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LC-HRMS based approach to 
identify novel sphingolipid 
biomarkers in breast cancer 
patients
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Perturbations in lipid metabolic pathways to meet the bioenergetic and biosynthetic requirements is 
a principal characteristic of cancer cells. Sphingolipids (SPLs) are the largest class of bioactive lipids 
associated to various aspects of tumorigenesis and have been extensively studied in cancer cell lines 
and experimental models. The clinical relevance of SPLs in human malignancies however is still poorly 
understood and needs further investigation. In the present study, we adopted a UHPLC-High resolution 
(orbitrap) Mass spectrometry (HRMS) approach to identify various sphingolipid species in breast cancer 
patients. A total of 49 SPLs falling into 6 subcategories have been identified. Further, integrating the 
multivariate analysis with metabolomics enabled us to identify an elevation in the levels of ceramide 
phosphates and sphingosine phosphates in tumor tissues as compared to adjacent normal tissues. The 
expression of genes involved in the synthesis of reported metabolites was also determined in local as 
well as TCGA cohort. A significant upregulation in the expression of CERK and SPHK1 was observed in 
tumor tissues in local and TCGA cohort. Sphingomyelin levels were found to be high in adjacent normal 
tissues. Consistent with the above findings, expression of SGMS1 in tumor tissues was downregulated 
in TCGA cohort only. Clinical correlations of the selected metabolites and their performance as 
biomarkers was also evaluated. Significant ROC and positive correlation with Ki67 index highlight the 
diagnostic potential and clinical relevance of ceramide phosphates in breast cancer.

Dysregulation of lipid homeostasis has become an established hallmark of cancer. The cancer cells exploit lipid 
metabolic pathways in order to fulfil their demand for energy as well as biosynthetic precursors. Aberrations in 
lipid metabolism thus affects numerous cellular processes such as cell growth, proliferation, differentiation and 
cell survival1. Sphingolipids (SPLs), apart from the inceptive view of being considered as mere structural compo-
nents, have evolved as crucial regulators of myriads of cellular functions. The primary elements of sphingolipid 
metabolism such as ceramide, ceramide 1-phosphate and sphingosine 1-phosphate have recently emerged as 
key regulators in cancer cell growth, proliferation, survival, migration and drug resistance2–4. Numerous studies 
have described the elementary role of ceramide and sphingosine 1-phosphate rheostat in various types of cancers 
such as lung, breast and colon. However, these studies have provided the mechanistic details of sphingolipid 
metabolism in cancer cell lines and experimental models5–7, while their role in human malignancies is still poorly 
understood and needs further elucidation.

Breast cancer continues to remain the most common malignancy among women worldwide8. The diagnosis 
rate of breast cancer among Indian females is as high as 25.8 per 100,000 women with a mortality rate of 12.7 per 
100,000 women9. Despite advancement in diagnostic and therapeutic modalities, the incidence of breast cancer 
is still expanding at an alarming rate. Therefore, the scientific quest continues for the discovery of biomarkers 
that can be useful in diagnosis or prediction of the disease with optimal sensitivity and specificity. As the role of 
SPLs has been extensively studied in various cancers, their metabolites can be envisioned as potential biomarkers  
in breast cancer. Recent advances in lipidomics have unraveled a reliable and informative method for the 
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comprehensive profiling of SPLs. However, the main drawback of the technique is that it generates highly com-
plex and large volume of the data which further requires coupling to analytical strategies to put the data into con-
text. Though an elevation in the levels of bioactive SPLs has been reported earlier in human breast cancer patient 
samples10, a little is known about the use of these metabolites as clinically relevant biomarkers. In the previous 
study, the authors have used a targeted and quantitative approach to understand the difference in sphingolipid 
profiling between tumor and adjacent normal tissues. Our study, on the other hand, has used a non-targeted 
method using Ultra-High-Performance Liquid Chromatography (UHPLC)-High Resolution (orbitrap) Mass 
Spectrometry (HRMS) for the comprehensive profiling of SPLs in breast cancer patient samples. In addition, we 
have utilized more appropriate statistical tools which is a prerequisite for the biomarker identification11. The lipi-
domic studies in combination with multivariate analysis helped us uncover the biomarkers of clinical relevance 
in a highly efficient manner. The partial least square discriminant analysis (PLS-DA) method was employed to 
identify the tumor related alterations in sphingolipid metabolites. The performance of the selected metabolites as 
biomarkers was further assessed using receiver operating characteristics (ROC) analysis. The levels of individual 
SPLs were also determined among the two groups and were correlated to clinicopathological characteristics. In 
addition, to validate the role of selected sphingolipid metabolites in breast cancer, we also analyzed the expression 
of genes involved in their synthesis in the local patient cohort as well as TCGA cohort.

