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Abstract

Genetic clustering is a popular method for characterizing variation in transmission rates for rapidly evolving viruses, and
could potentially be used to detect outbreaks in ‘near real time’. However, the statistical properties of clustering are poorly
understood in this context, and there are no objective guidelines for setting clustering criteria. Here, we develop a new sta-
tistical framework to optimize a genetic clustering method based on the ability to forecast new cases. We analysed the pair-
wise Tamura-Nei (TN93) genetic distances for anonymized HIV-1 subtype B pol sequences from Seattle (n¼1,653) and
Middle Tennessee, USA (n¼2,779), and northern Alberta, Canada (n¼809). Under varying TN93 thresholds, we fit two mod-
els to the distributions of new cases relative to clusters of known cases: 1, a null model that assumes cluster growth is
strictly proportional to cluster size, i.e. no variation in transmission rates among individuals; and 2, a weighted model that
incorporates individual-level covariates, such as recency of diagnosis. The optimal threshold maximizes the difference in
information loss between models, where covariates are used most effectively. Optimal TN93 thresholds varied substantially
between data sets, e.g. 0.0104 in Alberta and 0.016 in Seattle and Tennessee, such that the optimum for one population
would potentially misdirect prevention efforts in another. For a given population, the range of thresholds where the
weighted model conferred greater predictive accuracy tended to be narrow (60.005 units), and the optimal threshold tended
to be stable over time. Our framework also indicated that variation in the recency of HIV diagnosis among clusters was sig-
nificantly more predictive of new cases than sample collection dates (DAIC > 50). These results suggest that one cannot rely
on historical precedence or convention to configure genetic clustering methods for public health applications, especially
when translating methods between settings of low-level and generalized epidemics. Our framework not only enables inves-
tigators to calibrate a clustering method to a specific public health setting, but also provides a variable selection procedure
to evaluate different predictive models of cluster growth.
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1. Background

Spatiotemporal clustering is a fundamental public health meth-
odology for the detection of infectious disease outbreaks
(Robertson et al. 2010). The colocalization of cases in space and

time can reveal the existence of a common source, and cases
within a cluster tend to be related by recent transmission events.
For example, an automated time–space clustering method
(Kulldorff et al. 2005) was demonstrated to retrospectively detect
outbreaks of nosocomial bacterial infection in a US-based hospital,
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including the outbreaks that were detected contemporaneously
by the hospital’s pre-existing infection control programme
(Huang et al. 2010). At a broader spatial scale, the same cluster-
ing method was recently used to identify outbreaks of severe
acute respiratory infections over a five-year period, using case
data from a network of hospitals in Uganda (Cummings et al.
2019). Early detection of a cluster represents a potential oppor-
tunity for a targeted public health response to prevent addi-
tional cases. Time–space clustering may be less effective,
however, for pathogens that can establish a chronic infection
with a long asymptomatic period (e.g. Mycobacterium tuberculosis,
hepatitis C virus, or human immunodeficiency virus type 1;
HIV-1) where the transmission event may have occurred
months or years before diagnosis. Furthermore, pathogens with
a relatively low per-act transmission rate present difficulties for
time–space clustering because a single exposure in a specific lo-
cation is unlikely to result in transmission. Under these circum-
stances, the spread of an epidemic is more likely to be shaped
by a social network of repeated contacts between individuals,
rather than shared venues.

For many infectious diseases, the molecular evolution of the
pathogen is sufficiently rapid that genetic differences can accu-
mulate between related infections on a similar time scale as
disease transmission. Consequently, it can be effective to clus-
ter cases in a high-dimensional genetic space in addition to clus-
tering in physical space and time. In these studies, a case of
infection is represented by a pathogen-derived molecular se-
quence that maps to some point in genetic space, and it may be
associated with subject-level metadata such as the diagnosis
date or treatment history. Clustering infections by their evolu-
tionary relatedness is a popular method to identify and charac-
terize subgroups with potentially elevated transmission rates.
For example, pairs of sequences can be clustered if the number
of genetic differences between them falls below some thresh-
old. The resulting clusters are often visualized as a network or
undirected graph, where each node (vertex) represents an indi-
vidual case of infection, and each edge connecting vertices indi-
cate that the sequences of the corresponding cases are within a
threshold genetic distance of each other. Sampling a group of
cases that are nearly genetically identical implies that they are
related through an unknown number of recent and rapid trans-
mission events. A substantial number of genetic clustering
studies have focused on the molecular epidemiology of HIV-1
(Poon 2016; Rose et al. 2017 Ragonnet-Cronin et al. 2018; Billock
et al. 2019). Under current global treatment and prevention
guidelines (Levi et al. 2016), greater proportions of HIV cases are
being diagnosed, and new diagnoses are more frequently
screened for drug resistance by genetic sequencing prior to initi-
ating antiretroviral treatment. As a result, public health organi-
zations are beginning to use genetic clustering methods in ‘near
real-time’ to identify ongoing HIV-1 outbreaks (Poon et al. 2016;
Gonsalves and Crawford 2018), to reconstruct the risk factors
and aetiology (Dennis et al. 2012; Poon et al. 2015), and to priori-
tize groups for prevention initiatives such as access to pre-
exposure prophylaxis (PrEP; Volz et al. 2018).

