Skip to main content
. 2020 Feb 27;23(3):100939. doi: 10.1016/j.isci.2020.100939

Table 1.

Comparison of Methods' Performance for Single and Multiple Mutations

Training/Test Set Model All Mutations
Decreasing
Increasing
R RMSE Slope R RMSE R RMSE
Single mutations

Skempi + Reverse/S1748 MutaBind2ˆ 0.63 1.25 0.83 0.45 1.17 0.77 1.52
Skempi/S1748 MutaBind 0.38∗ 1.51 0.72 0.44 1.11 2.43
BeAtMuSiC 0.30∗ 1.58 0.55 0.43 1.14 −0.25∗ 2.57
Test: S1748 FoldX 0.42∗ 1.57 0.52 0.41 1.37 0.26∗ 2.12
Test: S4191 MutaBind2 CV4 0.76 1.34 1.11 0.61 1.31 0.67 1.39
MutaBind2 CV5 0.69 1.50 1.18 0.54 1.41 0.47 1.65

Multiple mutations

Test: M1707 MutaBind2 CV4 0.74 2.13 1.09 0.51 2.04 0.60 2.26
MutaBind2 CV5 0.71 2.24 1.00 0.47 2.18 0.56 2.33
Test: M1337 FoldX 0.49 2.43 0.52 0.37 2.49 0.24 2.21

MutaBind2ˆ: MutaBind2 was retrained on “Skempi + Reverse” set.

∗Significant difference between MutaBind2 and other methods with p value < 0.01 calculated on a test set S1748 (implemented in R package cocor).

R, Pearson correlation coefficient between experimental and predicted ΔΔG values; RMSE (kcal mol−1), root-mean-square error, the standard deviation of the residuals (prediction errors); Slope, the slope of the regression line between experimental and predicted ΔΔG values. All presented values of correlation coefficients are statistically significantly different from zero (p value << 0.01). The details about datasets are shown in Table S1.