Results
Patient characteristics.  A total of 31 female breast cancer patients were enrolled in the study with a median 
age of 50 (32–76) years. The breast cancer cohort had a greater frequency (90.3%) of invasive ductal carcinoma 
than those with the ductal carcinoma in situ (3.2%) and metastatic carcinoma (6.5%). Further, the tumor subtype 
grading showed that 20 (64.5%) patients were positive and 11 (35.5%) were negative for estrogen (ER) receptor. 
The lymph node metastasis was observed in 15 (48.4%) patients, while 16 (51.6%) patients were found to be nodal 
negative. The proliferation marker Ki67 was reported to be higher than 30% in 6 (19.4%) patients and less than or 
equal to 30% in 25 (80.6%) breast cancer patients. Overall, out of 31 patients, 21 (67.7%) were in the early (I + II) 
pTNM stage and 10 (32.3%) were found to be in the late stages (III + IV) of cancer (Table 1).

Identification of sphingolipids in tumor and adjacent normal breast tissue.  Comprehensive pro-
filing of SPLs was carried out in breast tumor and adjacent normal tissues in triplicates. Based on accurate mass 
of precursor and fragment ions and the characteristic ions obtained, a total of 92 sphingolipid species covering 6 

Characteristics

Number of patients 31

Age (Years)

 Median (Range) 50 (32–76)

  ≤50 16

  >50 15

Tumor Type

  Ductal carcinoma in situ (DCIS) 1

  Invasive ductal carcinoma 28

  Metastatic carcinoma 2

Tumor subtypes

  ER+/PR+ 20

  ER+/PR− 6

  Her2neu+ 4

  Triple Negative 1

Nodal Status

  Positive 15

  Negative 16

Ki67 (%)

  ≤30 (%) 25

  >30 (%) 6

TNM Staging

  IA 8

  IIA 10

  IIB 3

  IIIA 5

  IIIC 3

  IV 2

Table 1.  Clinicopathological characteristics of patients with breast cancer.
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subcategories were identified. The species number was further decreased to 49 when the noise level was reduced 
to 5% and mass accuracy was set to 10 ppm for parent ion and 0.1 Da for product ions.

The characteristic fragmentation pattern of each species is summarized in Tables 2, 3 and Supplementary 
Tables 1 and 2.

Relative abundance of sphingolipids in breast cancer.  A total of 49 sphingolipid metabolites were 
observed in breast cancer patients (Fig. 1). Of all the metabolites, ceramide phosphates comprised only 10% while 
sphingosine phosphate constituted only 6%. A vast majority of the metabolites however belonged to ceramide and 
sphingomyelin groups comprising 33% and 51% of the total species, respectively.

Class FattyAcid
Retention 
Time(min)

Molecular 
Formula

Observed 
Mass

Error 
(ppm)

Calculated 
Mass MS/MS fragments (m/z)

CerP

(d23:0) 6.4 C23 H48 O6 
N1 P1 464.3151 −2.15 465.3219 310,292,264

(d23:1) 6.0 C23 H46 O6 
N1 P1 462.2993 −1.73 463.3063 244, 219

(d24:1) 6.5 C24 H48 O6 
N1 P1 522.3201 −0.77 477.3219 270,122,112

(d18:1/12:0) (IS) 7.0 C30 H60 O6 
N1 P1 562.4229 1.24 561.4158 264,446,464

So
(d17:0) (IS) 4.5 C17 H37 O2 

N1 288.2894 2.77 287.2824 270,252,240,220, 60

(d17:1) (IS) 4.2 C17 H35 O2 
N1 286.2737 3.14 285.2668 269,171,131,105

S1P

(d17:0) (IS) 5.2 C17 H38 O5 
N1 P1 368.2559 1.90 367.2488 295, 81

(d20:2) 6.0 C20 H40 O5 
N1 P1 464.2782 −0.86 405.2644 292,264,128

(d22:2) 6.5 C22 H44 O5 
N1 P1 492.3097 −1.22 433.2957 375,180

Table 2.  Identification of sphingolipids in breast tissue using UHPLC in “Single Phase Extract”.

Class Fatty acid
Retention 
Time(min)

Molecular 
Formula Observed Mass

Error 
(ppm)

Calculated 
Mass

MS/MS 
fragments (m/z)

Cer

(d18:1/12:0) (IS) 3.0 C30 H58 O3 N1 526.4484292 −1.76 481.4495 283,270,88

(d18:1/16:0) 3.0 C35 H68 O5 N1 582.5112221 −1.93 537.5121 311,298,88

(d18:1/18:1) 2.9 C37 H70 O5 N1 608.5272988 −2.63 563.5277 102

(d18:1/23:2) 2.9 C43 H80 O5 N1 690.6053293 −1.49 631.5903 390,347,235

(d18:1/24:1) 2.9 C43 H82 O5 N1 692.6212052 −2.32 647.6216 546,390,237

(d18:2/16:0) 3.0 C35 H66 O5 N1 580.4956225 −2.11 535.4964 256,104

(d18:2/23:0) 2.9 C42 H80 O5 N1 678.6055060 −2.22 633.6060 102

(d18:2/24:1) 2.9 C43 H80 O5 N1 690.6053805 −2.00 645.6060 316,168

(d18:1/25:0) (IS) 2.9 C44 H86 O5 N1 708.6525276 −2.30 663.6529 495,439,102

DHCer

(d18:0/16:0) 3.0 C34 H70 O3 N1 584.5269029 −2.06 539.5277 280,255,237

(d18:0/18:1) 2.9 C37 H72 O5 N1 610.5425634 −1.91 565.5434 102

(d18:0/21:2) 2.9 C41 H78 O5 N1 664.5900060 −1.97 605.5747 618,364

LacCer (d18:1/12:0) (IS) 8.0 C42 H80 O13 
N1 806.5628915 0.26 805.5551 190,146,102

