sex, total and HDL cholesterol, systolic blood pressure, and smoking51. Additionally, various novel 
biomarkers such as intravascular ultrasound in left main coronary arteries54 and the ankle brachial index55 have 

Test-set
Age 
group

Fundus photo 
images, N

Mean chronologic 
age, year

Mean predicted 
age, year

Mean absolute error, 
year (95% CI)

Accuracy for age prediction by error 
margin

±1 year ±3 years ±5 years

Normal

0-9 1,345 5.72 8.09 2.82 (2.70-2.95) 21.71% 61.49% 85.13%

10-19 473 13.30 11.51 3.02 (2.86-3.19) 18.39% 58.14% 81.82%

20-29 746 25.56 25.57 2.82 (2.64-3.01) 29.22% 67.56% 85.12%

30-39 3,317 35.67 36.01 2.35 (2.29-2.42) 29.57% 72.63% 91.23%

40-49 7,681 44.61 44.83 2.40 (2.36-2.45) 28.97% 70.95% 89.68%

50-59 6,360 53.92 53.46 2.97 (2.92-3.04) 22.81% 61.08% 83.82%

60-69 3,061 63.96 62.06 4.29 (5.18-4.40) 15.52% 45.18% 68.02%

70-79 1,169 73.47 69.82 6.08 (5.83-6.32) 9.24% 30.97% 51.84%

80-89 208 82.84 76.57 8.45 (7.68-9.25) 6.25% 18.27% 37.02%

90-99 6 91.33 82.20 9.51 0.00% 16.67% 33.33%

Hypertension

0-9 0 — — — — — —

10-19 4 19.00 22.22 3.22 25.00% 50.00% 50.00%

20-29 118 26.66 27.77 2.14 (1.91-2.38) 26.27% 74.58% 93.22%

30-39 1,181 36.41 37.02 2.30 (2.20-2.40) 29.72% 72.06% 92.04%

40-49 7,959 45.46 46.08 2.43 (2.39-2.46) 28.22% 70.29% 89.45%

50-59 16,064 54.56 54.36 2.85 (2.81-2.88) 23.13% 62.28% 84.28%

60-69 11,226 64.02 61.62 3.85 (3.80-3.90) 16.15% 48.41% 71.97%

70-79 3,811 73.01 66.78 6.79 (6.66-6.92) 7.69% 24.17% 42.04%

80-89 294 81.81 69.27 12.61 (12.03-13.25) 1.02% 3.40% 9.18%

90-99 2 90.00 78.34 11.65 0.00% 0.00% 0.00%

Diabetes

0-9 0 — — — — — —

10-19 0 — — — — — —

20-29 26 25.00 26.93 2.38 (1.17-3.10) 30.77% 69.23% 80.77%

30-39 469 36.48 37.04 2.26 (2.13-2.40) 28.78% 72.49% 92.96%

40-49 2,947 45.51 46.18 2.64 (2.57-2.71) 26.94% 66.14% 86.97%

50-59 5,449 54.63 54.66 3.00 (2.95-3.06) 21.95% 59.17% 82.42%

60-69 3,869 63.98 62.02 3.75 (3.67-3.83) 16.90% 50.66% 73.79%

70-79 1,305 73.02 66.69 6.98 (6.74-7.22) 8.51% 24.67% 41.76%

80-89 122 81.51 69.63 11.90 (10.94-12.89) 0.00% 3.28% 13.11%

90-99 2 90.00 78.34 11.65 0.00% 0.00% 0.00%

Smoking

0-9 0 — — — — — —

10-19 64 18.84 20.89 2.34 (2.03-2.66) 23.44% 64.06% 96.88%

20-29 2,345 26.33 26.86 2.05 (2.00-2.11) 31.00% 76.42% 95.18%

30-39 14,960 35.86 36.11 2.16 (2.14-2.19) 30.20% 74.29% 92.91%

40-49 41,915 44.74 44.95 2.30 (2.28-2.31) 29.07% 71.98% 91.07%

50-59 36,778 53.86 53.40 2.78 (2.76-2.80) 23.63% 62.44% 85.14%

60-69 13,887 63.70 61.24 3.80 (3.76-3.94) 16.28% 47.74% 71.92%

70-79 3,340 72.86 66.98 6.49 (6.36-6.63) 7.78% 24.85% 43.86%

80-89 221 81.61 69.43 12.21 (11.56-12.87) 1.36% 3.62% 9.05%

90-99 0 — — — — — —

Table 3.  Mean predicted age, mean absolute error (MAE) and its 95% confidence interval (CI); accuracy for 
predicting age within maximum differences of ±1, ±3, and ±5 years, respectively, in each test-set divided by 
10-year age subgroup. Consistent MAE and fair accuracy are shown under 60 years old; however, increased 
MAE and declined accuracy are shown in age subgroup above 60 years old. CI, Confidence interval.
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been studied to predict vascular age and risk. Retinal images can also be used as a tool for such predictions, and 
this application has been demonstrated in our study using fundus photograph images and the CNN algorithm. 
In addition, retinal vessels and cerebral vessels exhibit similarity and in vivo direct observations of retinal vessels 
provide information about cerebral vessels56,57. Therefore, efforts to find and understand cerebral and systemic 
blood vessels through retinal fundus images are worthwhile. Furthermore, retinal images will be more interesting 
and valuable in systemic vascular diseases such as hypertension and DM.

Our age prediction model demonstrated good accuracies in ages under 60 years; however, in ages 60 or over, 
the performance deteriorated significantly. This is because ageing changes observed in retinal fundus occur con-
