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SUMMARY

Missense mutations may affect proteostasis by destabilizing or over-stabilizing protein complexes

and changing the pathway flux. Predicting the effects of stabilizing mutations on protein-protein in-

teractions is notoriously difficult because existing experimental sets are skewed toward mutations

reducing protein-protein binding affinity and many computational methods fail to correctly evaluate

their effects. To address this issue, we developed a method MutaBind2, which estimates the impacts

of single as well as multiple mutations on protein-protein interactions. MutaBind2 employs only seven

features, and the most important of them describe interactions of proteins with the solvent, evolu-

tionary conservation of the site, and thermodynamic stability of the complex and each monomer.

This approach shows a distinct improvement especially in evaluating the effects of mutations

increasing binding affinity. MutaBind2 can be used for finding disease driver mutations, designing sta-

ble protein complexes, and discovering new protein-protein interaction inhibitors.

INTRODUCTION

Protein-protein interactions mediate many biological processes, and missense mutations may affect pro-

tein interactions and interaction networks leading to dysfunctional proteins and their complexes,

pathway dysregulation, and potentially to diseases (Teng et al., 2009; Nishi et al., 2013; Creixell et al.,

2015; Tee et al., 2019). Indeed, several recent studies systematically characterized thousands of disease

mutations and found that many of them were located on protein-binding interfaces and induced macro-

molecular interaction perturbations, whereas neutral variants retained most interactions (Nishi et al.,

2013; Teng et al., 2009; Creixell et al., 2015; Sahni et al., 2015; Wang et al., 2012; An et al., 2013; Cukur-

oglu et al., 2014; Tan et al., 2019; Ozdemir et al., 2018). However, not all mutations have severe damaging

impacts, and the majority of mutations produce rather subtle effects with unclear clinical significance.

Quantification of these effects on specific protein-protein interactions requires assessing the changes

in binding affinity induced by mutations. These effects can be quite accurately measured by low-

throughput experiments. However, large-scale rapid experimental assays that would allow the assess-

ment of thousands of variants are still limited. The development of reliable computational approaches

to predict the effects of missense mutations on protein complexes would enable the prioritization of

functionally disrupting mutations and provide a basis for understanding the molecular mechanisms of

their impacts.

Several computational approaches have been proposed so far to calculate the changes in binding affinity

bymutations (Li et al., 2014, 2016b; Dehouck et al., 2013; Petukh et al., 2015, 2016; Kruger and Gohlke, 2010;

Pires et al., 2014; Xiong et al., 2017; Brender and Zhang, 2015; Zhao et al., 2014; Rodrigues et al., 2019; Geng

et al., 2019; Jemimah et al., 2019). In the past we developed two methods to address this pressing need.

The first method used the modified MM/PBSA (Molecular Mechanics Poisson�Boltzmann Surface Area)

approach and structure optimization protocol with an explicit solvent model (Li et al., 2014). Later we

came up with another method, MutaBind (Li et al., 2016b). MutaBind was characterized by higher predic-

tion accuracy and speed, making it possible to implement it as a web server, which has been used to quan-

tify the impacts of mutations in a wide range of protein complexes (https://mutabind.org/v1). For instance,

it was successfully applied to assess the effects of cancer mutations on binding between CBL ubiquitin

ligase and E2 conjugating enzyme where computationally predicted binding affinity changes were

compared with the experiments using cancer and non-cancer cell lines (Li et al., 2016a).
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The functional effects of mutations decreasing binding affinity are better understood compared with the

effects of mutations increasing binding affinity. However, the latter may also have important consequences

leading to disruption of proteostasis by over-stabilizing transient protein complexes (Nishi et al., 2013; Stefl

et al., 2013; Rutten et al., 2018; Shoichet et al., 1995; Nagatani et al., 2007; Witham et al., 2011; Jubb et al.,

2016) and changing the pathway flux. Critically, existing computational methods perform much better for

mutations decreasing than for mutations increasing binding affinity. Several studies tried to determine fac-

tors contributing to this bias by comparing the methods’ performance using experimental data on changes

of protein stability (Usmanova et al., 2018; Montanucci et al., 2018; Pucci et al., 2018). These studies

concluded that all computational methods produced predictions that were immensely skewed toward

higher accuracy for mutations decreasing binding affinity and the amplitude of this bias increased with

the number of introduced mutations in a protein (Usmanova et al., 2018). There are several reasons for

such predisposition of proteins toward mutations with decreasing effects: proteins and their binding inter-

faces tend to be optimized in evolution with regard to their stability; the existing experimental sets are

enriched with mutations that decrease binding and the methodologies of training procedures employed

by many computational methods rely on these experimental sets. Correcting for such bias in performance

is demanding as it requires developing new energy functions and enriching the datasets with mutations

increasing binding affinity either by using additional experimental data or by calculating the effects of

reverse mutations and modeling their mutant structures.

To address this issue, we developed a new method, MutaBind2, with significantly improved performance

(https://mutabind.org/). MutaBind2 uses a new minimization protocol and scoring function composed of

seven terms. In addition to single mutations, it can predict the effects of multiple mutations on protein

binding affinity. MutaBind2 can be applied to a large number of tasks, including, but not limited to, finding

disease driver mutations and understanding their molecular mechanisms, assessing the effects of

sequence variants on protein fitness, structural modeling of mutant complexes, and designing protein

interaction inhibitors (Goncearenco et al., 2017).

RESULTS AND DISCUSSION

By developing a new version of MutaBind2 we tried to achieve the following goals: (1) to improve the overall

performance, especially for mutations increasing binding affinity; (2) to avoid overfitting; and (3) to allow for

multiple mutations predictions. To do this, first we designed a scoring function with seven terms instead of

10 used in the previous MutaBind version (detailed in Supplemental Information, Transparent Methods).

Second, we trained our models on a much larger dataset from SKEMPI2, which encompassed 1.7 times

more mutations and 3.3 times more complexes compared with SKEMPI used for training of MutaBind.

Third, to enrich the existing dataset with mutations increasing binding affinity and to build a more balanced

training dataset, we produced structural models of complexes with reverse mutations and estimated the

corresponding values of each term of the scoring function. Finally, we added a new functionality of predict-

ing the effects of multiple mutations (up to 10 mutations) on binding affinity to account for possible coop-

erative and epistatic effects.

Figure 1. Pearson Correlation Coefficients between Experimental and Calculated DDG for Three Types of Cross-

Validation Tests on the S4191 (Single Mutations) and M1707 (Multiple Mutations) Sets

See also Table S1.
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Evaluating the Performance of MutaBind2 Using Cross-Validation

Avoiding overfitting is one of our major concerns while developing a computational method that should

make predictions with high accuracy for diverse sets of single or multiple mutations. Overfitting of model

parameters may occur while minimizing the mean square deviations of predicted from experimental values

in the training set, which could indicate the loss of generalization in the model (Dehouck et al., 2013). To

overcome this issue, a cross-validation can be applied, which allows to estimate the future performance

of the method on previously unseen data. Five types of cross-validation were performed in our study

(explained in more detail in the Methods section). Figure 1 shows the Pearson correlation coefficients

between experimental and calculated DDG of the first three types of cross-validation procedures. The cor-

relation coefficients of each cross-validation round exceed 0.80 for ‘‘CV1’’ and ‘‘CV2’’ and about 0.70 for

‘‘CV3’’ cross-validation for both single and multiple mutations.