SM

(d18:1/21:1) 7.2 C46 H90 O8 
N2 P1 829.646159 −2.36 770.6302 392,168,78

(d18:2/22:0) 7.2 C45 H90 O6 
N2 P1 785.6525117 1.64 784.6458 184,86

(d18:1/12:0) (IS) 7.3 C35 H72 O6 
N2 P1 647.5118463 1.78 646.5050 184,102

DHSM

(d18:0/18:1) 7.2 C41 H84 O6 
N2 P1 731.6055663 1.82 730.5989 184,102

(d18:0/24:2) 7.1 C47 H94 O6 
N2 P1 813.6838264 1.57 812.6771 184,86

(d18:0/22:1) 7.2 C45 H91 O6 
N2 P1 787.6683 1.27 786.6615 102

Table 3.  Identification of sphingolipids in breast tissue using UHPLC in “Organic Phase Extract”. IS- Internal 
Standard; CerP- Ceramide 1-Phosphate; So-Sphingosine/Sphinganine; S1P- Sphingosine 1-Phosphate; 
Cer-Ceramide, DHCer- Dihydro Ceramide; LacCer- Lactosyl Ceramide; SM-Sphingomyelin; DHSM-
DihydroSphingomyelin.
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PLS-DA model for biomarker identification and selection.  Due to high-dimensionality of the 
lipidomics data, multivariate analysis was performed to determine sphingolipid metabolites that were signif-
icantly altered in tumor and adjacent normal tissues (Fig. 2). The variables were not well separated from each 
other between the two groups, as shown by 3D-score plot diagram (2A, 2C). However, Variable Importance in 
Projection (VIP) score values for CerP(23:0), CerP(23:1), S1P(20:2), S1P(22:2), SM(18:0/24:2), SM(18:2/22:0), 
SM(40:1) were found to be >1 suggesting that these metabolites can be utilized as predictivel biomarkers in breast 
cancer (2B, 2D).

Dysregulation of sphingolipid levels in breast cancer.  The levels of sphingolipid metabolites having 
VIP score values >1 were compared in tumor and adjacent normal tissues of breast cancer patients as shown 
in Fig. 3. The levels of ceramide phosphates CerP(23:0) and CerP(23:1) were found to be significantly higher in 
tumor tissues as compared to adjacent normal tissues. Further, there was significant upregulation in the levels of 
sphingosine phosphates S1P(20:2) and S1P(22:2) in tumor tissues. The level of sphingomyelin SM(18:0/24:2) was 
also found to be high in tumor tissues, although the difference was not statistically significant. On the contrary, 
the level of two sphingomyelin species SM(18:0/24:2) and SM(18:2/22:0) were downregulated in tumor tissues but 
the difference did not reach statistical significance may be due to small sample size.

Assessment of diagnostic potential and predictive ability of sphingolipids.  ROC analysis for the 
individual sphingolipid metabolites.  ROC curve analysis was performed to determine the diagnostic potential of 
each sphingolipid metabolite (Fig. 4). Area under curve (AUC) was used to assess the performance of predicted 
biomarkers. All the above mentioned sphingolipid metabolites particularly ceramide phosphates and sphingosine 
phosphates were found to have a fair predictive ability in discriminating breast tumor tissues from adjacent nor-
mal tissues with AUC = 0.708 (95% CI- 0.489 to 0.874, p = 0.059) with 75% sensitivity and 66.67% specificity for 
CerP(23:0) (Fig. 4A), AUC = 0.743 (95% CI- 0.525 to 0.898, p = 0.026) with 75% sensitivity and 75% specificity 
for CerP(23:1) (Fig. 4B), AUC = 0.722 (95% CI- 0.503 to 0.884, p = 0.049) with 58.33% sensitivity and 91.67% 
specificity for S1P(20:2) (Fig. 4C), AUC = 0.729 (95% CI - 0.511 to 0.888, p = 0.053) with 58.33% sensitivity and 
100% specificity for S1P(22:2) (Fig. 4D), AUC = 0.632 (95% CI - 0.413 to 0.817, p = 0.29) with 75% sensitivity 
and 66.67% specificity for SM(18:0/24:2) (Fig. 4E), AUC = 0.632 (95% CI- 0.413 to 0.817, p = 0.27) with 83.33% 
sensitivity and 50% specificity for SM(18:2/22:0) (Fig. 4F) and AUC = 0.646 (95% CI- 0.426 to 0.828, p = 0.22) 
with 58.33% sensitivity and 75% specificity for SM(40:1) (Fig. 4G).