tinuously until the age of 60 years, and may saturate at approximately 60 years of age; subsequently, after the 
age of 60 years, the ageing changes may not be obvious with age. The CAM images of our age prediction model 
demonstrated activation primarily in the vascular region; this may be another evidence to explain the focus of 
the deep-learning CNN, however, similar results on vessel-erased images showed that not only blood vessels were 
used for prediction. In other words, optic disc, papillary vessels, and retinal parenchyma can be used to predict 
age. Our research was inspired by the effects of ageing on the human fundus, beyond reconfirmation of the pos-
sibility or capability of age prediction by deep learning. Interestingly, our age prediction model demonstrated 
similar MAEs in each test-set categorised by underlying diseases, implying that pathologic changes occurring 
in systemic vascular diseases are different form the changes in the ageing process. In other words, our results 
demonstrated that systemic vascular diseases such as hypertension, DM, and smoking resulted in various incon-
sistent changes in the retinal blood vessels and resulted in loosened relationships (increased coefficient of deter-
mination, R2). In addition, statistical analysis using ANOVA and post-hoc test for values of absolute errors in each 
test-set show significant differences in age prediction when the underlying disease is present.

The ageing process causes many changes in the retina and optic nerve that consist of several layers including 
RNFL, ILM, ONL, PRL, and RPE8,58. Retinal vascular changes include decrease in cellularity of peripheral capil-
laries and diminution of the number of capillaries of the fovea8,59. Thickening and hyalinisation of the vessel wall, 
and arteriosclerotic changes may also develop in retinal vessels with ageing8. In addition, the density of the chori-
ocapillaris that provides nutritional support for the RPE and outer retina, decreases with ageing60–62. In particular, 
the increase in flow deficit of the choriocapillaris is prominent in the central 1-mm circle of the macula62. The 
fundus autofluorescence from lipofuscin of RPE correlates with age, and indicates age-dependent changes in the 
fovea63. The reason for such changes is that the human body is always maintained through metabolism, and in this 
process, cells and tissues are damaged while by-products accumulate2,64. Hence, changes due to normal ageing 
and pathological changes share a similar feature and cannot be completely distinguished. In particular, the ageing 
process and hypertension are known to be associated with vascular network changes such as retinal vascular junc-
tional bifurcation angles65. Therefore, the predicted age is expected to be higher than the chronologic age in the 
presence of hypertension. However, the MAE and difference between the predicted age and chronologic age in the 
hypertension test-set were similar to that of the normal test-set in our study. This suggests that changes in retinal 
vessels due to hypertension show some similar features to ageing, but not entirely mimicking normal ageing. DM 
is another chronic systemic vascular disease that causes changes in whole blood vessels including retinal vessels. 
The prevalence of any diabetic retinopathy in 35 population-based studies from 22,896 patients was 34.6% over-
all among diabetic patients66. Additionally, DM altered all blood vessels and affected the diameter of the retinal 
blood vessels; however, the branching angle was not significantly different from those of normal participants67. 
Several studies have reported that wider retinal venular diameters and narrower arteriolar diameters were asso-
ciated with the presence of diabetic nephropathy and severe levels of diabetic retinopathy68–70. In a type-1 DM 
cohort study, age (odds ratio [OR] per 10 years, 2.43 and 2.02) and retinopathy severity (OR per level, 1.14 and 
1.21) were associated with focal retinal arteriolar narrowing and A/V nicking, respectively68. Another type-1 DM 