The Pearson correlation coefficient between experimental and computed DDG values using the ‘‘leave-one-

complex-out’’ (‘‘CV4’’) procedure reaches 0.76 for single mutations and 0.74 for multiple mutations (Table 1

and Figure 2). In addition, we performed a validation by leaving one binding site out of the training set

(‘‘CV5’’ cross-validation). According to this validation, the model was parameterized and tested using

completely different non-overlapping sets of binding sites. Nevertheless, the correlation coefficient remained

statistically significant, being equal to 0.69 for singlemutations and 0.71 for multiplemutations (Table 1 and Fig-

ure S4D). From the evaluation of the performance ofMutaBind2 using cross-validation, we can conclude that the

MutaBind2 for single mutations significantly outperforms the previous version of MutaBind, which had R = 0.68

and R = 0.57 for ‘‘CV4’’ and ‘‘CV5,’’ respectively (Li et al., 2016b) (see Table 1 for RMSE values).

To better understand MutaBind2’s limitations and strengths, we analyzed 5% and 1% outliers and evalu-

ated the performance after removing outliers using leave-one-complex-out validation (CV4) on S4191.

Studentized residuals are used in detecting outliers. Figure S11A shows that the performance is improved

significantly after removing 5% outliers. Moreover, we found that the outliers are more likely to appear in

complexes with higher protein-protein binding affinity and at the mutated sites with higher number of

hydrogen bonds (Figure S11B). Consistent with the observation of Pires et al. (Pires et al., 2016), the outliers

usually correspond to those mutations with extreme experimental values (highly decreasing/increasing

Training/Test Set Model All Mutations Decreasing Increasing

R RMSE Slope R RMSE R RMSE

Single mutations

Skempi + Reverse/S1748 MutaBind2^ 0.63 1.25 0.83 0.45 1.17 0.77 1.52

Skempi/S1748 MutaBind 0.38* 1.51 0.72 0.44 1.11 – 2.43

BeAtMuSiC 0.30* 1.58 0.55 0.43 1.14 �0.25* 2.57

Test: S1748 FoldX 0.42* 1.57 0.52 0.41 1.37 0.26* 2.12

Test: S4191 MutaBind2 CV4 0.76 1.34 1.11 0.61 1.31 0.67 1.39

MutaBind2 CV5 0.69 1.50 1.18 0.54 1.41 0.47 1.65

Multiple mutations

Test: M1707 MutaBind2 CV4 0.74 2.13 1.09 0.51 2.04 0.60 2.26

MutaBind2 CV5 0.71 2.24 1.00 0.47 2.18 0.56 2.33

Test: M1337 FoldX 0.49 2.43 0.52 0.37 2.49 0.24 2.21

Table 1. Comparison of Methods’ Performance for Single and Multiple Mutations

MutaBind2^: MutaBind2 was retrained on ‘‘Skempi + Reverse’’ set.

*Significant difference between MutaBind2 and other methods with p value < 0.01 calculated on a test set S1748 (imple-

mented in R package cocor).

R, Pearson correlation coefficient between experimental and predicted DDG values; RMSE (kcal mol�1), root-mean-square

error, the standard deviation of the residuals (prediction errors); Slope, the slope of the regression line between experimental

and predicted DDG values. All presented values of correlation coefficients are statistically significantly different from zero (p

value << 0.01). The details about datasets are shown in Table S1.
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binding affinity), and MutaBind2 could correctly classify them as either increasing or decreasing binding

affinity (Figures S11C and S11D).

Validation of MutaBind2 on Independent Test Sets

To check if enriching the training set with mutations increasing binding affinity improved the performance, we

constructed an independent ‘‘unseen’’ test set consisting of complexes and mutations that were present in

SKEMPI2 but were absent from SKEMPI (S1748 set). The original version of MutaBind, which was trained on

binding affinity changes dataset from SKEMPI (referred to as the ‘‘Skempi’’ set), yielded a Pearson correlation

coefficient of R = 0.44 between predicted and experimentally determined values for mutations decreasing

binding affinity on an independent S1748 set, whereas it did not yield statistically significantly predictions for

mutations increasing binding affinity (Table 1 and Figure S4A). However, after applying a model trained on

the SKEMPI set enriched with mutations increasing binding affinity (‘‘Skempi + Reverse’’ set) using MutaBind2

features and protocol, the performance on an independent S1748 set improved considerably (the correlation

coefficient increased from 0.38 to 0.63, and root-mean-square error decreased from 1.51 to 1.25 kcal mol�1).

Moreover, predictions for mutations increasing binding affinity were significantly improved without compro-

mising the accuracy for predicting mutations decreasing binding affinity (Table 1).

For single mutations, we also compared MutaBind2 with four other methods, BeAtMuSiC (Dehouck et al.,

2013), FoldX (Guerois et al., 2002), iSEE (Geng et al., 2019), and mCSM-PPI2 (Rodrigues et al., 2019). BeAt-

MuSiC is a machine learning method, which uses a combination of different statistical potentials to predict

DDG values and is parameterized on mutations from SKEMPI. FoldX uses an empirical energy function,

which is parametrized on experimental changes of unfolding free energy. iSEE is parameterized on the

SKEMPI set and uses several dozens of interface, structure, evolution, and energy-based features. iSEE

is not available as a server or a standalone version, so it could not be applied to the S1748 set. mCSM-

PPI2 uses several dozens of features such as graph-based signatures, evolutionary conservation, and inter-

action energy between two partners calculated from FoldX and also incorporates features derived from

reverse mutations. It has been trained on 8,338 mutations from the SKEMPI2 dataset, which includes almost

all mutations from the MutaBind2 training dataset S4191.

For comparison with iSEE, we used the S487 dataset obtained from the iSEE article (Geng et al., 2019) where the

MutaBind2model was retrained after removing S487 from the S4191 training set. As can be seen in Table 2, the

MutaBind2model parameterized on this training set shows the best performance on S487 compared with other

methods (more comparisons can be found in Table S5). We did not have an independent set for comparing the

predictions between MutaBind2 and mCSM-PPI2, therefore we used the same training protocol and retrained

MutaBind2 on the dataset of S8338 (a training dataset of mCSM-PPI2), even though our feature selection was

not based on this dataset.Weobtained comparable correlation coefficients withmCSM-PPI2 using theCV4 and

CV5 cross-validations (Table 2), which were slightly lower than results reported for the originalMutaBind2model

on the S4191 (Table 1). Additional comparisonswithmCSM-PPI2 are shown in Table S6, which points to a slightly

Figure 2. Experimental and Predicted Values of Changes in Binding Affinity for All Mutations in the S4191 (Single

Mutations) and M1707 (Multiple Mutations) Sets Using ‘‘Leave-One-Complex-Out’’ (CV4) Cross-Validation

See also Table S1.
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better performance for MutaBind2 in terms of the slope of the regression line indicating that predicted and

experimental values are on the same scale.

Recently the impacts of 2,009 missense mutations across 2,185 human protein-protein interactions (4,797

mutation-interaction pairs) were measured by yeast two hybrid experiments (Fragoza et al., 2019), and 903

mutations were identified as interaction-disruptive mutations. A mutation was defined as disruptive if it

damaged one or more protein-protein interactions and was defined as non-disruptive otherwise. Among

4,797 mutation-interaction pairs, 451 mutations, including 147 interaction disruptive mutations, could be

mapped on corresponding protein-protein complexes with the known 3D structures. Then we calculated

binding affinity changes for these mutations using different methods. Figures 3 and S5 show excellent

performance of MutaBind and MutaBind2 in distinguishing interaction-disruptive from other mutations.

Prediction of Mutations Highly Decreasing and Increasing Binding Affinity

The previous version, MutaBind, could predict single mutations highly decreasing binding affinity relatively

well but failed to annotate mutations highly increasing affinity. Table 3 and Figure S6 demonstrate the high

performance of MutaBind2 in predicting mutations highly decreasing and highly increasing binding affinity

(see Methods for details). MutaBind2 further improves the performance for both interfacial and non-inter-

facial mutations compared with the previous version and outperforms other methods on the S1748 set (Fig-

ure S7). We subdivided complexes with multiple mutations into different categories based on the number

of mutations and the number of mutated chains involved (see Table S9 for more details). We found that

MutaBind2 performed well for almost all categories; the worst performance was observed for three or

more mutations introduced on the same chain (R = 0.61 in CV4 validation), and the best performance

was achieved for double mutations on multiple chains (R = 0.85 in CV4 validation).