ROC analysis for combination of sphingolipid metabolites.  Further, we evaluated the AUC scores for the com-
bination of metabolites to determine whether the set of metabolites could be used to discriminate tumor tissues 
from adjacent normal breast tissues. The cumulative AUC scores were estimated for the 22 combinations of 7 
sphingolipid metabolites (Supplementary Table 3). Of the various determined combinations, 6 set of metabolites 
were found to have improved AUC values (≥ 0.8) as compared to individual metabolites and are represented in 
Fig. 5.

Association of sphingolipid levels with clinicopathological characteristics and proliferation 
potency in breast cancer.  The correlation of aforementioned sphingolipid metabolites with age, tumor 
stage, tumor grade was also determined. No significant relationship was found between the clinical features 
and sphingolipid levels in breast cancer cohort owing to small sample size. Further, in order to determine the 
role of SPLs in breast cancer aggressiveness, we next investigated the association between the levels of SPLs and 
Ki-67 index. It was found that the Ki67 levels were positively correlated to ceramide phosphate CerP(23:0) and 
CerP(23:1) levels in tumor tissues (Fig. 6B, 6D). However, no correlation was found between Ki67 and ceramide 
phosphate levels in adjacent normal tissues (Fig. 6A, 6C). This study revealed that the ceramide phosphates might 
have a possible role as a biomarker in cancer proliferation and aggressiveness. No significant associations were 
found between Ki67 index and the level of other sphingolipid metabolites.

Figure 1.  Pie chart representing the abundance of sphingolipid metabolites in breast tissue.
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Hierarchical clustering heatmap of sphingolipid metabolites in breast cancer patients.  Based 
on the levels of SPLs, a heatmap of the hierarchical clustering was plotted. The metabolites were classified into 
two clusters corresponding mainly to sphingomyelins and ceramides. Within each cluster, two sub clusters were 
observed (Fig. 7). Further, it was found that ceramide phosphates and sphingosine phosphates belonged to same 
sub-cluster indicating that these metabolites might have a common role in breast cancer.

Dysregulation of sphingolipid metabolizing genes in breast cancer.  To validate alterations in the 
levels of sphingolipid metabolites in breast cancer patients, the expression analysis of genes involved in their syn-
thesis was carried out in local cohort as well as The Cancer Genome Atlas (TCGA) cohort. There was a significant 
increase in the levels of Ceramide Kinase (CERK) gene in tumor tissues as compared to adjacent normal tissues 
in both local as well as TCGA cohort (Fig. 8A, 8D). The levels of Sphingosine Kinase 1 (SPHK1) were also found 
to be significantly upregulated in tumor tissues in both the cohorts (Fig. 8B, 8E). No significant difference was 
observed in the expression of Sphingomyelin Synthase 1 (SGMS 1) between tumor and adjacent normal tissues 
in local cohort (Fig. 8C). In contrast, TCGA cohort exhibited significant downregulation of SGMS1 in tumor 
tissues as compared to adjacent normal tissues (Fig. 8F). Further, ROC curve analysis was also performed for 
the abovementioned genes in local and TCGA cohort (Supplementary Fig. 1). The AUC values for CERK and 
SPHK1 depicted a fair and significant potential to discriminate between tumor and adjacent normal tissues in 
local (Supplementary Fig. 1A, 1B) and TCGA cohort (Supplementary Fig. 1D and 1E) respectively. A fair AUC 
score was also observed for SGMS1 gene and was found to be significant only in TCGA cohort (Supplementary 
Fig. 1F, 1C).