Test-set
Age 
group

Fundus photo 
images, N

Mean chronologic 
age, year

Mean predicted 
age, year

Mean absolute error, 
year (95% CI)

Accuracy for age prediction by error margin

±1 year ±3 years ±5 years

Normal

0–29 2,564 12.89 13.81 2.86 (2.77–2.95) 23.28% 62.64% 84.52%

30–59 17,358 46.31 46.31 2.60 (2.57–2.63) 26.83% 67.66% 87.83%

60–99 4,444 67.38 64.81 4.96 (4.85–5.07) 13.41% 40.14% 62.26%

Hypertension

0–29 122 26.41 27.59 2.18 (1.94–2.42) 26.23% 73.77% 91.80%

30–59 2,5204 50.83 50.93 2.69 (2.66–2.71) 25.04% 65.26% 86.28%

60–99 15,333 66.60 63.05 4.75 (4.70–4.81) 13.75% 41.52% 63.31%

Diabetes

0–29 26 25.00 26.93 2.38 (1.71–3.10) 30.77% 69.23% 80.77%

30–59 8,865 50.64 50.91 2.84 (2.80–2.89) 23.97% 62.19% 84.49%

60–99 5,298 66.62 63.35 4.74 (4.64–4.84) 14.44% 43.15% 64.48%

Smoking

0–29 2,409 26.14 26.71 2.06 (2.01–2.12) 30.80% 76.09% 95.23%

30–59 93,653 46.90 46.86 2.47 (2.45–2.48) 27.11% 68.60% 89.03%

60–99 17,448 65.68 62.44 4.42 (4.38–4.47) 14.47% 42.80% 65.75%

Table 4.  Mean predicted age, mean absolute error (MAE) and its 95% confidence interval (CI); accuracy in 
predicting age within maximum differences of ±1, ±3, and ±5 years, divided into three categories in each 
test-set as follows: (1) age under 30; (2) age 30–59; (3) age over 60. A small MAE is shown under 3.0 (years) in 
categories 1 and 2, and a large MAE over 4.0 (years) in category 3. Accuracy for predicting age within ±5 years 
was higher than 80% in categories 1 and 2, but less than 70% in category 3. CI, Confidence interval.
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cohort study indicated that both wider venular diameters and smaller arteriolar diameters were predictors of the 
16-year development of nephropathy, neuropathy, and proliferative retinopathy71. In a type-2 DM cohort study, 
smaller retinal arteriolar calibers exhibited associations with increasing age and mean arterial BP, and a larger 
retinal venular caliber was associated with increasing severities of retinopathy and cigarette smoking69. Because 

Figure 4.  Changes in accuracy of age prediction according to chronologic age subgroups (divided by 10 years) 
by error margins of ±1, ±3, and ±5 years in the four test-sets and inpainted vessel-erased images from all 
test-sets: (A) normal, (B) hypertension, (C) diabetes, (D) smoking, (E) inpainted normal images, (F) inpainted 
hypertension images, (G) inpainted diabetes images, (H) inpainted smoking images. The accuracies were the 
highest in the 20 s to 40 s in all test-sets, decline gradually with age, and decrease significantly after 60 years 
old. Differences according to sex were not obvious. In inpainted vessel-erased images, the accuracy was similar 
compared with original images in all test-sets.