A fundamental challenge in the use of genetic clustering to
identify potential outbreaks is that these methods usually re-
quire the specification of one or more clustering criteria (Poon
2016; Hassan et al. 2017). Many HIV-1 studies that employ pair-
wise clustering use similar genetic distance thresholds, where a
genetic distance is a measure that adjusts for the possibility of
multiple substitutions at the same nucleotide. For instance, a
recent review (Hassan et al. 2017) of 105 articles defining HIV-1
clusters found that 1.5 per cent was the most commonly used

threshold among 52 studies that employed a genetic distance.
In contrast, the United States Centers for Disease Control and
Prevention (US-CDC) currently recommends a stricter pairwise
distance threshold of 0.5 per cent (National Center for HIV/AIDS,
Viral Hepatitis, STD, and TB Prevention 2018) for the purpose of
identifying clusters with the most recent and rapid growth. In
some cases the selected threshold is informed by the expected
divergence between HIV-1 sequences sampled longitudinally
from the same patient (Poon et al. 2015; Wertheim et al. 2017)—
however, this empirical distribution can vary substantially
among subjects (Ratmann et al. 2016) and may be influenced by
the extent of clinical follow-up. In other cases, the threshold is
based on the expected number of substitutions between two ep-
idemiologically unrelated individuals in the same sample space
(�5% for the USA; Aldous et al. 2012; Oster et al. 2018), which
makes the optimal threshold sensitive to regional variation in
HIV prevalence and population density. On the other hand, pop-
ulation studies in Botswana (Novitsky et al. 2014), South Africa
(De Oliveira et al. 2017), and South America (Junqueira et al.
2016) have used substantially higher distance thresholds (10%,
4.5%, and 4.5%, respectively) that imply the optimal thresholds
may vary substantially among settings and HIV-1 subtypes
(Hemelaar 2013). Furthermore, simulation-based studies
(Novitsky et al. 2014; Poon 2016; Dasgupta et al. 2019) have dem-
onstrated that clustering is highly sensitive to the sampled pro-
portion of the infected population. Given the known differences
in the empirical distributions of HIV-1 genetic distances among
populations, as well as the significant global disparities in prev-
alence and access to testing and treatment, it is urgently neces-
sary to establish an objective, quantitative framework for
optimizing a clustering method to the target population.

Here we propose that the most useful approach to select
clustering criteria is to base this decision on our ability to pre-
dict where the next cases will occur. A high, permissive cluster-
ing threshold tends to result in a single cluster that comprises
the majority of known cases. The next cases are proportionately
more likely to connect to this cluster simply because it is large,
but its size will also average out the individual- and group-level
attributes that are informative for predicting the next cases. Put
another way, a single large cluster is not likely to confer a public
health benefit because it is akin to prioritizing the entire popu-
lation. Conversely, setting a low, strict clustering threshold
results in a large number of small clusters. This increases the
variation of attributes among clusters, resolving greater infor-
mation. As cluster sizes continue to decline with progressively
lower thresholds, however, the variation in attributes among
clusters is less associated with the emergence of new cases—in
other words, the distribution of new cases among clusters
becomes increasingly random. This trade-off is analogous to
the modifiable areal unit problem (MAUP), a concept in spatial
statistics first fully conceptualized by Openshaw and Taylor
(1979). Areal units are derived from a partition of a geographic
range by drawing boundaries that separate households or
neighbourhoods. The MAUP formally recognizes the inconsis-
tency of statistical associations with changing boundaries. For
example, aggregating units into larger spatial units, such as cit-
ies or countries, can prevent an investigator from detecting a
strong association between water quality and gastrointestinal
illness (Swift, Liu, and Uber 2008).

To address the MAUP in the context of genetic clustering
and public health, we develop an information criterion-based
framework inspired by work from Nakaya (2000). The objective
of our framework is to identify the clustering criteria that maxi-
mizes the information content of the resulting clusters for
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forecasting where the next cases will occur. We evaluate our ap-
proach on anonymized HIV-1 sequence data from three popula-
tions, and demonstrate how this framework can also be used to
select between predictive models of cluster growth that utilize
different cluster attributes. Furthermore, we examine the prob-
lems associated with the selection of clustering criteria or the
application of criteria from one population to another, and eval-
uate the stability of information-optimized criteria for a given
population over time.

2. Methods
2.1 Data collection and processing

From the public GenBank database (https://www.ncbi.nlm.nih.
gov/genbank, last accessed 2 April 2019), we obtained n¼ 809
anonymized HIV-1 pol sequences sampled from northern
Alberta, Canada, between 2007 and 2013 (Vrancken et al. 2017),
and n¼ 1,653 sequences collected from Seattle, USA, between
2000 and 2013 (Wolf et al. 2017). In addition, n¼ 2,779 HIV-1 pol

sequences predominantly from the middle Tennessee region of
the USA were collected by the Vanderbilt Comprehensive Care
Clinic in Nashville between 2001 and 2015. These data were
linked to patient records to extract limited data (e.g. year of
HIV-1 diagnosis) and anonymized before being made available
for this study; further details are available in Dennis et al. (2018).
All sequence data were annotated with years of sample collec-
tion. We used the pre-existing HIV subtype annotations from

the sequence records to filter each data set for non-B subtypes,
and excluded repeated samples from the same individual. Next,
we filtered each data set to remove any sequences with a pro-
portion of ambiguous nucleotides above 5 per cent, which af-
fected 1 sequence from each of the northern Alberta and Seattle
data sets, and 163 sequences from Tennessee. Given the rela-
tively small number of sequences collected in part of 2013 for
the Seattle data set (n¼ 35, Fig. 1), we excluded this year to
maintain a consistent sampling rate. We retrieved the sample
collection dates for Seattle and North Alberta by querying
GenBank with the respective accession numbers and extracting
this information from the XML stream returned from the server
using the BioPython module (Cock et al. 2009) in Python. Next,
we used an open-source implementation of the Tamura and
Nei (1993) genetic distance in Cþþ (TN93 version 1.0.6, https://
github.com/veg/tn93, last accessed 5 September 2018) for each
data set to compute these distances between all pairs of
sequences. All other options for the TN93 analyses were set to
the default values.