Nextwewould like to elucidate themain differences betweenpredictors like BeAtMuSiC, iSEE, andmCSM-PPI2

andmethods like FoldX,MutaBind, andMutaBind2. The first group ofmethods uses powerful machine learning

approaches with several dozens of features to calculate the changes in binding affinity and does not provide

contribution of each feature for each mutation. On the other hand, methods like FoldX, MutaBind, and Muta-

Bind2 use very few interpretable energy terms and perform structure optimization and energy calculations. This

allows the construction of actual molecular models of mutant structures and to evaluate changes in binding af-

finity for these mutants, potentially accounting for structural changes that cannot be captured by machine

learning methods. The molecular models of mutants have been used extensively by researchers to understand

the molecular mechanisms of disease mutations, to design drugs, to identify drug targets, to predict driver mu-

tations, and to decipher the mechanisms of drug-resistant mutations (Figure S8). Importantly, MutaBind and

Test Set Method R RMSE

S487 MutaBind2 0.41 1.25

MutaBind 0.29** 1.63

BeAtMuSiC 0.35 1.28

FoldX 0.34* 1.53

iSEE 0.25** 1.32

S8338 MutaBind2 CV4 0.74 1.37

MutaBind2 CV5 0.66 1.53

mCSM-PPI2 CV4 0.75 1.30

mCSM-PPI2 CV5 0.67 1.39

Table 2. Comparison of Methods’ Performance on Different Datasets

* and ** indicate statistically significant difference between MutaBind2 and other methods in terms of R with p value < 0.05

and p value < 0.01, respectively, calculated on test set S487 (implemented in R package cocor).

R, Pearson correlation coefficient; RMSE, root-mean-square error.

R and RMSE values were taken from the mCSM-PPI2 article (Rodrigues et al., 2019). For testing on S487 set, MutaBind2 was

retrained after removing S487 from the training dataset. For testing on S8338 set, MutaBind2was retrained on S8338. See also

Table S6.
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MutaBind2, unlike other methodsmentioned earlier, estimate interactions of a protein with the solvent, which is

one of the most important terms together with the site evolutionary conservation and thermodynamic stability

of a protein complex andeachbindingpartner (Table S2). In addition, FoldX andMutaBind2provide predictions

and structural models for multiple mutations introduced at the same time in a protein complex.

Online Web Server

MutaBind2 is available at https://mutabind.org/v2. The main requirement of the webserver is the availabil-

ity of the 3D structure of a protein-protein complex, which can be provided by the Protein DataBank acces-

sion or by a file with the coordinates uploaded by the researcher. In either case, the structure file should

contain at least two protein chains. In the next step two interaction partners should be defined. It is possible

to assign one chain or multiple chains to either ‘‘Partner 1’’ or ‘‘Partner 2,’’ and only assigned chains will be

considered during the calculation. If the interface size between assigned partners is smaller than 100 Å2, an

error message is displayed. The interface size is calculated as a difference between the solvent-accessible

surface areas of assigned chains in a complex and unbound partner. The final step is to select mutations.

We provide three options to allow users to do large-scale mutational scanning (Figure S9).

� An option ‘‘Upload file’’ allows to submit a list of mutations specified in the uploaded file

� The ‘‘alanine scanning’’ option allows to perform alanine scanning for all contact residues between inter-

action partners. Contact residues here are defined as those with inter-atomic distances less than 6 Å be-

tween any heavy atom of interaction partners. MutaBind2 provides the contact residues list for download

� Contact residues are shown in orange in the residue list of ‘‘Specify One or More Mutations,’’ which

allows to view contact residues in the 3D structure

For each mutation on a protein-protein complex, the MutaBind2 server provides the following results:

- DDG (kcal mol�1): predicted change in binding affinity induced by mutations (positive and negative

signs correspond to mutations decreasing and increasing binding affinity, respectively)

- The location on interface (yes/no): indicating whether the residue is located on a protein-protein inter-

face in the case when a residue’s solvent accessibility in the complex is lower than in the correspond-

ing unbound partners

Figure 3. Receiver Operating Characteristic Curves for Predicting Mutations Disrupting Protein-Protein

Interactions Using Different Methods

As one mutation/interaction could be mapped to several Protein DataBank structures, the maximum predicted value of

each method was used for each interaction-disruptive mutation and the minimum predicted values were used for those

mutations that do not disrupt interactions. More details are shown in Figure S5.
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- Coordinates of the minimized mutant structure

- Deleterious (yes/no), a mutation is classified as deleterious if DDG R 1.5 or DDG % �1.5 kcal mol�1

- The contribution of each term of the target function for every mutation

- Homologous binding sites: the Inferred Biomolecular Interactions Server (Shoemaker et al., 2012) is

used to identify the binding sites in protein-protein complexes homologous to the query

Limitation of the Study

1. Requirement of the 3D structure of a protein-protein complex. Six features out of seven in our model

are calculated using 3D structure of a protein-protein complex, which limits the application to those

mutations that could not be mapped to the structural complex.

2. Multiple mutations instances with more than 10 mutations. As the number of multiple mutations with

more than 10 mutations is small in our training dataset and prediction accuracy for these multiple

mutations is low, the upper limit of 10 mutations was used in the study. Therefore, our model cannot

be applied to the multiple mutation instances with more than 10 mutations.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

MutaBind2 is available at https://mutabind.org/v2, and the training and test datasets are available for

download from the server.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100939.
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Figure S1. (a) Distribution of the standard deviation for 408 single mutations with multiple experimental 
measurements of changes in binding affinity in S3310 dataset. (b) Distribution of the number of mutations with 
∆∆𝐺#$%	  > 0 over protein complexes in S3310 dataset, Related to Figure 1 and Figure 2. 
  



 

 

 
Figure S2. The number of mutations for each protein-protein complex for single and multiple mutation dataset of 
S3310 and M1337, respectively, Related to Figure 1 and Figure 2. 
 
 



 

  
 
 
Figure S3. The flowchart of the structure optimization protocol, Related to Figure 1 and Figure 2. 
 
 
 
 
 
 
 
 
 
  



 

a. Test on S1748 set   

    
b. Test on M1337 set                         c. Training and testing on S4191 and M1707 sets 

 
d. “leave-one-binding-site-out” (CV5) cross-validation   

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S4. Correlation between experimental and calculated 	 changes in binding free energies (∆∆𝐺 ) for (a) 
MutaBind2, MutaBind, BeAtMuSiC and FoldX methods tested on S1748 independent dataset. Here MutaBind2 model 
is trained on the dataset of “Skempi+Reverse”; (b) FoldX tested on M1337; (c) MutaBind2 trained and tested on 
S4191 and M1707; (d) MutaBind2 tested on S4191 and M1707 using “leave-one-binding-site-out” (CV5) cross-
validation respectively, Related to Table 1.  



 

a.  
 
Dataset 

Mutations-
interaction pairs 

Interaction-disruptive 
mutations 

Interaction  
non-disruptive mutations 

Original 4797 903 3894 
Mapped to Structure 451(2033) 147(831) 304(1202) 

    
b.        

 
 
 
 
 
 
 
 
 
 
 
 
c. 
 
 
 
 
 
 
 
 
 
 
 
 
d. 