Figure 5.  Representative class activation mapping (CAM) heat-map and its original image in age prediction 
model. It shows the regions that have higher influence on the prediction results in red, relative to the regions 
with lower influence, in blue. The CAM of the age prediction model indicated activation primarily in the 
vascular region.
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the level of diabetic retinopathy and tissue oxygen demand affect the changes in blood vessels69,72, retinal vessels 
in diabetic patients show various changes, thus resulting in a smaller R2 (coefficient of determination) in diabetic 
participants than normal participants. In other words, pathologic retinal changes result from various factors; 
our study suggests that ageing and pathological changes are not exactly the same. Unlike the other groups, the 
smoking group showed better performance on age prediction. There are several studies on the effects of smoking 
on retinal vessels73,74, but this does not explain how they perform better than normal. Moreover, there are spectral 
domain optical coherence tomography studies which shows the thickness of retinal layers in healthy chronic 
smokers was not significantly different to those of healthy individuals75,76. Sex, age, and confounding factors were 
likely to improve predictions, in other words, a large number of men over 30 years of age were included in our 
study, resulting in uniform results and higher R2 values.

Our prediction model predicted sex with good accuracy in all test-sets unlike the results of age prediction. A 
previous study indicated that the AUC of UK Biobank was 0.97 (95% CI, 0.966-0.971) and that of EyePACS-2K 
was 0.97 (95% CI, 0.96-0.98), which are comparable to our study25. Considering that the prediction accuracy is 
reduced significantly in the fovea-erased images and the accuracy is reduced significantly in the vessel-erased 

Reconstructed test-set of 
retinal vessel-erased images

Age 
group

Fundus photo 
images, N

Mean chronologic 
age, year

Mean predicted 
age, year

Mean absolute error, 
year (95% CI)

Accuracy for age prediction by error margin

±1 year ±3 years ±5 years

Normal

0–29 2,564 12.89 14.58 5.92 (5.77, 6.07) 20.36% 59.13% 82.76%

30–59 17,358 46.31 46.54 6.70 (6.68, 6.73) 25.38% 64.93% 86.35%

60–99 4,444 67.38 63.89 4.32 (4.28, 4.36) 13.77% 38.73% 60.31%

Hypertension

0–29 122 26.41 30.60 4.46 (4.11, 4.84) 5.74% 29.51% 61.48%

30–59 25,204 50.83 52.98 3.99 (3.96, 4.03) 17.89% 48.87% 70.68%

60–99 15,333 66.60 64.24 4.57 (4.52, 4.62) 14.86% 42.65% 64.36%

Diabetes

0–29 26 25.00 30.48 5.58 (4.54, 6.70) 0.00% 15.38% 61.54%

30–59 8,865 50.64 52.79 4.01 (3.95, 4.07) 18.33% 48.34% 70.23%

60–99 5,298 66.62 64.47 4.58 (4.49, 4.66) 15.16% 42.90% 64.59%

Smoking

0–29 2,409 26.14 31.74 5.92 (5.77, 6.07) 8.18% 26.90% 47.07%

30–59 93,653 46.90 53.21 6.70 (6.68, 6.73) 9.24% 27.50% 44.91%

60–99 17,448 65.68 66.74 4.32 (4.28, 4.36) 15.22% 43.67% 66.10%

Table 5.  Analysis of reconstructed retinal vessel-erased images - mean predicted age, mean absolute error 
(MAE) and its 95% confidence interval (CI); accuracy for predicting age within maximum differences of ±1, 
±3, and ±5 years, divided into three categories in each test-set as follows: (1) age under 30; (2) age 30–59; (3) 
age over 60. A small MAE is shown under 3.0 (years) in categories 1 and 2, and a large MAE over 4.0 (years) in 
category 3. Accuracy for predicting age within ±5 years was higher than 80% in categories 1 and 2, but less than 
70% in category 3. CI, Confidence interval.