Figure 2.  (A) 3D score plot (B) VIP score plot for sphingosine and ceramide phosphates and (C) 3D score 
plot (D) VIP score plot for ceramides and sphingomyelins. Group 0 (red) indicates tumor tissues and Group 
1(green) indicates adjacent normal breast tissues.
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Discussion
Metabolomics has recently emerged as a highly robust technique for the discovery of biomarkers to diagnose, 
monitor or predict the risk of disease12. Identification and prediction of a biomarker, however, also requires 
precise data analysis by using appropriate statistical measures. Unfortunately, this area is often overlooked by 
researchers and only few studies have utilized proper statistical approaches for the biomarker selection. The cur-
rent study was aimed to address this lacuna by combining highly efficient UHPLC-High Resolution (orbitrap) 
Mass Spectrometry (HRMS) approach with multivariate analysis to identify the sphingolipid biomarkers of clini-
cal significance. A comprehensive profiling of SPLs was performed in tumor and adjacent normal tissues obtained 
from breast cancer patients. The study enlisted all the possible sphingolipid species in these patients and led to 
the identification of 49 SPLs belonging to 6 sub-categories. To visualize the lipid variations among the two groups 
(tumor and adjacent normal tissue), partial least square discriminant analysis (PLSDA) was employed. PLSDA 
is a method used to sharpen the separation among different observation groups and predict the discriminant 
variable using the Variable Importance in Projection (VIP) scores. VIP values determine the impact of individual 
variable that contribute to separation among groups in the PLS-DA models. Generally, VIP values of 0.7–0.8 
have been considered acceptable for the variable selection while the values equal to or greater than 1.0 are the 
most influential13. In this cohort, we report a total of seven potential SPLs including CerP(23:0), CerP(23:1), 
S1P(20:2), S1P(22:2), SM(18:0/24:2), SM(18:2/22:0) and SM(40:1) with VIP values>1, however we did not find 
any metabolites having VIP values within the range of 0.7–0.8. Similar approach using VIP score has been utilized 
to predict the pathological response to neo-adjuvant chemo-radiation therapy (NCRT) in locally advanced rectal 
cancers14. As far as SPLs are concerned, there is only one study that has used VIP score to identify 52 differential 
sphingolipid metabolites in A270 Human Ovarian Cancer Cell Line and its Taxol resistant strain15. Similarly, VIP 
values were used to predict the potential glycerophospholipid biomarkers in breast cancer cell lines MCF-7 and 
MDA-MB-23116. The satisfactory prediction performance of the above studies underlines the importance of VIP 
scores for the biomarker prediction in clinical studies. To the best of our knowledge, none of the studies have tried 
to predict sphingolipid biomarker in breast cancer patients using VIP values.

Among selected species, the levels of ceramide phosphates CerP(23:0) and CerP(23:1) were significantly 
increased in tumor tissues as compared to adjacent normal tissues. Ceramide 1- phosphate (Cer1P) has been 
reported to play important role in cancer associated pathways including cell growth, survival, proliferation17,18, 
inflammation and migration19,20. Cer1P is synthesized through the phosphorylation of ceramide by the enzyme 

Figure 3.  Levels of sphingolipid metabolites in breast tumor and adjacent normal tissue samples (A) 
CerP(23:0), (B) CerP(23:1), (C) S1P(20:2), (D) S1P(22:2), (E) SM(18:0/24:2), (F) SM(18:2/22:0), (G) SM(40:1).

https://doi.org/10.1038/s41598-020-61283-w
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Ceramide Kinase (CERK). Therefore, to confirm the above observations, we also analyzed the expression of 
CERK in breast tissues. The present study reports significantly high levels of CERK in tumor tissues as compared 
to adjacent normal tissues in local as well as TCGA cohort. CERK has also been reported earlier to promote 
tumor cell growth, survival and mammary tumor reccurrence21,22. High expression of CERK has been found to 
be associated with poor prognosis in breast cancer23. Contrary to our studies, a recent report suggested that CERK 
expression in TCGA cohort is downregulated in tumor tissues as compared to adjacent normal breast tissues24. 
However, the difference among the two studies in TCGA analysis can be attributed to heterogeneity of the sam-
ples and utilization of different platforms.

To establish the role of ceramide phosphates in breast cancer aggressiveness, we analyzed the association of 
ceramide phosphates to Ki-67 index reported in these patients. It was found that ceramide phosphate levels have 
a significant positive correlation to high Ki-67 index in tumor tissues. An earlier report suggested that high cer-
amide levels are associated with low proliferation potency in breast cancer patients24. Although, ceramide phos-
phates are formed from the ceramides, the two metabolites have antagonistic effects in cancer25,26. The present 
study is the first report on the levels of ceramide phosphates and CERK expression in breast cancer patients and 
clinical correlations of ceramide phosphates with Ki67 index, making it a pioneer study in this field.

A good biomarker selection further requires the identification of metabolites that are capable of discriminating 
between two groups (diseased vs healthy) with high sensitivity and specificity. Numerous studies have suggested 

Figure 4.  ROC curves for evaluating the diagnostic potential of sphingolipids. (A) CerP(23:0), (B) CerP(23:1), 
(C) S1P(20:2), (D) S1P(22:2), (E) SM(18:0/24:2), (F) SM(18:2/22:0), (G) SM(40:1).
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ROC curve as most statistically valid method for evaluation of biomarker performance27–29. Therefore, to validate 
the significance of these metabolites as biomarkers, we further used ROC curve analysis. It was observed that cer-
amide phosphates CerP(d23:0) and CerP(d23:1) have a fair diagnostic potential with AUC values greater than 0.7.