 
 
 
 
 
 
 
 

 
Figure S5. Classification performance for predicting of mutations disrupting (decreasing) protein-protein interactions 
using different methods. (a) The number of mutations used for performance evaluation. “Original”: the impact of 2009 
missense mutations across 2185 human protein-protein interactions, interaction profiles for 4797 mutations-
interaction pairs were measured by yeast two hybrid (2H) experiments (Fragoza et al., 2019), and 903 mutations were 
identified as interaction-disruptive mutations. “Mapped to Structure”: the number of mutations/interactions that could 
be mapped to protein-protein crystal structures. Since one mutation/interaction could be mapped to several PDB 
structures, the values in parentheses show the total number of mutations/interactions mapped to different PDB 
structures. (b) ROC curves, the maximum predicted value of binding affinity changes calculated for all mapped PDB 
structures for each mutation and minimum predicted values were used for interaction non-disruptive mutation. (c) 
“All”: all predicted values of binding affinity changes calculated using all mapped PDB structures were used for each 
mutation; “Average”: average values of binding affinity changes calculated using all mapped PDB structures were 
used for each mutation. (d) AUC and MCC values for classification scenarios using different methods. * denotes a 
statistically significant difference between MutaBind2 and other methods with p-value < 0.01 estimated by Delong 
test (DeLong et al.), Related to Figure 3.  

 
Method 

Maximum All Average 
AUC MCC AUC MCC AUC MCC 

MutaBind2 0.84 0.56 0.70 0.31 0.70 0.34 
MutaBind 0.85 0.55 0.69 0.32 0.72 0.34 
BeAtMuSiC 0.74* 0.42 0.66* 0.31 0.59* 0.21 
FoldX 0.76* 0.42 0.52* 0.10 0.55* 0.12 
mCSM-PPI2 0.65* 0.31 0.57* 0.20 0.54* 0.17 



 

a.  
 
 
 
 
 
 
 
 
 
 
 
b.  
 
 
 
 
 
 
 
 
 
 
 
c. 

Category Definition # of mutations 
S4191 M1707 S1748 

Highly  
decreasing 

Positive ∆∆𝐺#$%	 	(kcal mol-1) >= 1.5 897 690 375 
Negative ∆∆𝐺#$%	  (kcal mol-1) <= 0.5 2457 810 924 

Highly  
increasing 

Positive ∆∆𝐺#$%	 	(kcal mol-1) <= -1.5 425 289 66 
Negative ∆∆𝐺#$%	  (kcal mol-1) >= -0.5 3289 1233 1599 

d. 
  True False 
Highly 
decreasing 

Positive ∆∆𝐺'()*+,-./	 ≥1.5 & ∆∆𝐺#$%	 ≥1.5 (TP) ∆∆𝐺'()*+,-./	 ≥1.5 & ∆∆𝐺#$%	 ≤0.5 (FP) 
Negative ∆∆𝐺'()*+,-./	 ≤0.5 & ∆∆𝐺#$%	 ≤0.5 (TN) ∆∆𝐺'()*+,-./	 ≤0.5 & ∆∆𝐺#$%	 ≥1.5 (FN) 

Highly  
increasing 

Positive ∆∆𝐺'()*+,-./	 ≤-1.5 & ∆∆𝐺#$%	 ≤-1.5 (TP) ∆∆𝐺'()*+,-./	 ≤-1.5 & ∆∆𝐺#$%	 ≥-0.5 (FP) 
Negative ∆∆𝐺'()*+,-./	 ≥-0.5 & ∆∆𝐺#$%	 ≥-0.5 (TN) ∆∆𝐺'()*+,-.	 ≥-0.5 & ∆∆𝐺#$%	 ≤-1.5 (FN) 

e.  
 Highly decreasing Highly increasing 

S4191 M1707 S4191 M1707 
Sensitivity 0.83 0.84 0.71 0.75 
Specificity 0.95 0.84 0.99 0.97 
MCC 0.78 0.68 0.76 0.76 
AUC 0.91 0.88 0.91 0.92 

 
Figure S6. (a) ROC curves for predicting mutations highly decreasing and increasing binding affinity using “leave-
one-complex-out” cross-validation (CV4) results (∆∆𝐺)  of S4191 and M1707, (b) ROC curves for predicting 
mutations highly decreasing and increasing binding affinity by applying different methods on the independent test set 
S1748, and (c) Definitions of highly decreasing and increasing mutations and the number of mutations for making 
ROC curves. True positive rate (Sensitivity) = (TP/TP+FN) and False positive rate = (FP/FP+TN). (d) The definition 
of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) for predicting highly 
decreasing and increasing mutations. (e) Performance of MutaBind2 for predicting mutations highly decreasing and 
increasing binding affinity using “leave-one-complex-out” cross-validation (CV4) on S4191, Related to Table 3. 
  



 

a. Test on 1748                        b. Test on S4191 
 

 
 
c. 

 
 
 
 
 
 
 
 

Figure S7. Pearson correlation coefficients between predicted and experimental ΔΔG for (a) mutations from S1748 
test set located on interface and non-interface predicted by different methods. MutaBind2 here is trained on the dataset 
of “Skempi+Reverse”; (b) mutations from S4191 test set located on interface and non-interface predicted by 
MutaBind2(CV4) and MutaBind2(CV5). (c) The number of interfacial and non-interfacial mutations for two sets. 
Only statistically significant correlation coefficients (p-value < 0.01, calculated by one-sample t-test) are shown, 
Related to Table 1 and Figure 2. 
 
 
  

Category  # of mutations 

S1748 S4191 

Interface 1221 3240 
Non-interface 527 951 



 

 

 
Figure S8. Salt bridges were disrupted after Lys was mutated to Glu in Cationic Trypsin / Pancreatic Trypsin 
Inhibitor complex (PDB code: 2FTL). The experimental and predicted binding affinity change by MutaBind2 is 9.31 
and 9.21 kcal mol-1 respectively, Related to Figure 2. 
  



 

 

 

 
 
Figure S9. The illustration of the third step of mutation selection, Related to Figure 3. 
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Figure S10.  Illustration of the time required for MutaBind2 to run predictions for 1000 mutations from a complex 
with 350 residues, ~12 hours, Related to Figure 3. 
  



 

a.  

 
b. 

 
  
 
 
 
 
 
 
 
c. 

Definition 5% outlier 1% outlier 
(∆∆𝐺'()*+,-./	 ≥0 & ∆∆𝐺#$%	 ≥5.0)/∆∆𝐺#$%	 ≥5.0 0.99 0.97 
(∆∆𝐺'()*+,-./	 <0 & ∆∆𝐺#$%	 ≤-5.0/∆∆𝐺#$%	 ≤-5.0 0.92 0.67 
(∆∆𝐺'()*+,-./	 ≥1.0 & ∆∆𝐺#$%	 ≥5.0)/∆∆𝐺#$%	 ≥5.0 0.88 0.77 
(∆∆𝐺'()*+,-./	 ≤-1.0 & ∆∆𝐺#$%	 ≤-5.0/∆∆𝐺#$%	 ≤-5.0 0.92 0.67 

 
d.  

   e.  
 

    Pr/PI: protease/inhibitor; AB/AG: antibody/antigen. 
 