Figure 6.  Class activation mapping (CAM) heat-map in original fundus photograph image and retinal vessel-
erased image in age prediction model. CAM heat-map still focused on the retinal vascular arcade area, thus 
resulting in an obvious decline in the accuracy of age prediction, as shown in Table 5.
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images, both the fovea and blood vessel are used for sex prediction where the blood vessel is the core region. 
Interestingly, the presence of underlying vascular conditions did not indicate a significant effect on sex pre-
diction. This indicates that alterations in retinal blood vessels due to underlying vascular conditions did not 
exceed beyond sexual differences. Unexpectedly, our sex prediction model showed the highest AUC in the smok-
ing group. This is probably due to the fact that the sex ratio of smokers is biased towards men (Supplementary 
Table S2). Sex prediction has been studied in forensic science typically, using bones or bone fragments to produce 
estimating formulas77–79. However, these human structures are expected to exhibit significant differences between 
sexes, and they can be determined or measured by human examiners without a computer. Considering that sex 
identification in retinal fundus images proved to be almost impossible even when an inspection was performed 
by experienced ophthalmologists, our results suggest that deep-running is superior to human perception in image 
discrimination and identification.

Figure 7.  Receiver operating characteristic (ROC) curves in four test-sets and inpainting (vessel-erased and 
fovea-erased) images. The area under curve (AUC) was more than 0.96 in every test-set regardless of underlying 
condition, while the AUCs in the inpainting images were much smaller.

Figure 8.  Representative class activation mapping (CAM) heat-map in sex prediction model. The area painted 
in red is the predominant region for sex prediction, while the blue area is used less. The CAM heat-map 
indicated various focuses in fovea, optic disc, and retinal vessels; in particular, proximal retinal vascular arcade 
lesion was prominently activated in females.
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Some limitations were present in this study. First, the type of underlying disease and the duration of the 
disease were not considered, and images showing any ocular disease were not included. Next, changes in retinal 
fundus images caused by lens yellowing, cataract, and cataract surgery might affect age prediction80; however, the 
consideration of lens status is lacking in this study. Subsequently, myopia and axial length could cause significant 
changes in the fundus and optic nerve81,82. It was reported that an increased axial length was associated with 
arteriolar and venular narrowing; however, the arteriovenous diameter ratio or vessel junctions were not affected 
significantly by the axial length81. It is unclear which components of the retinal vasculature were used to predict 
age and sex; at the least, the effects of arteriovenous diameter ratio and junctional exponents were considered to 
be less disturbed by the axial length81. Next, confounding factors may appear depending on the fundus photo-
graph camera model or its manufacturer. Differences in image size and telecentricity were reported depending 
on the fundus imaging system83. However, the absolute size of the targets by each fundus imaging system may be 
different; nevertheless, the ratio of each target size may not be significant. Finally, our study has not been validated 
in other databases and only Koreans are included in the study. Differences in retina according to ethnicity have 
been reported84,85, therefore, further validation studies involving other database especially other ethnicities are 
warranted.

Our model demonstrates accurate and highly reliable age estimates especially in normal participants under age 
60 years. Retinal fundus images from participants with underlying conditions (hypertension, DM, or smoking) 
indicated relatively low coefficients of determination (R2) between the predicted age and chronologic age, thus 
suggesting that the ageing process and pathologic vascular changes exhibit different features. Fundus-predicted 
sex indicated an accuracy of 0.96 of AUC score in all groups. Our CNN-based age and sex prediction model has 
demonstrated the most improved performance to date. Our research suggests that ageing and systemic vascular 
diseases have different effects on the retina. Further research on the clinical significance and application of our 
model to other population groups is needed.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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