Another significant finding of our study is the presence of these rare odd carbon chain ceramide phosphates 
CerP(23:0) and CerP(23:1) in patient samples. Although, almost all natural occurring fatty acids are even num-
bered, a recent study reported that odd carbon chain fatty acids also contribute <1% of human plasma compo-
sition30. Further, the authors reported four significantly measurable odd carbon chain fatty acids, C15:0, C17:0, 
C17:131 and C23:032. The odd carbon chain fatty acids C15:0 and C17:0 have also been acquiring attention within 
the scientific community as biomarkers for type II diabetes mellitus (T2D) and coronary heart disease (CHD). 
Studies have shown that there is a negative association between the levels of circulating odd carbon chain fatty 
acids and the risk for metabolic disease33,34. On the contrary, C15:0 and C17:0 were found to be positively asso-
ciated with etiology of T2D and CHD35,36. The possible reasons for the presence of circulating C23:0 in rat brain 
was found to be either the exogenous intake through milk or endogenous production by the elongation of odd 
carbon chain fatty acid C17:037,38. Recently, a genome-wide association meta-analysis of circulating odd car-
bon chain fatty acids revealed that C23:0 is predominantly a component of sphingolipids and is associated with a 
common variation in ceramide synthase CERS4 gene39. However, there is no report underlining the role of odd 
carbon chain SPLs in cancer patients till date.

Other sphingolipid metabolites selected according to VIP score were sphingosine phosphates S1P(20:2) and 
S1P(22:2). Sphingosine 1-phosphates (S1P) has been recognized as crucial regulators of sphingolipid rheostat 

Figure 5.  ROC curve for the combination of sphingolipid metabolites. (A) CerP(23:1)/SM(40:1); (B) 
S1P(20:2)/SM(18:2/22:0); (C) S1P(20:2)/SM(40:1); (D) S1P(22:2)/SM(18:2/22:0); (E) S1P(22:2)/SM(40:1); (F) 
SM(18:0/24:2)/SM(18:2/22:0)/SM(40:1).

https://doi.org/10.1038/s41598-020-61283-w
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as they reduce pro-apoptotic ceramide and augment survival signaling40. In the present study, tumor samples 
exhibited significantly higher levels of S1P as compared to adjacent normal tissues. Universally high levels of S1P 
in breast cancer patients have also been reported earlier however they did not observe individual species of S1P as 
reported in the present study10. Further, a value of AUC >0.7 by ROC analysis suggested the diagnostic potential 
of these sphingolipid metabolites in breast cancer patients. S1P is formed from the sphingosine by the action of 
enzyme Sphingosine Kinase (SPHK) which exists in two isoforms- SPHK1 and SPHK2. Out of the two, SPHK1 
is the most common form involved in the cancer cell growth and survival41. In the present study, we also ana-
lyzed the expression of SPHK1 in breast cancer in local and TCGA cohort. The levels of SPHK1 in breast tumor 
tissues were found to be significantly higher than the adjacent normal tissues in both the cohorts. These observa-
tions are consistent with the recent study which reports increased expression of SPHK1 in biliary tract cancer in 
TCGA cohort42. High levels of SPHK1 were shown to enhance tumor formation in breast cancer MCF-7 cells43. 
Overexpression of SPHK1 enzyme has also been reported in hepatocellular carcinoma and adrenocortical carci-
noma tissues44,45. The S1P/SPHK1 axis has also been reported earlier to promote the pancreatic cancer growth by 
regulating the expression of pancreatic stellate cells46.

Sphingolipid metabolites have also been reported to participate in the process of cellular proliferation and 
contribute to tumor progression47,48. In ovarian cancer, S1P has been recognized to promote proliferation and 
stimulate chemotactic migration and invasion49,50. However, we did not find any significant correlation between 
S1P and Ki67 in these patients which could be due to small sample size in the current study.

The present study further demonstrated that the levels of two sphingomyelins SM(18:2/22:0), SM (40:1) were 
low while one SM(18:0/24:2) were high in tumor tissues as compared to adjacent normal tissue, but the difference 
was not statistically significant. Sphingomyelins are the important constituents of lipid rafts along with the cho-
lesterol and glycerophospholipids and thus involved in the regulation of numerous signaling pathways51. There 
is contradictory evidence on the levels of sphingomyelins in cancer. A reduction in the levels of sphingomyelins 
has been reported in colon cancer tissues52. Reduced plasma levels of sphingomyelins SM(16:0), SM(24:0) and 
SM(24:1) have also been observed in A549 and U118 cancer cell lines53. Contrary to our results, Nagahashi and 
colleagues reported high concentration of sphingomyelins in breast tumor samples10. To confirm our findings, 
we also determined the level of Sphingomyelin synthase 1(SGMS1) in breast cancer tissues. In the local cohort, 
we did not observe any significant difference in the mRNA expression of SGMS1 between tumor and adjacent 
normal tissues, though it was found to be significantly downregulated in TCGA cohort. A recent study also sug-
gests that the expression of SGMS1 is downregulated and is associated with sphingolipid reprogramming and 

Figure 6.  Correlation between Ki67 index and CerP(23:0) levels in (A) adjacent normal (B) tumor tissue and 
CerP(23:1) levels in (C) adjacent normal and (D) tumor tissues.
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Figure 7.  Heatmap showing levels of SPLs in breast tissues. Columns represent the adjacent normal and 
tumor tissues while rows represent the sphingolipid species. Shades of blue and maroon represent reduction 
and elevation in the levels of SPLs with respect to the median value. Group 0 (red) indicates tumor tissues and 
Group 1(green) indicates adjacent normal breast tissues.