2.2 Defining clusters

Using a custom script in the R programming language, we gener-
ated an undirected graph G ¼ ðV; EÞ from the TN93 output of each
data set, where the set of vertices V represents individual cases
(assuming one sequence per case) connected by edges in the set
E. Every edge between vertices v and u, denoted eðv;uÞ 2 E, was
weighted with the TN93 distance between the respective

Figure 1. (top) Distribution of sample collection years for the Seattle (blue), northern Alberta (orange), and Middle Tennessee (red) data sets. Absent bars indicate that

no sampling was carried out in the respective years, and does not reflect an absence of cases. (bottom) Histograms of Tamura-Nei (TN93) genetic distances among pair-

wise comparisons of HIV-1 sequences. The height of each bin has been rescaled to reflect the total number of pairwise comparisons, for which the majority were cen-

sored from the data. An expanded section of the barplots in the range (0, 0.03) is provided as a figure inset to clarify differences among the distributions.
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sequences, which we denote by the edge attribute d(v, u).
In addition, each vertex v 2 V carries a temporal attribute t(v),
which may represent the year of diagnosis or sample collection.
Note that we are not limited to analysing dates at the level of
years and can utilize more precise time intervals, e.g. quarters or
months, given the availability of these data. For a given cluster-
ing threshold dmax, we obtained a spanning subgraph Gd ¼
ðV;EdÞ from G that results from filtering the complete list of nðn�
1Þ=2 edge weights, such that Ed ¼ feðv;uÞ 2 E : dðv;uÞ � dmaxg.
The subset of sequences with the most recent collection time-
point was specified as V ¼ fv 2 V : tðvÞ ¼ tmaxg, such that the to-
tal number of new cases is jVj. In other words, sampling time
cuts V into disjoint vertex sets V and Vc, where Vc is the com-
plement of V (Vc [ V ¼ V) and contains all known cases over
time t < tmax. Later it will be useful to refer to the subset of
edges in Ed that connect a vertex in Vc and a vertex in V, which
we denote as E ¼ feðv;uÞ : e 2 Ed; v 2 Vc;u 2 Vg. The set of edges
in E can also be interpreted as edges in a bipartite subgraph
comprising parts Vc and V.

A clustering method defines a partition on the known cases
Vc into a set of clusters fC1;C2; . . . ;Cng such that Ci \ Cj ¼1 for
all i 6¼ j and 1 � i; j � n; and such that the union of all clusters
recovers the entire set: [n

i¼1Ci ¼ Vc. Note that this definition
does not strictly require the existence of edges, which we use to
represent genetic similarity, but can be adapted to any method
that defines a partition on the database of known cases. For our
analysis, clusters were defined as the connected components of
Vc, meaning any pair of vertices within the same cluster
(v;u 2 Ci) are connected by at least one path (a sequence of
edges), any pair of vertices in different clusters are not con-
nected by any path, and single cases can count as their own
cluster of size one.

2.3 Modelling growth

We define total cluster growth R as the number of new cases in
V adjacent (connected by an edge) to any known case in Vc,
where R � jVj. To resolve the event that a new vertex in V is ad-
jacent to vertices in more than one cluster, we reduced the sub-
set of edges between V and Vc, maintaining only the edges with
minimum weight per vertex in V. If more than one edge to a
given vertex u 2 V had exactly the same minimum weight, then
we selected one edge at random.

We formulated two predictive models to generate estimates
of growth for the ith cluster Ci, which we denote respectively as
the null model and the weighted model. The null model
requires less information by postulating that each cluster is
expected to grow in proportion to its current size, prior to the
addition of new cases, as a fraction of the entire population of
known cases. For example, a cluster that comprises half of all
known cases is predicted to accumulate half of new cases that
are adjacent to any cluster. Expressed as a Poisson regression
model, the expected growth of Ci given total cluster growth R is
given by:

E
�

R0ðCiÞ
�
¼ exp

jCij
jVcjR
� �

: (1)

where we use boldface E to denote the expectation (and distin-
guish it from our edge set notation E), and R0 is given the sub-
script 0 to indicate it is the predicted growth under the null
model. Thus the null model does not use any individual-level
attributes to predict cluster growth—it is a naive model that
assumes that the allocation of cluster-adjacent new cases in R

is not influenced by any characteristics of those clusters other
than the ‘space’ they occupy. In contrast, the weighted model
assigns individual-level weights w(v) to every vertex in v 2 Ci.
Expressed as a Poisson regression model, the expected growth
of cluster Ci under the weighted model is written:

EðRðCiÞÞ ¼ exp
�
aþ b

X
v2Ci

wðvÞ
�

(2)

where a and b are parameters to be estimated by regression.
Note that Equation (2) reduces to (1) when w(v) ¼ 1 for all v 2 Ci,
a ¼ 0 and b ¼ R=jVcj. There are two advantages to using
individual-level weights in Equation (2) rather than cluster-level
weights: first, individual-level weights are independent of clus-
tering thresholds, so it is sufficient to calculate weights one
time only; second, individual-level weights confer a greater de-
gree of precision for measuring effects on edge densities that
would become averaged out in clusters.

For our demonstration, we weighted individual cases by
their recency of sample collection or diagnosis, measured as
Dt ¼ tmax � tðvÞ. The predictive weight w of a known case of a
given age Dt relative to tmax was based on the expected rate of
adjacency (edge density) between sets of known cases sepa-
rated by the same time lag. Thus, we needed to calculate the
edge densities for all bipartite graphs Kij ¼ ðVc

i ;V
c
j ;EijÞ where

Vc
i ¼ fv 2 Vc : tðvÞ ¼ ig and j� i ¼ Dt. For compatibility with our

definition of cluster growth, we removed bipartite edges from Eij

so that the maximum degree size for any vertex v 2 Vc
j was 1,

where the remaining edge minimized the edge weight w(u, v)
for all u given v. We use E1

ij to denote this reduced set of bipartite
edges. This had the effect of reducing the maximum possible
number of bipartite edges in Kij from jVijjVjj to jVjj. We refer to
the set of all bipartite graphs for a given time lag as
KðDtÞ ¼ fKij : j > i; j� i ¼ Dtg. Thus, the expected edge density q

given Dt is:

EðqjDtÞ ¼
P

KðDtÞ jE1
ijj=jVc

j j
ðtmax � 1Þ � tmin � Dt

(3)

where the denominator adjusts for the number of bipartite
graphs with time lag Dt. For this model, we assume that the
edges in E1

ij are independent and identically distributed binary
outcomes. Furthermore, we expect the probability of this out-
come to decay with increasing Dt. Hence we used logistic regres-
sion to estimate q as a function of Dt:

log
q̂

1� q̂

� �
¼ a0 þ b0Dt (4)

where a0 and b0 are parameters to be estimated by regression.
Using logistic regression enabled us to measure the effect of
case recency at the level of individuals. The simplest use of this
information would be to set the weight of a known case to its
predicted edge density given its time lag Dt relative to the most
recent year; i.e. wðvÞ ¼ q̂ðDtÞ. To summarize, we identified edges
that minimized the genetic distance between known cases sep-
arated by a given time lag (Equation 3) and fit a logistic model to
these edge densities as a function of time lag (Equation 4) so we
can predict the adjacency of new cases to a cluster of known
cases given their net recency.