 
 
 
 

Figure S11. Outlier analysis of MutaBind2. The leave-one-complex-out validation (CV4) results of S4191 dataset 
were used for these analyses. (a) Experimental and predicted values of changes in binding affinity for all single 
mutations, mutations on protein-protein binding interfaces, mutations from protease/inhibitor and antibody/antigen 
complexes, respectively. Black: all mutations except for outliers; blue: 5% outliers; red: 1% outliers. (b) Distibution 
of experimental binding affinity for wild-type complexes (∆𝐺#$%	 ), the number of hydrogen bonds formed by mutated 

PDB id Mutation ∆∆𝑮𝒆𝒙𝒑	  MutaBind2 
(CV4) 

2FTL K15G 12.22 3.80 
2FTL K15V 11.63 3.81 
2FTL K15D 11.38 4.02 
2FTL K15A 10.29 3.04 
2FTL K15W 8.57 2.08 
2FTL K15I 11.05 4.38 
2FTL K15T 10.49 3.89 
2FTL K15L 8.77 2.41 
2FTL K15Q 9.27 3.71 
2FTL K15M 7.61 2.37 
2FTL K15H 8.69 3.47 
2FTL K15E 9.32 4.18 
2FTL K15F 6.95 2.05 
2FTL V15K -11.63 -5.60 
2FTL T15K -10.49 -4.75 

 
Definition 

# of mutations 
Not-

Outlier 
5% 

Outlier 
Location  Interface 3044  196  

Non-interface 937  14  
Type of 
protein 
complex 

Pr/PI 716  70  
AB/AG 673  51  

AB/AG & Pr/PI 102  5  
TCR/pMHC 148  2  

unknown 2342  82  



 

sites (Hydrogen bond) and experimental binding affinity changes upon mutations (∆∆𝐺#$%	 ), respectively. Black: all 
mutations with the exception of outliers; blue: 5% outliers; red: 1% outliers; green: mutations from seven complexes 
(PDB ID: 2FTL, 3HFM, 1PPF, 1BRS, 3QHY, 1DQJ and 1B41) in the 5% outlier, and the reason for showing these 
seven complexes is that they have more mutations (more than five mutations) included in the 5% outlier. (c) True 
positive rate (d) Mutations from a complex of bovine pancreatic trypsin inhibitor and bovine β-trypsin included in 1% 
outlier. (e) The number of mutations in categories of interface, non-interface and different types of protein complexes, 
Related to Figure 2. 
 
 
 
 
 
  



 

Table S1. Experimental datasets used for training and testing different methods, Related to Figure 1, Figure 2, 
Table 1, Table 2 and Table 3. 
 
Dataset Description 
Single mutations 
S3310 Compiled from SKEMPI2 
S4191 S3310 plus reverse mutations; training dataset of MutaBind2, single mutation model 
S4169 Compiled from SKEMPI2  
S8338 S4169 plus all reverse mutations; training dataset of mCSM-PPI2 
Skempi 1925 mutations extracted from SKEMPI; training dataset of MutaBind 
S1748 Mutations included in S3310 but not in Skempi  
S877 Mutations contained in S4169 but not in S3310 
S487 Compiled by iSEE including 487 mutations contained in SKEMPI2 but not in SKEMPI 
S33 33 mutations of MDM2-P53 complex (PDB 1YCR) that are not included in SKEMPI2 
S19 19 mutations from INTERLEUKIN-4 / RECEPTOR ALPHA CHAIN COMPLEX (PDB 1IAR) 

that are not included in SKEMPI2 
Multiple mutations 
M1337 Compiled from SKEMPI2 
M1707 M1337 plus reverse mutations; training dataset of MutaBind2 multiple mutation model 

S33, S19 and S487 datasets were obtained from https://github.com/haddocking/iSee. Protein complexes with more 
than 10 single mutations with experimental values of binding affinity changes from “Skempi” were used to build its 
reverse mutation set.  
 
 

 
Dataset 

All mutations ∆∆𝑮𝒆𝒙𝒑	  > 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 

# of 
mutations 

# of 
complexes 

# of 
mutations 

# of 
complexes 

# of 
mutations 

# of 
complexes 

S3310 3310 265 2504 188 712 173 
S3310.R 881 49 0 0 881 49 
S4191 4191 265 2504 188 1593 188 
M1337 1337 120 1059 100 272 64 
M1337.R 370 19 0 0 370 19 
M1707 1707 120 1059 100 642 72 
S4169 4169 319 3126 238 901 203 
Skempi 1925 80 1478 77 410 43 
S1748 1748 212 1286 137 390 145 
S877 877 63 643 56 186 34 
S487 487 65 414 55 66 33 
S33 33 1 27 1 6 1 
S19 19 1 15 1 3 1 

S3310.R: reverse mutations dataset of S3310; M1337.R: reverse mutations dataset of M1337. 
  



 

Table S2. The importance of each feature for MutaBind2 single and multiple mutation models, respectively. 
IncNodePurity is used for describing the importance which is the total decrease in node impurities from splitting on 
the variable, averaged over all trees, Related to Figure 1, Figure 2, Table 1, Table 2 and Table 3. 
 

Model Feature Importance 

Single  
 

∆∆𝐸7.8	  1605 
∆∆𝐺9:;7	  2523 
∆∆𝐺<:;.	  3027 
𝑆𝐴?:@8)  1522 
𝑆𝐴%*A)8)  1577 
𝐶𝑆 4555 
𝑁?:-)8)  2032 

Multiple  
 

∆∆𝐸7.8	  1894 
∆∆𝐺9:;7	  1984 
∆∆𝐺<:;.	  3784 
𝑆𝐴?:@8)  1614 
𝑆𝐴%*A)8)  1226 
𝐶𝑆 3852 

∆𝐸7.8	8)  2313 
 
 
 
 

  



 

Table S3. MutaBind2 performance, Related to Table 1. 

Model Training/Test set All mutations ∆∆𝑮𝒆𝒙𝒑	  ≥ 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 
R RMSE Slope R RMSE R RMSE 

Single  S4191/S4191 0.82 1.19 1.09 0.72 1.13 0.72 1.28 
S4191/S3310 0.76 1.16 1.07 0.72 1.13 0.74 1.25 
S4191/S3310.R 0.69 1.30 0.89 - - 0.69 1.30 

Multiple 
 

M1707/M1707 0.87 1.61 1.14 0.73 1.54 0.75 1.72 
M1707/M1337 0.78 1.56 1.14 0.73 1.54 0.44 1.64 
M1707/M1337.R 0.75 1.78 1.01 - - 0.75 1.78 

R: Pearson correlation coefficient between experimental and predicted ΔΔG values. RMSE (kcal mol-1): root-mean 
square error, is the standard deviation of the residuals (prediction errors). Slope: the slope of the regression line 
between experimental and predicted ΔΔG values. All reported correlation coefficients are statistically significantly 
different from zero (p-value << 0.01).  

 
  



 

Table S4. The performance for Random Forest regression (RF), Support Vector Machine (SVM) and eXtreme 
Gradient Boosting (XGBoost) methods on single mutation training dataset S4191. CV4: leave-one-complex-out 
validation; CV5: leave-one-binding site-out validation, Related to Table 1 and Figure 2. 
 

 
Method 

 
Validation 

All mutations ∆∆𝑮𝒆𝒙𝒑	  ≥ 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 

R RMSE R RMSE R RMSE 

RF CV4 0.76 1.34 0.61 1.31 0.67 1.39 

CV5 0.69 1.50 0.54 1.41 0.47 1.65 

SVM CV4 0.72* 1.42 0.55* 1.41 0.66 1.43 

CV5 0.61* 1.62 0.45* 1.54 0.41* 1.74 

XGBoost CV4 0.75* 1.35 0.58* 1.34 0.70* 1.35 

CV5 0.67* 1.53 0.50* 1.45 0.46 1.66 

*p-value < 0.01 compared to Random Forest (Hittner2003 test) 
  



 

 
Table S5. Comparison of methods’ performance for mutations from two independent test sets S33 and S19, 
Related to Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All presented values of correlation coefficients are statistically significantly different from zero (p-value < 0.01) except 
for a p-value = 0.08 and b p-value = 0.32. * show statistically significant difference with p-value < 0.05 compared to 
MutaBind2 (Hittner2003 test implemented in R package cocor is used for comparing correlation coefficients 
(Diedenhofen and Musch, 2015; Hittner et al., 2003)). The majority mutations in S33 and S19 are mutations decreasing 
binding affinity with experimentally measured ∆∆𝐺#$%	  ≥ -0.38 and -0.24 kcal mol-1, respectively.  
  