Figure 8.  Expression of sphingolipid metabolizing genes. (A) Ceramide Kinase, (B). Sphingosine Kinase 1 and 
(C). Sphingomyelin synthase 1 in local cohort and (D). Ceramide Kinase, (E). Sphingosine Kinase 1 and (F). 
Sphingomyelin synthase 1 in TCGA cohort.
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worse prognosis in melanoma54. Though ROC curve analysis (AUC >0.6) of the sphingomyelins suggested their 
moderate potential as biomarkers, further studies with large sample size must be conducted to understand the 
clinical relevance of these species.

The clinical performance of the metabolites can be improved considerably by combining multiple metabolites 
in a panel. In the present study, we also aimed to evaluate the AUC values for 22 combinations of 7 metabolites. 
A considerable increase in the AUC score for 6 combinations: CerP(23:1)/SM(40:1); S1P(20:2)/SM(18:2/22:0); 
S1P(20:2)/SM(40:1); S1P(22:2)/SM(18:2/22:0); S1P(22:2)/SM(40:1); SM(18:0/24:2)/SM(18:2/22:0)/SM(40:1) was 
observed suggesting that these sphingolipid metabolite sets can be used efficiently to distinguish tumor tissues 
from adjacent normal breast tissues. Cumulative ROC analysis has also been used to improve the biomarkers 
performance in other cancer types55,56.

All these findings conclusively ascertain the involvement of sphingolipid metabolites in breast cancer patients.
We would also like to mention that none of the SPL metabolites showed any association with clinicopatholog-

ical characteristics in these patients. However, the small sample size in this study is a limiting factor and further 
investigation with large sample size may provide a concrete evidence in this regard.

To conclude, the present study reports novel sphingolipid metabolites which may have potential as biomarkers 
in breast cancer. A major finding is the presence of odd carbon chain ceramide phosphates which could clearly 
distinguish between the tumor and adjacent normal tissues with high sensitivity and specificity. Further, a high 
positive association with Ki67 reinforce the assumption that these odd carbon SPL species might have a predictive 
role in cancer proliferation and aggressiveness.

Materials and Methods
Chemicals and solutions.  The internal standard (IS) cocktail (LM-6005) consisting of 25 µM each of nine 
uncommon SPLs in ethanol including Sphinganine (d17:0), Sphingosine (d17:1), Sphinganine-1-Phosphate 
(d17:0) and Sphingosine-1-Phosphate (d17:1), Ceramide (d18:1/12:0), Ceramide (d18:1/25:0), Ceramide-1-
Phosphate (d18:1/12:0), Hexosyl Ceramide (d18:1/12:0), Lactosyl Ceramide (d18:1/12:0) and Sphingomyelin 
(d18:1/12:0) was purchased from Avanti Polar Lipids (Alabaster, AL). Ammonium formate (NH4HCO2), potas-
sium hydroxide (KOH), acetic acid (CH3COOH) and formic acid (HCOOH) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). LC-MS-grade chloroform (CHCl3), methanol (CH3OH) and isopropanol (IPA) 
were purchased from Merck (Darmstadt, Germany). All other chemicals used were of analytical grade.

Sample collection.  The tumor and adjacent normal tissues were collected from the breast cancer patients 
after surgical resection from the Department of General Surgery, PGIMER. The samples were obtained after 
informed consent and the protocol was approved from Institutional Ethics Committee, PGIMER (IEC-12/2017–
787) and Panjab University Institute Ethics Committee (PUIEC/2019/154/A/01/03). The study was conducted 
according to the ethical guidelines stated in Helsinki Declaration. A total of 31 cases were included in this study. 
Clinical details were recorded and a pathological staging was done for all the patients. Clinicopathological param-
eters such as age, tumor type, pathological grade and TNM staging were determined for each resected specimen. 
The TNM classification was done according to the American Joint Committee on Cancer (AJCC) 8th edition. Breast 
tissue samples were also characterized according to standard pathology based on the estrogen receptor (ER), pro-
gesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2). The tissue samples were stored at 
−80 °C for sphingolipid isolation.