The weighted model can be extended to employ a linear com-
bination of additional individual-level attributes (e.g. plasma viral
load) and/or graph attributes that are parameterized from
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bipartite subgraphs on Vc. For example, we added an additional
measure, degðvÞ, that represents the average degree of known
cases from the same time point as v. A high mean degree in the
graph for a given threshold dmax can reveal specific time points
with an unusually dense concentration of cases in genetic
space, which may be caused by a period of increased sampling
effort or a past outbreak. Without making some adjustment,
this period can have a disproportionate influence on the associ-
ation of edge density on Dt as estimated by Equation (4). Thus
we also evaluated a weighted model substituting the following
weighting formula into Equation (2):

wðvÞ ¼ b0q̂ðtmax � tðvÞÞ þ b1degðvÞ (5)

where the coefficient b has been brought into the summation
over individual known cases. In this model, degðvÞ is a graph-
level attribute that controls for the confounding effect of varia-
tion in degree size among years of diagnosis or collection. We
have released R scripts and examples for calculating general-
ized Akaike information criterion (GAIC) profiles under a per-
missive free software license at https://github.com/PoonLab/
MountainPlot (last accessed 20 January 2020).

2.4 Evaluating cluster thresholds

For each data set, we segregated all HIV-1 sequences that were
sampled in the most recent year as new cases comprising the
set V. Next, we extracted the observed cluster growth outcomes
RðCiÞ and individual case weights w(v) at fifty-one different
cluster-defining distance thresholds, ranging from dmax ¼ 0 to
dmax ¼ 0:04 in steps of 8� 10�4. To clarify, we used the same
threshold dmax to evaluate cluster growth (the occurrence of
new cases in clusters) as was used to generate the clusters of
known cases. We fit the null and weighted models described by
Equations (1) and (2) to the resulting distributions of cluster
growth. The Akaike information criterion (AIC), which penalizes
likelihood for the number of model parameters, was recorded
for each regression model (Akaike 1998). The ‘generalized AIC’
(GAIC) is simply the difference in AIC between models, and has
been proposed as a key quantity for resolving the MAUP
(Nakaya 2000). Cut-offs with a negative GAIC indicate that the
weighted model explains the data more effectively than the
null model, and the magnitude of GAIC quantifies that differ-
ence in effectiveness. We define the optimal distance threshold
as the value dmax associated with the lowest (most negative)
GAIC. The GAIC was evaluated for the weighted models using
either dates of sample collection or diagnosis to compute Dt for
the Middle Tennessee data set for which both dates were avail-
able. Since some dates were missing data, we normalized the
number of new cases to jVj ¼ 125 for both analyses to ensure
that growth rates were comparable. After this step, the total
number of cases was reduced to n¼ 2,015 and n¼ 2,588 for the
diagnostic and sample collection analyses, respectively. We
note that the resulting weighted models are not being compared
directly; instead, they are compared to the null models for their
respective data sets.

We repeated the cluster threshold evaluation on progres-
sively censored subsets of the Seattle and Tennessee data to
evaluate the consistency of the GAIC-optimized thresholds over
time. This was accomplished by removing cases from the most
recent year to a maximum of four years, and obtaining the GAIC
measurements for all values of dmax for the remaining data at
each step. Because of the limited size and temporal range of the
northern Alberta data set, we did not use it for this sensitivity

analysis. We also re-ran the experiment on random subsets of
cases from the complete Seattle and Tennessee data sets, creat-
ing a total of ninety subsets; thirty subsets at three different
proportions of the original total, 80 per cent, 60 per cent, and
40 per cet. For each resampling proportion, we obtained the
kernel density for the optimal cut-off location over the thirty
replicate samples and the GAIC measurements obtained by a
smoothed function from all ninety resampled GAIC runs.

3. Results
3.1 Study populations

A total of n¼ 5,010 HIV-1 sequences and sample collection dates
were obtained from published studies in Seattle (n¼ 1,591; Wolf
et al. 2017), northern Alberta (n¼ 803; Vrancken et al. 2017), and
Middle Tennessee (n¼ 2,616; Dennis et al. 2018), respectively. In
addition, dates of HIV-1 diagnosis were available for a total of
2,527 cases in the Tennessee data set. The distributions of sam-
ple collection dates are summarized in Fig. 1 and the direct
comparison between diagnostic and collection year distribu-
tions for the Tennessee data set can be found in Supplementary
Fig. S1. The lowest mean sampling rate was obtained in north-
ern Alberta, with 114.7 cases per year, compared to 122.4 and
174.4 cases/year for Seattle and Tennessee, respectively. Cases
from the final years of sampling were omitted to adjust for stud-
ies being terminated before the end of the calendar year. For in-
stance, there were only thirty-five cases sampled in 2013 in the
Seattle data set, where sample collection was ended on March
2013 (Wolf et al. 2017)—since the cases in the final year were re-
served to evaluate the predictive models, an artificially low
sample size would have a disproportionate influence on model
validation. Hence, we proceeded with 110 cases collected in
2012, 110 cases from 2013, and 153 cases from 2015 for Seattle,
northern Alberta, and Tennessee, respectively. We refer to the
cases sampled in these final years as ‘new cases’, and those
sampled in the preceding years as ‘known cases’.