Methods R RMSE 
S33, 33 mutations 
MutaBind2 0.59 1.07 
MutaBind 0.59 1.18 
iSEE 0.62 0.81 
mCSM-PPI2 0.75* 0.63 
BeAtMuSiC 0.48 1.02 
FoldX 0.50 1.36 
S19, 19 mutations 
MutaBind2 0.65 1.33 
MutaBind 0.67 1.27 
iSEE 0.73 1.37 
mCSM-PPI2 0.41a 1.61 
BeAtMuSiC 0.24b* 1.70 
FoldX 0.72 1.15 



 

Table S6.  Comparison of performance between MutaBind2 and mCSM-PPI2, Related to Table 2. 
 

 
Training/Test 

 
Methods 

All mutations ∆∆𝑮𝒆𝒙𝒑	  ≥ 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 

R RMSE Slope R RMSE R RMSE 

S4191/S3310 MutaBind2 0.76 1.16 1.07 0.72 1.13 0.74 1.25 

S4169/S3310 mCSM-PPI2 0.76 1.20 1.29 0.69** 1.20 0.62** 1.17 

S4169/S4169 MutaBind2 0.74 1.18 1.13 0.73 1.10 0.62 1.43 

mCSM-PPI2 0.76* 1.19 1.29 0.69** 1.20 0.56* 1.17 

S8338/S8338 MutaBind2 CV4 0.74 1.37 1.08 0.64 1.33 0.58 1.41 

MutaBind2 CV5 0.66 1.53 1.17 0.54 1.47 0.43 1.60 

mCSM-PPI2 CV4 0.75 1.30 NA NA NA NA NA 

mCSM-PPI2 CV5 0.67 1.39 NA NA NA NA NA 

**p-value < 0.01 and *p-value < 0.05 compared to MutaBind2 (Hittner2003 test). NA: Data not available. The 
∆∆𝐺		values for mCSM-PPI2 trained and tested on S4169 (forward mutation dataset for parameterizing mCSM-PPI2 
method) were obtained from http://biosig.unimelb.edu.au/mcsm ppi2/. ∆∆𝐺		values for mCSM-PPI2 trained and tested 
on S8338 (training dataset of mCSM-PPI2 method) were not provided on mCSM-PPI2 website, and the R and RMSE 
values for CV4 and CV5 were obtained from paper (Rodrigues et al., 2019).  
S4191/S3310: MutaBind2 trained on S4191 and tested on S3310.  
S4169/S4169: MutaBind2 retrained on S4169 and tested on S4169. 
S8338/S8338: CV4 and CV5 validation for MutaBind2 retrained on S8338 and tested on S8338. 
 
 
 
 
  



 

Table S7. Performance of MutaBind2 parameterized on different datasets where the reverse mutation dataset 
was compiled using complexes with a different number of mutations binned from 5 to 100. Related to Table 1 
and Table 2. 
 
a. Performance of MutaBind2 retrained on “S3310+Reverse” set and tested on independent datasets of S487 and S877. 

 
Cutoff 

All mutations ∆∆𝑮𝒆𝒙𝒑	  > 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 

# of 
mutations 

# of 
complexes 

# of 
mutations 

# of 
complexes 

# of 
mutations 

# of 
complexes 

S3310 3310 265 2504 188 712 173 
5 to 30 4458 265 2504 188 1860 211 
10 to 30 4191 265 2504 188 1593 188 
15 to 30 4023 265 2504 188 1425 184 
10 to 50 4517 265 2504 188 1919 188 
10 to 100 4741 265 2504 188 2143 188 
All  6620 265 3216 265 3216 265 

Protein-protein complexes in S3310 with the number of ∆∆𝐺#$%	  > 0 mutations binned from 5 to 30, 10 to 30, 15 to 30, 
10 to 50 and 10 to 100 were used for building the reverse mutation dataset. All: with every single forward mutation 
in S3310 being reversed. (The distribution of the number of ∆∆GEFG	  > 0 mutations over protein complexes is shown 
in Figure S1b).  
 

Dataset  Cutoff  R RMSE 
S487 10 to 30 0.41 1.25 

5 to 30 0.39** 1.28 
15 to 30  0.42* 1.23 
10 to 50  0.41 1.26 
10 to 100 0.40 1.26 
All  0.36** 1.31 

S877 10 to 30 0.55 1.37 
5 to 30 0.54* 1.38 
15 to 30  0.55 1.37 
10 to 50  0.55 1.37 
10 to 100 0.54 1.38 
All  0.53** 1.40 

* show statistically significant difference with p-value < 0.05 and **p-value < 0.01 compared to MutaBind2 trained 
on S4191 set where reverse mutation dataset was compiled using the cutoff of “10 to 30”. For testing on S487 set, 
MutaBind2 was retrained after removing S487 from the training dataset. 
 
b. Performance of MutaBind2 retrained on “Skempi+Reverse” set and tested on the independent dataset of S1748. 

 
Cutoff 

All mutations ∆∆𝑮𝒆𝒙𝒑	  ≥ 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 
R RMSE R RMSE R RMSE 

10 to 30 0.63 1.25 0.45 1.17 0.77 1.52 
5 to 30 0.62* 1.27 0.44** 1.21 0.78 1.47 
15 to 30  0.63* 1.25 0.46 1.16 0.77 1.52 
10 to 50  0.63 1.26 0.45 1.18 0.77 1.50 
10 to 100 0.62** 1.27 0.43** 1.21 0.77 1.47 
All 0.63 1.26 0.42** 1.21 0.80** 1.40 

The protein-protein complexes in Skempi with the number of ∆∆𝐺#$%	  > 0 mutations binned from 5 to 30, 10 to 30, 15 
to 30, 10 to 50 and 10 to 100 were used for building the reverse mutation dataset. All: with every single forward 
mutation in Skempi being reversed. *p-value < 0.05 and **p-value < 0.01 compared to MutaBind2 using cutoff of 
“10 to 30” (Hittner2003 test). 



 

Table S8. Performance of MutaBind2 using Modeller and FoldX to generate initial mutant structures for a 
reverse mutation dataset, Related to Table 1 and Figure 2. 

 
Training/Test set 

 
Model 

All mutations ∆∆𝑮𝒆𝒙𝒑	  ≥ 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 

R RMSE Slope R RMSE R RMSE 

Modeller 
Test: S1748 MutaBind2 0.63 1.25 0.83 0.45 1.17 0.77 1.52 

S4191/S4191 MutaBind2 0.82 1.19 1.09 0.72 1.13 0.72 1.28 

MutaBind2 CV4 0.76 1.34 1.11 0.61 1.31 0.67 1.39 

MutaBind2 CV5 0.69 1.50 1.18 0.54 1.41 0.47 1.65 

Test: S487 MutaBind2 0.41 1.25 0.59 0.39 1.20 - 1.52 

Test: S877 MutaBind2 0.55 1.37 0.97 0.56 1.34 - 1.48 

S4191/S3310 MutaBind2 0.76 1.16 1.07 0.72 1.13 0.74 1.25 

FoldX 
Test: S1748 MutaBind2 0.62 1.27 0.84 0.46 1.15 0.73 1.60 

S4191/S4191 MutaBind2 0.82 1.18 1.09 0.72 1.13 0.73 1.26 

MutaBind2 CV4 0.76 1.34 1.11 0.60 1.31 0.67 1.38 

MutaBind2 CV5 0.69 1.49 1.17 0.54 1.40 0.47 1.64 

Test: S487 MutaBind2 0.43 1.23 0.61 0.42 1.17 - 1.56 

Test: S877 MutaBind2 0.55 1.37 0.96 0.56 1.34 - 1.48 

S4191/S3310 MutaBind2 0.75 1.17 1.08 0.72 1.13 0.70 1.31 

  



 

Table S9. Performance of MutaBind2 for different types of multiple mutations, Related to Table 1 and Figure 2.  
 