For each data set, we calculated the TN93 (Tamura and Nei
1993) genetic distance for every pair of sequences. This dis-
tance, which adjusts for differences in the mean rates among
nucleotide transversions and the two types of transitions, is the
basis for clustering in the HIV-TRACE programme (Pond et al.
2018) that is employed by the US-CDC for public health surveil-
lance (Oster et al. 2018). Although the northern Alberta data set
comprised a smaller number of sequences, the lower tail of its
TN93 distribution contained relatively higher numbers of pair-
wise distances than the other two data sets (Fig. 1). For instance,
the TN93 distance at the 1 per cent quantile was 0.013 in north-
ern Alberta, while the same quantile was roughly twice this dis-
tance for Seattle (0.026) and Tennessee (0.023). Overall, these
distributions were significantly different (Kruskal–Wallis test,
P < 10�15).

3.2 Adjacency of cases decays with time lag

We generated a sequence of graphs at varying TN93 distance
thresholds for each data set, where each vertex represents a
known case (sampled or diagnosed prior to the final year) and
an edge indicates that the corresponding pairwise distance is
below the threshold—in graph theory, the cases are said to be
‘adjacent’. Thus, each distance threshold defines a different
partition of known cases into clusters, where a cluster may con-
sist of only a single known case. Our objective is to determine
which threshold results in the most information-rich partition
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of known cases for predicting where new cases will arise. As we
will demonstrate below, there is no information value in either
extreme of a single giant cluster or the complete atomization of
cases into singular clusters. To quantify the information loss as-
sociated with different partitions, we compared two predictive
models. First, we fit a null model that assumes the probability
that a new case appears in a cluster (i.e. cluster growth) is only
influenced by the number of known cases in the cluster, i.e. the
cluster size. This is equivalent to assuming that every known
case is equally likely to be adjacent (connected by an edge) to
the new case. Second, we fit a weighted model where the proba-
bility of cluster growth is predicted by some linear combination
of individual-level attributes among the known cases in the
cluster.

For example, we hypothesize that the probability that a new
case is adjacent to a known case declines with an increasing
time lag between their respective sample collection dates. To
investigate this effect, we plotted the observed densities of
edges at a threshold dmax ¼ 0:04 between sets of known cases
sampled in different years (Fig. 2). These plots confirm that edge
densities decline significantly with increasing time lag (Dt),
which we measured by fitting binomial regression models
(Equation 4). Specifically, the estimated effect of Dt on the log-
odds of a bipartite edge was –0.42 (95% CI ¼ �0:45;�0:39Þ year�1

for the Seattle data and �0:40 ð�0:48;�0:32Þ year�1 for northern
Alberta. The coefficient of determination for the respective
models was R2 ¼ 0:70 and 0.58. For the Tennessee data set, the
effect of time lag was lower than the other data sets
(�0:19 ð�0:21;�0:18Þ year–1; R2 ¼ 0:41). In general, lowering dmax

reduced the observed bipartite edge densities as fewer edge
weights passed the threshold. Nevertheless, the negative asso-
ciations between Dt and the log-odds of bipartite edges were ro-
bust to varying dmax (Supplementary Fig. S2). These results
supported the use of ‘case recency’ (the time lag between sample

collection dates) as an individual-level predictor of a new case
joining a cluster of known cases.

Since dates of HIV-1 diagnosis were also available for the
Tennessee data set, we applied the same binomial regression to
known cases separated by their years of HIV diagnosis rather
than by sample collection (Fig. 2, right). We noted that the de-
cline in adjacency rates with time lag was distorted by unusu-
ally high edge densities involving cases diagnosed in 1982, 1984
and 1986, which resulted in a much smaller but significant ef-
fect of Dt (�0:067 ð95%C:I: ¼ �0:074;�0:060Þ year–1; R2 ¼ 0:016).
This motivated the use of an extended binomial regression
model (Equation 5) to control for variation in degree size among
years of diagnosis for known cases. We found that controlling
for variation in degree sizes among years substantially im-
proved the fit of the regression model to the time lags in diagno-
sis dates (R2 ¼ 0:37; DAIC ¼ �351:4). Moreover, this extended
model conferred significantly improved fits to sample collection
dates for all three data sets (DAIC ¼ �7:5, –12.8 and –171.6 for
Seattle, northern Alberta and Middle Tennessee, respectively).
Therefore, we used the extended binomial regression model for
our subsequent analyses to predict the distribution of new cases
among clusters.

3.3 Trade-off between case coverage and cluster
information

Figure 3 illustrates the effect of relaxing the threshold dmax on
the number of new cases that are adjacent to one or more
known cases, which we denote by R. A new case that is not adja-
cent to any known case cannot be anticipated by any clustering
method. Although these results do not inform us about our abil-
ity to forecast cluster growth, i.e. which cluster of known cases
is more likely to accumulate new cases, they do characterize
the effect size of the TN93 distance cut-off for perceived cluster
growth. When R approaches the total number of new cases
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the frequency of edges between cases in different time points below the threshold dmax ¼ 0.04 (Equation 3). (left) Decay of edge densities with respect to dates of sample

collection. Each trend line summarizes the binomial regression model (Equation 4) for each data set. (right) Decay of edge densities with respect to dates of HIV diagno-
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regression to these data, while the solid line indicates the fit of an extended model (Equation 5) that controls for variation in the mean degree size.
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(denoted as jVj, where V is the set of vertices in the final year)
we say that the clusters have a high case coverage. As expected,
decreasing dmax reduced R as a progressively greater number of
edges were excluded, which would limit the utility of clustering
for public health surveillance. The accumulation of R with in-
creasing dmax was slightly slower for Seattle than the other data
sets (Fig. 3, left), which was not anticipated by our comparisons
of the overall distributions of TN93 distances among data sets
(Fig. 1, bottom). In addition, Fig. 3 (left) summarizes how the
number of clusters with at least one edge to a new case (the
number of active clusters) initially tracks the accumulation in R
with increasing dmax. Thus R sets an upper limit to the number
of active clusters; these numbers can only be equal if each new
case is uniquely adjacent to its own cluster, as we observed for
the Seattle data set for cut-offs below wmax ¼ 0:0072 or the
Tennessee data at cut-offs below wmax ¼ 0:008. As dmax contin-
ues to increase, the number of active clusters peaks and begins
to decline towards 1. This outcome reflects the gradual accre-
tion of cases into a single giant cluster. Substituting year of di-
agnosis for sample collection dates in the Tennessee data
resulted in a slight reduction in R and a modest increase in the
number of active clusters, which we attribute to a more uniform
distribution of new cases across clusters.

3.4 Obtaining GAIC

The results in the preceding section imply that there exists an
intermediate value of dmax that optimizes the trade-off between
case coverage and the number of active clusters, where both
quantities have a significant impact on the information content
of clusters for public health. We propose that the best criterion
for optimizing a clustering method is our ability to predict
where the next cases will occur among the resulting clusters.
Specifically, we adapted the GAIC (Nakaya 2000) to select the
optimal threshold. Our implementation of the GAIC is a com-
parison between two Poisson regression models, where the

count outcomes are the number of new cases adjacent to each
cluster. In the null model, we assume that the rate parameter is
proportional to cluster size as a fraction of all known cases
(Equation 1), assuming no variation among individual known
cases. In the weighted model, the rate parameter is the total
weight of known cases in the ith cluster, where each weight can
be calculated from a linear combination of individual- or group-
level attributes. For our analysis, we weighted cases by their
predicted edge densities from the extended binomial model
(Equation 5).

Figure 4 (left) summarizes the distributions of GAIC for vary-
ing dmax for each data set. We observed that GAIC tended to be
near zero for relaxed thresholds (dmax � 0:03), which indicated
that the ability of the weighted model to forecast new cases was
indistinguishable from the null model. At these high thresholds,
the majority of known cases tended to become grouped into a
single large cluster, thereby homogenizing any individual-level
variation that could be used by the weighted model to predict
the distribution of new cases. The minimum (most negative)
GAIC was obtained dmax ¼ 0:0104 for northern Alberta and
dmax ¼ 0:0160 for both Seattle and Tennessee. These minima
identified the optimal thresholds that maximized the difference
in information loss between the weighted and null models. As
we continued to decrease dmax past these optima, the GAIC
trends returned to the zero line and even increase sporadically
into positive values where the weighted model was worse than
the null model. At these low values of dmax, the disintegration of
clusters into large number of singletons disrupts the covariation
between individual attributes and the distribution of new cases.
Furthermore, lowering dmax also leads to a reduction of case
coverage as shown in Fig. 3. At the respective optimal thresh-
olds, less than half of new cases were adjacent to clusters of
known cases (38.2% for Seattle, 49.1% for Northern Alberta, and
41.8% for Tennessee).

The GAIC also provides a framework for variable selection.
For instance, the GAIC obtained for the Tennessee data when
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Figure 3. Distribution of new cases among clusters as a function of the Tamura-Nei (TN93) distance clustering threshold (dmax, x-axis). The solid lines represent the

total number (R) of new cases adjacent to clusters of known cases. The points correspond to the number of clusters of known cases with edges to new cases, which we

refer to as ‘active’ clusters. (left) This plot summarizes the trends obtained when cases are stratified by year of sample collection. Trends in R and numbers of active

clusters are coloured with respect to data set (see inset legend). (right) This plot contrasts the trends obtained from the Tennessee data set when cases were stratified

by year of sample collection (lighter red) versus the year of diagnosis (darker red). Note that the collection date trend is not identical to the trend in the left plot because

we downsampled cases to match the availability of diagnosis dates.
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cases were stratified by year of diagnosis was substantially
lower than the values obtained with sample collection dates
over wide range of dmax (Fig. 4, right). The optimal threshold
identified by the minimum GAIC coincided for both sets of dates
(dmax); however, the GAIC for diagnosis dates was substantially
more negative (DGAIC ¼ �58:3), indicating a more effective use
of cluster information. For larger values of dmax > 0:02, the strat-
ification of cases by either set of dates was irrelevant as they
collapsed into a single giant cluster, such that both GAIC trends
converged to zero. For smaller values of dmax < 0:01, both
trends became more erratic with the reduced adjacency of new
cases and increasingly stochastic composition of smaller
clusters.

The graphs for these optimal cut-offs are summarized in
Fig. 5. In the Seattle graph, the largest cluster (Se1) comprising
thirty-four known cases was adjacent to two new cases. The
sample collection years associated with this cluster range from
2000 to 2012 with a mean of 2006.8 (interquartile range, IQR ¼
2006–2009). In contrast, the second largest cluster (Se2) com-
prised only ten known cases that were sampled more recently
with a mean of 2009.6 (2008–2011), and accumulated six new
cases. Similarly, the largest cluster in the northern Alberta
graph (NA1) comprised twenty-two cases of which none were
new, with a mean sample collection year of 2009.2 years (2008–
2011). This contrasts a smaller cluster of ten known cases (NA2),
of which five were collected in 2012 (mean 2010.5, IQR ¼ 2009–
2012), that gained twelve new cases in 2013. Finally, we ob-
served a large cluster (Tn1) of seventy-two known cases in the
Tennessee data set with only one new case and a mean sample
collection year of 2007.6 (IQR ¼ 2005–2010). In contrast, the clus-
ter labelled Tn2 comprised thirty-nine known cases with a
mean collection year of 2012 (IQR 2010, 2013) and three new
cases. These simple examples illustrate the effect of optimizing
the clustering threshold on the covariation of new case counts
and the recency of known cases among clusters. As predicted

by our model analysis, the effect of variation in case recency
among clusters on the distribution of new cases is even clearer
for the graph depicting clusters of cases stratified by year of di-
agnosis rather than sample collection (Supplementary Fig. S3).

3.5 Robustness of GAIC optimization

The difference in optimal clustering thresholds between north-
ern Alberta and the other sites implies that a globally optimal
threshold does not exist. However, variation in thresholds may
also be a stochastic outcome due to incomplete sampling. To
measure the effect of sampling variation, we repeated our GAIC
analysis on random sub-samples of the Seattle and Tennessee
data sets to 40 per cent, 60 per cent, and 80 per cent of the data
(thirty replicates each). The comparably low number of cases
per year in the northern Alberta data set precluded sub-sam-
pling. The results for the Seattle data set are summarized in
Supplementary Fig. S4. As expected, we observed shallower
GAIC trends and more variable GAIC-optimized thresholds with
decreasing sample size. However, the optimal thresholds
remained clustered around the original value dmax ¼ 0:016, with
only four (13%) replicates with optima below dmax < 0:015 at 40
per cent sub-sampling (n¼ 636, comparable to the northern
Alberta sample size of n¼ 803). We obtained similar results on
random sub-samples of the Tennessee data set, except that the
optima were more robust for the data stratified by diagnosis
dates.