Type MutaBind2(CV4) 

# of mutations 
(# of complexes) 

R RMSE 

All mutations 1707(120) 0.74 2.13 
Double mutations 881(99) 0.81 2.22 
Triple or higher number of mutations 826(75) 0.62 2.03 
Mutations on one chain 853(105) 0.63 2.09 
Mutations on multiple chains 854(43) 0.81 2.16 
Double mutations on one chain 347(82) 0.66 2.04 
Double mutations on multiple chains 534(31) 0.85 2.32 
Triple or higher number of mutations on one chain 506(66) 0.61 2.13 
Triple or higher number of mutations on multiple chains 320(25) 0.65 1.86 

 
  



 

Table S10. Performance of MutaBind2 parameterized on different datasets where mutations with multiple 
experimental measurements of ∆∆𝑮𝒆𝒙𝒑	  were processed using different ways, Related to Table 1, Table 2 and 
Figure 2. 

The leave-one-complex-out validation results  

 
Training/Test 

All mutations ∆∆𝑮𝒆𝒙𝒑	  ≥ 0 ∆∆𝑮𝒆𝒙𝒑	  < 0 

R RMSE Slope R RMSE R RMSE 

S4191/S4191 
(Std < 1.0) 

0.76 1.34 1.11 0.61 1.31 0.67 1.39 

S4944/S4944 
(All values) 

0.76 1.34 1.12 0.61 1.31 0.67 1.38 

S4090/S4090 
(Std ≤ 0.4) 

0.76 1.34 1.11 0.61 1.31 0.67 1.39 

S4183/S4183 
(Diff < 2) 

0.76 1.34 1.11 0.61 1.31 0.67 1.39 

No significant difference between MutaBind2 trained and tested on S4191 and other test sets. 
In the dataset of S3310, there are 408 mutations with multiple experimental measurements of binding affinity changes 
and their standard deviations are all less than 1 kcal mol-1 (The distribution of standard deviation is shown in Figure 
S1a). S4191: the average values were used for these 408 mutations; S4944: using all experimental measurements of 
∆∆𝐺#$%	  for these 408 mutations; S4090: only mutations with standard deviations with less than or equal to 0.4 kcal 
mol-1 are included in the training set, and the average value was used for these cases; S4183: only mutations with the 
difference between maximal and minimal  ∆∆𝐺#$%	 	 values of less than 2 kcal mol-1 (the cutoff was used by mCSM-
PPI2) are included in the training set, and the average value was used for these cases. 
 

Test set Training set R RMSE 

S487 S4191 0.41 1.25 

S4944 0.41 1.24 

S4090 0.41 1.25 

S4183 0.42 1.25 

S877 S4191 0.55 1.37 

S4944 0.55 1.37 

S4090 0.55 1.37 

S4183 0.54* 1.38 
*p-value < 0.05 compared to MutaBind2 trained and tested on S4191 (Hittner2003 test). 
For testing on S487 set, MutaBind2 was retrained after removing S487 from the training dataset. 
  



 

Table S11. The performance for MutaBind2 trained and tested on the dataset including 34 multiple mutations 
with more than 10 mutations using leave-one-complex-out validation, Related to Table 1 and Figure 2. 

Composition of 

multiple mutations  

# of multiple 

mutations 

R RMSE 

2 881 0.79 2.27 

3-5 618 0.59 2.07 

6-10 208 0.74 1.92 

10+ 34 - 4.59 

All presented values of correlation coefficients are statistically significantly different from zero (p-value << 0.01). 
  



 

Transparent Methods 

Experimental datasets of mutations used for training 
The training dataset is compiled from the most recent SKEMPI2.0 database (Jankauskaite et al., 2019), which 

includes experimentally measured values of dissociation constants for wild-type and mutant proteins with the available 
crystal structures. Changes in binding affinity are also provided in SKEMPI2.0 and calculated as ∆𝐺 = 𝑅𝑇𝑙𝑛(𝐾N). 
We applied the following criteria to the SKEMPI2.0 data set by removing the following complexes and mutations: (a) 
complexes with modified residues at the protein-protein binding interface; (b) complexes containing a chain of less 
than 20 residues long; (c) mutations with mutated sites having missing coordinates; (d) changes in affinity measured 
by an ‘unusual method’ as defined in SKEMPI2.0; (e) mutations on metal coordination sites; (f) mutations without 
binding affinity experimental values; and (g) entries with ten or more multiple mutations (Figure S1). There are 408 
mutations with multiple experimental measurements of changes in binding affinity and their standard deviations are 
all less than 1.0 kcal mol-1 (Figure S1a), and the average value was used for these cases. Three additional ways to 
process these cases were tried but the performance did not change (Table S10). As the number of multiple mutations 
with more than 10 mutations is small and prediction accuracy for these multiple mutations is low (Table S11), the 
upper limit of 10 mutations was used in the study. As a result, 3,310 single mutations from 265 wild-type protein-
protein complexes (it will be referred to as S3310) and 1,337 multiple mutations from 120 wild-type protein-protein 
complexes (it will be referred to as M1337) were retained (Table S1 and Figure S2). Multiple mutations correspond 
to cases where several mutations are introduced on one or several chains of a protein complex simultaneously. 

The Gibbs free energy (∆∆𝐺) of a system can be represented as a thermodynamic state function where the 
absolute values of ∆∆𝐺 for a forward mutation (∆∆𝐺8)→@()	 ) and ∆∆𝐺 for the reverse mutation (∆∆𝐺@()→8)	 ) should 
be approximately equal to each other. In order to prepare a more balanced training dataset, we augmented the existing 
mutations increasing binding affinity from the forward mutation sets with the modelled reverse mutations (see Table 
S1). In order to balance the prediction accuracy for both types of mutations: decreasing and increasing binding affinity, 
we used protein complexes with the number of experimentally characterized mutations from 10 to 30 and 10 to 50 to 
build the single and multiple reverse mutation dataset respectively. The performance is shown in Table S7. Therefore, 
the final training set including both forward and reverse mutations comprised 4,191 single mutations from 265 wild-
type protein complexes (it will be referred to as S4191) and 1,707 multiple mutations from 120 wild-type protein 
complexes (it will be referred to as M1707), respectively (Table S1).   

Structure optimization protocol 
For the forward mutation datasets S3310 and M1337 (∆∆𝐺8)→@()	 ), the structure optimization protocol was 

the same as the one used in MutaBind (the flowchart for the structure optimization protocol is shown in Figure S3). 
Namely, we used the BuildModel module of  FoldX (Guerois et al., 2002) to introduce single or multiple point 
mutations on the wild-type crystal structure obtained from the Protein Data Bank (PDB) (Berman et al., 2000). Next 
we added missing heavy side-chain and hydrogen atoms via the VMD program (Humphrey et al., 1996) using the 
topology parameters of the CHARMM36 force field (MacKerell et al., 1998). After that we performed a 100-step 
energy minimization in the gas phase for both wild-type and mutant complex structures applying harmonic restraints 
with the force constant of 5 kcal mol-1 Å-2 on the backbone atoms of all residues. The energy minimization was carried 
out by NAMD program version 2.9 (Phillips et al., 2005) using the force field CHARMM36 (MacKerell et al., 1998). 
A 12 Å cutoff distance for nonbonded interactions was applied to the systems. Lengths of hydrogen-containing bonds 
were constrained by the SHAKE algorithm (Hoover, 1985). 
 For the reverse mutation datasets, we modeled the mutant structures with the Modeller software (Sali and 
Blundell, 1993) using wild-type crystal structures as the templates (Table S8). To minimize the error introduced by 
structural modelling, only the mutated protein chain was modeled for single mutations, and for multiple mutations on 
multiple protein chains, the whole complex was modelled. The structural model was discarded if the root-mean-square 
deviation of all aligned Cα atoms between any of the modelled chains and the template was larger than 2 Å. Then the 
RepairPDB module was applied to further optimize the structure and mutations were introduced using the BuildModel 
module from FoldX. After that a 1000-step energy minimization in the gas phase was carried out for both wild-type 
and mutants using harmonic restraints (with the force constant of 5 kcal mol-1 Å-2) applied on backbone atoms of all 
residues using NAMD. Minimization was performed for the whole protein complex.  