Finally, to assess the stability of GAIC-optimized thresholds
over time, we generated additional sub-samples by progres-
sively right censoring the Seattle and Tennessee data sets. If the
information content of pairwise TN93 clusters is stable over
time, then we should expect the optimized threshold from fit-
ting models to ‘new cases’ in a given year should be similar to
the optimized threshold with an additional year of case data.
Figure 6 summarizes our results for the Tennessee data set
where the four most recent years were progressively censored
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Figure 4. Profiles of GAIC relative to the distance cut-off dmax. This is calculated as the difference in AIC between the weighted and null Poisson models. A negative

GAIC value indicates that the weighted model is more effective in predicting the distribution of new cases among the clusters defined at that dmax. (left) Profiles for the

three complete data sets using collection dates. The global GAIC minima for each data set are labelled with the corresponding TN93 distance cut-off values. We note

that GAIC values become more erratic with decreasing dmax as the distribution of new cases among smaller clusters becomes increasingly sparse and stochastic. (right)

Profiles for the Tennessee data sets using sample collection or diagnosis dates, excluding cases with missing diagnostic dates for direct comparison.
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by dates of sample collection (left) and diagnosis (right), respec-
tively. Results for the complete Tennessee data set (including
cases with missing diagnosis dates) and the Seattle data set are
provided in the Supplementary Fig. S7. In general, we observed
that the optimal threshold identified by the minimum GAIC
was relatively stable over time. Although the exact thresholds
varied slightly, the optimal threshold from the previous year
tended to confer a GAIC similar to the threshold estimated from
that year. In our analysis of the Seattle data set, however, the
optimal distance thresholds fluctuated between two local min-
ima around dmax ¼ 0:005 and 0.015. For instance, in the subset
where cases were limited to 2011 (censoring cases sampled
in 2012) we observed three local minima in the GAIC
(dmax ¼ 0:0024, 0.0072, and 0.0144), including one that was close
to the global minimum of the previous year. These results sug-
gest that the larger database of cases sampled in Middle
Tennessee confer increased robustness to sampling variation,
although we cannot rule out site-specific effects.

4. Discussion

Our results demonstrate that an apparently small difference in
pairwise genetic distances—for instance, between 0.5 per cent
and 1.5 per cent—can make the difference between accurate
forecasting of new cases among clusters and becoming misled
by stochastic noise. Specifically, both cut-offs cited above are
routinely used as customary settings in pairwise genetic

distance clustering studies of the same HIV-1 subtype in the
same country (Oster et al. 2015; Wolf et al. 2017; National Center
for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, 2018). To
investigate the sensitivity of clustering thresholds, we have ex-
amined three data sets of anonymized HIV-1 subtype B pol
sequences that were collected in different regions of North
America within similar time frames. All GAIC-optimized cut-
offs are located in the left tails of the respective empirical distri-
butions of pairwise distances, with no clear demarcation that
might motivate the selection a priori of one cut-off over another
(Fig. 1). However, our information-based criterion reveals a stark
difference between these cut-offs when we evaluate the ability
of genetic clusters to ‘forecast’ the occurrence of new cases
(Fig. 4). This discordance is a result of a trade-off between the
coverage and predictive value of spatial information that is en-
capsulated by the MAUP (Nakaya 2000). As we relax the cluster-
ing threshold, instances of cluster growth become more
frequent such that aggregate effects (viz. case recency and mean
degree) can be distinguished against the background of stochas-
tic effects. However, the variation in growth rates among clus-
ters eventually becomes homogenized as they are collapsed into
a single giant cluster at increasingly high thresholds. These two
driving forces can be differentiated in their approach to an opti-
mum, with poor case coverage from strict thresholds resulting
in erratic changes in forecasting information, and higher case
coverage with relaxed thresholds resulting in a smoother gain
of information. If the database is small relative to the

Figure 5. Network visualizations of the graphs from the Middle Tennessee data (red), Seattle (blue), and northern Alberta (orange) data sets obtained at the respective

GAIC-optimized distance thresholds, rendered using an implementation of the Kamada and Kawai (1989) algorithm. Vertices that corresponded to new cases were col-

oured in a darker shade, and the width of each vertex was scaled to the sample collection year with more recent cases drawn at a larger size. The vertices with zero

degrees (singletons) were not drawn for clarity. Clusters with the largest number of new cases and/or the largest number of cases overall are highlighted for discussion

in the text.
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population or the number of new cases per year is low, the
global minimum in the GAIC profile may become obscured by
sampling variation (Supplementary Fig. S4), especially when the
true optimal threshold is low. Resampling experiments
(Supplementary Figs S4–S6) can help ameliorate the effects of
sampling variation and identify situations where sample size
may be a concern.