Calculating changes in binding affinity 



 

 The scoring function of MutaBind2 includes seven distinct terms for single and multiple mutations, it is 
parameterized using the S4191 and M1707 datasets (Table S1), respectively. The terms that contribute significantly 
to the quality of the MutaBind2 single and multiple mutation models are shown in Table S2 and described below.  

The six terms of the scoring function described below are common for both single and multiple mutation models.  
• ∆∆𝐸7.8	  is the change of van der Waals interaction energy upon a single or multiple mutation(s) (∆∆𝐸7.8	 =

	∆𝐸7.8@() −	∆𝐸7.88) ).  ∆𝐸7.8	  is  calculated as a difference between van der Waals energies of a complex and 
each interacting partner using the ENERGY module of CHARMM (Brooks et al., 1983). The minimized 
structure of the wild-type or mutant complex structure was used for the calculation.  

• ∆∆𝐺9:;7	  approximates the change of polar solvation energy upon mutation(s) (∆∆𝐺9:;7	 = 	∆𝐺9:;7@() −	∆𝐺9:;78) ), 
∆𝐺9:;7	  is obtained from numerically solving the Poisson-Boltzmann (PB) equation with the PBEQ module 
(Im et al., 1998) of the CHARMM program using the minimized structure of the wild-type or mutant 
complex. For the PB calculation, dielectric constants ε = 2 for the protein interior and ε = 80 for the exterior 
aqueous environment were used.  

• ∆∆𝐺<:;.	  is the change in stability of the protein complex upon mutation(s) (∆∆𝐺<:;.	 = ∆𝐺<:;.@() −	∆𝐺<:;.8) ) 
where each term is defined as the unfolding free energy of the mutant and wild-type protein complexes. It is 
calculated with the BuildModel module from the FoldX software (Guerois et al., 2002) which uses an 
empirical force field. This term may account for those cases where mutated proteins are unfolded in unbound 
states and can only fold upon binding to its partner. 

• 𝑆𝐴%*A)8)  and 𝑆𝐴?:@8)  are solvent accessible surface areas of the mutated residues in the wild type unbound 
partner and complex structure respectively. These terms are calculated by the DSSP program (Joosten et al., 
2011) using the crystal structure of the wild-type complex. For multiple mutations this term is calculated as 
a sum of the solvent accessible surface areas of all mutated residues. 

• 𝐶𝑆 is the change of evolutionary conservation of a mutated site upon introducing mutations calculated using 
the PROVEAN program (Choi et al., 2012). This is used to account for the fact that a site can be evolutionary 
conserved because it is important for interactions with other proteins and any change in this site may affect 
its function in a detrimental way. For multiple mutations this term is calculated by summing up CS for all 
mutations.  

A scoring function for single mutations included an additional term, 𝑁?:-)8) , representing the number of interactive 
residues between one partner where a mutation was introduced and another partner in a wild type structure. If any 
heavy atom of a residue in one partner was located within 10 Å from any heavy atom of another partner, we defined 
this residue as an interactive residue. A scoring function for multiple mutations included an additional term ∆𝐸7.88) 	 
calculated as a difference between van der Waals energies of a complex and each interacting partner for the wild-type 
structure, as described above.  
 MutaBind2 predictive models were built using the random forest (RF) regression algorithm implemented in 
the R package “randomForest” using Breiman’s random forest algorithm (Breiman, 2001). Hyperparameter 
optimization in a balanced “CV2” cross-validation (see the section below) suggested that the number of trees “ntree” 
parameter should be set to 500 and the number of features/terms randomly sampled as candidates for splitting at each 
node (“mtry”) should be set to 2. Feature importance in RF models is shown in Supplementary Table 2 and all features 
listed above contribute significantly to the quality of the models. The performance of MutaBind2 trained on S4191 
and M1707 sets is shown in Table S3 and Figure S4c. The Pearson correlation coefficient between experimental and 
calculated changes in binding affinity is R = 0.82 and the corresponding root-mean-square error (RMSE) is 1.19 kcal 
mol-1 for single mutations and R = 0.87 and the RMSE is 1.61 kcal mol-1 for multiple mutations. We also tested the 
performance of other algorithms, including Support Vector Machine (SVM) and eXtreme Gradient Boosting 
(XGBoost), however, the random forest regression algorithm shows the best performance (Table S4). 
 MutaBind2 calculations take several minutes for a single mutation in a protein complex of about 350 residues, 
and require less than a minute for each additional mutation introduced in the same complex and therefore require about 
12 hours for calculations of one thousand mutations (Figure S10). 
 
Five types of cross-validation (CV) procedures 

We performed five types of cross-validation. In the “CV1” cross-validation, 80% of all mutations from S4191 
or M1707 set were randomly selected to train the model and the remaining 20% of the mutations were used for testing; 
we repeated the procedure 100 times. For “CV2” cross-validation, 50% of the mutations were randomly chosen for 
training and the remaining mutations for testing, also repeated 100 times. As shown in Figure S2, the distribution of 



 

the number of mutations per protein is not uniform, so to take this bias into account, we performed the third type of 
cross-validation (“CV3”). First, we randomly sampled up to ten mutations per protein complex from S4191 and 
M1707, the procedure was repeated 10 times and yielded ten subsets. Then 80 percent of the mutations were randomly 
selected from each subset for training and the rest for testing, repeated 10 times.  

We also performed the “CV4” cross-validation by leaving one complex and its mutations out as a test set and 
using the rest of the complexes/mutations to train the model, repeating this process for each protein complex. In 
addition, a “CV5” cross-validation accounted for similarities between binding sites of different complexes (the 
definition of similar binding sites is taken from (Jankauskaite et al., 2019; Moal and Fernandez-Recio, 2012)). Namely, 
we used all complexes and corresponding mutations from one cluster/type of binding site for testing and trained the 
model on the rest of the complexes/mutations, repeated for each type of binding site. During the cross-validation 
procedures, forward and reverse mutations were kept in the same set, either training or testing. 
 
Assessment of quality of classification 
 One way to evaluate the performance of MutaBind2 is to assess the quality of classification of mutations into 
mutations with large amplitudes of their effects on binding affinity: highly decreasing (∆∆𝐺			≥ 1.5 kcal mol-1) and 
highly increasing (∆∆𝐺		 ≤ -1.5 kcal mol-1). The explanation is provided in Figure S6c and Figure S6d. 
 Prediction performance was measured using area under the ROC curve (AUC), accuracy, precision, 
sensitivity, specificity, negative predictive value (NPV) and Matthews correlation coefficient (MCC). Positives and 
negatives were defined as those mutations with predicted ∆∆𝐺		values within or outside the range specified above for 
experimental ∆∆𝐺		values. The accuracy was defined as a percentage of correctly classified mutations (true positives, 
TP, and true negatives, TN) out of the total number of mutations (TP + TN)/(TP + TN + FP + FN), where FN are false 
negatives, and FP are false positives. Sensitivity was defined as TP/(TP + FN), specificity was calculated as TN/(TN 
+ FP) (false negatives, FN and false positives, FP). Additionally, in order to account for imbalances in the labeled 
dataset, the quality of the predictions was described by the Matthews correlation coefficient (MCC), a performance 
measure which is known to be more robust on unbalanced datasets: 

MCC =
𝑇𝑃 ∗ 𝑇𝑁 − FP ∗ FN

Y(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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