Unlike most instances of the MAUP that arise in spatial epide-
miology (Nakaya 2000; Swift, Liu, and Uber 2008; Parenteau and
Sawada 2011; Haddawy et al. 2018), our outcome variable (the
number of new cases per genetic cluster) is directly dependent on
the same parameters that reshape the partition of the spatial

distribution of covarates into units. This dual dependency results
in an asymptotically increasing model likelihood with increasing
distance thresholds, plateauing at the point where all known
cases were assigned to the same giant cluster, such that any
new cases are effectively guaranteed to be adjacent to this
cluster. We addressed this unique problem by formulating a
null model where the predicted growth of a cluster was di-
rectly proportional to its relative size in the number of known
cases. Hence, this null model provided a useful baseline that
controlled for the proportionate effect of the largest cluster
with increasing cut-offs, thereby enabling us to focus on the
predictive value of variation in covariates among clusters.
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Figure 6. GAIC plotted against the cut-off threshold for five progressively right-censored subgraphs with respect to sample collection (left) and diagnosis (right) for the

Middle Tennessee data set. The minimum GAIC for each plot is indicated by a circular mark. Arrows and dashed lines indicate where the GAIC-optimized threshold

from the previous result would carry over to the subsequent year.
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We selected a relatively simple clustering method in wide-
spread use (pairwise TN93 distance clustering by components;
Aldous et al. 2012) to demonstrate our new framework for evalu-
ating clusters, which is based on the GAIC proposed by Nakaya
(2000). Pairwise clustering has been widely adopted in health
jurisdictions around the world, including the US-CDC (Oster
et al. 2018), in part due to the growing popularity of the HIV-
TRACE software package that employs TN93 (Pond et al. 2018).
However, we hypothesize that it should be feasible to use this
framework to evaluate potentially any clustering method that
defines a partition on the database of known cases. For exam-
ple, if we require some minimum bootstrap support value to de-
fine clusters as subtrees extracted from the total phylogenetic
tree (Ragonnet-Cronin et al. 2013), then this bootstrap support
threshold can represent a second dimension (in addition to a
branch length threshold) to locate the minimal GAIC in combi-
nation with a distance threshold. We have also demonstrated
that the GAIC can be repurposed for model selection where dif-
ferent linear combinations of predictor variables, such as the
mean degree size in a given year of diagnosis (Fig. 4), are evalu-
ated within the Poisson regression model. Billock et al. (2019) re-
cently employed a similar model selection approach for
pairwise TN93 clusters, although their analysis pre-specified a
fixed clustering threshold of 1.5 per cent. Thus, if sufficient
metadata are available then one can use the GAIC to select
more accurate predictive models of cluster growth while adjust-
ing the clustering criteria, so the models can be evaluated at
their best performance.

Collection dates in units of years are most frequently avail-
able as sample metadata in association with published HIV-1
genetic sequences. We had a strong a priori expectation for an
association between new case adjacency and known case re-
cency that we subsequently confirmed from these data (Fig. 2).
On the other hand, we recognize that samples may be collected
well after the start of a new infection, due to the long asymp-
tomatic period of HIV-1 infection and social barriers to HIV test-
ing (Mahajan et al. 2008). Even when using diagnostic dates,
there is potential conflation of recent transmission with late di-
agnosis. Although estimated dates of infection (e.g. the mid-
point between the last HIV seronegative and first seropositive
visit dates) will tend to be closer to the actual date of infection,
the necessary information for accurate estimates are not rou-
tinely available in a public health context. We furthermore rec-
ognize that more precise dates of sample collection would likely
confer greater prediction accuracy. Indeed, the granularity of
time in the context of genetic cluster analysis represents an ex-
tension of MAUP that is known as the modifiable temporal unit
problem (Cheng and Adepeju 2014). While reducing the length
of time intervals may produce more timely predictions, e.g. new
cases in the next three months instead of the next year, the ac-
curacy of prediction will erode with progressively shorter inter-
vals. Finally, we propose that an informative assessment on the
potential value of genetic clustering for public health would be
to compare the GAIC of the genetic clustering method against
the value obtained from the prioritization of groups by public
health experts. However, the confidential information compris-
ing the latter case is not likely to be found in the public domain.

An important caveat to our approach is that the expected
probability of an edge between specific known and new cases is
very small. Consequently, our method requires a substantial
number of new cases to parameterize models of the variation in
edge densities among clusters and, ultimately, to discriminate
between the null and weighted models. (Note that the number
of cases sampled in a given year does not correspond to the

annual incidence.) Given the results summarized in Fig. 6, if
those requirements are not met, the minimal GAIC that results
from the theoretical MAUP trade-off may be masked by the ini-
tial noise of a graph with low case coverage and the merging of
clusters with increasing thresholds. The results that we
obtained with the smallest data set (Northern Alberta) and our
sub-sampling experiments (Supplementary Figs S4–S6) imply
that averaging about 50–100 sampled cases per year over a 6-
year period should be adequate for the relatively simple models
evaluated here. In addition, our comparison of sample collec-
tion versus diagnosis dates (Supplementary Figs S5 and S6)
implies that the minimum sample size requirement should di-
minish with the addition of covariates into the weighted model
that have strong associations with the distribution of new
cases.

Genetic clustering is used increasingly for near real-time
monitoring of clinical populations for the purpose of guiding
public health activities (Poon et al. 2016; Rose et al. 2017; Oster
et al. 2018; Billock et al. 2019). Our method is not specific to HIV-
1, although the proliferation of clustering methods in HIV mo-
lecular epidemiology—driven by the abundance of genetic se-
quence data and the relatively rapid rate of evolution and low
transmission rate of the virus—does make this approach partic-
ularly applicable to this virus. Similar pairwise distance cluster-
ing methods, for instance, have been used for Mycobacterium
tuberculosis (Walker et al. 2013) and hepatitis C virus (Jacka et al.
2014) to infer epidemiological characteristics from molecular se-
quence variation. In these cases, it may be necessary to rescale
the step size/range of clustering thresholds to the expected dis-
tribution of genetic distances in order to locate the minimum
GAIC. Furthermore, variation in population density and overall
case prevalence among regions, as well as the proportion of di-
agnosed cases, will influence the GAIC. For instance, the visible
difference in minimum GAIC we observed between data sets
from Northern Alberta and the two locations in the USA was
likely driven by differences in population density and sampling
fraction. Applications of clustering for HIV-1 prevention have
tended to be developed in the context of low-level epidemics,
e.g. North America and western Europe, making it challenging
to translate these methods to generalized epidemics in other
countries without a robust statistical framework for calibrating
methods. No matter what pathogen or location is the focus of
investigation, it is imperative that we become more critical of
clustering methods (Volz et al. 2012; Poon 2016). Improperly cali-
brated clustering methods may otherwise prioritize false posi-
tives, diverting limited public health resources away from
subpopulations where the immediate need for prevention and
treatment services was greatest.
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