Sphingolipid extraction.  The SPLs were isolated with minor modification of the method given by Shaner 
et al.57. The tissue was homogenized in Phosphate Buffered Saline (PBS) using a Minilys Homogenizer from 
Bertin Technologies (Montigny-le-Bretonneux, France) and sonorex digital ultrasonic cleaning unit (Bandelin 
Electronic, Berlin, Germany) at room temperature for 30 sec. After addition of 0.5 ml of CH3OH and 0.25 ml 
of CHCl3, 20 µl of Internal Standard (IS) was spiked into each sample. Prior to use, 1 µl (500 µg/ml) of butylated 
hydroxyl toluene (BHT) was added to IS for stabilization. One blank sample and one positive control were also 
processed along with the samples. The mixture was then incubated at 48 °C overnight to allow complete transition 
of SPLs. After cooling, 75 µl of 1 M KOH in CH3OH was added and the mixture was kept in a shaking incubator 
for 2 h at 37 °C to cleave glycerophospholipids. After cooling to room temperature, 5 µl of glacial acetic acid was 
added for the base neutralization. The mixture was divided into two halves serving as single phase extract and 
organic phase extract. The single-phase extract was centrifuged and the supernatant was transferred to a new vial. 
The residue was reextracted with 1 ml of CH3OH: CHCl3 (1:2), centrifuged and the supernatant was combined 
with the previous collection. To the organic phase extract, 1 ml of chloroform and 2 ml of H2O was added and 
the lower layer was collected after centrifugation. The upper phase was re-extracted with an additional 1 ml of 
chloroform and was combined to the lower layer residue (Fig. 9).

The single-phase extract and the organic phase extract were dried using Scanvac Centrifuge Vacumm 
Concentrator (Labogene, Denmark) and the residue was reconstituted in 0.2 ml of the mobile phase solvent for 
LC-MS/MS analysis. The mixture was then sonicated, centrifuged and the clear supernatant was transferred to 
auto-injector vials.

Liquid chromatography and mass spectrometric analysis of sphingolipids.  Single phase 
extract.  The single-phase extract was used for analyzing the levels of sphingosine, sphingosine-1-phosphate 
and ceramide-1-phosphate. High resolution (Orbitrap) Mass spectrometer (HRMS) of Thermo Q-Exactive con-
nected with Diaonex UHPLC system was used for the SPLs analysis. The chromatographic separation was per-
formed by reverse phase LC using Column: C18 (100 mm × 1.0 mm ID; 1.7 µm particle size) and a binary solvent 
system with a flow rate of 0.1 ml/min. The mobile phase A1 consisted of CH3OH: H2O (60/40, v/v) with 5 mM 
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ammonium formate and 0.3% formic acid. The mobile phase B1 consisted of CH3OH with 5 mM ammonium 
formate and 0.3% formic acid. The temperature of the C18 column was increased gradually till 40 °C to avoid 
carryover of Cer1P. Temperatures above 40 °C were not used in the current study as high temperature may affect 
the stability of the lipid species.

The A1/B1 solvent ratio was maintained at 60/40 for 1 minute followed by a gradient to 100% B1 for 5 minutes 
which was maintained for 1.5 minutes. The gradient was again reduced to 60/40 (A1/B1) within 0.2 minutes and 
was equilibrated for 2.3 minutes before the next run.

Organic phase extract.  This phase was used for the analysis of ceramides, hexosylceramides and sphingomyelins. 
The separation was performed using Column:LC-NH2 column (100 mm × 2.1 mm ID; 1.7 µm particle size) col-
umn and a binary solvent system with a flow rate of 0.1 ml/min. The column was equilibrated prior to injection of 
the samples. The mobile phase A2 consisted of CH3CN/CH3OH/HCOOH (97/2/1 v/v/v) with 5 mM ammonium 
formate and phase B2 consisted of CH3OH/H2O/HCOOH (89/6/5) with 50 mM triethylammonium acetate. The 
A2/B2 gradient was maintained as follow: 100% A2 for 1 minute and was continued for 3 minutes followed by a 
linear gradient of 100% B2 for 1 minute. The flow was maintained for 3 minutes and then restored to 1-minute 
linear gradient of 100% A2 and was continued for 1 minute before the next run.

Eluted lipids were analyzed using a HRMS viz; Q-Exactive mass spectrometer (Thermo Electron, Bremen, 
Germany). The Xcalibur 2.2 interface was used to monitor data-dependent acquisition of lipid ions. This included 
a full MS scan covering 250 to 1250 Da range of mass-to-charge ratio (m/z) with a resolution of 1,40,000 and a 
tandem mass spectrometry (MS/MS) step (normalized collision energy: 30%; resolution: 35000). The MS/MS 
step was reiterated for the 5 major ions detected during the full MS scan. Dynamic exclusion time was set to 45 s.

RNA extraction and cDNA synthesis.  Total RNA was extracted from the tissue samples using PureLink 
RNA Mini Kit (Thermo Scientific) . The quality of the isolated RNA was checked using agarose gel electrophore-
sis and the yield was assessed using NanoDrop™ 2000c Spectrophotometer (Thermo Fisher Scientific, Waltham, 
Massachusetts, United States. Following DNase-I treatment, first strand cDNA was synthesized from 1 μg of RNA 
according to the protocol provided by Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific). The 
resulting cDNA was stored at −80 °C and was used as a substrate for qPCR.

Quantitative polymerase chain reaction (qPCR).  The expression of the candidate genes was deter-
mined by qPCR analysis. The sequence of the primers used is given in the Table 4. The reactions were performed 
in duplicates in Applied BiosystemsTM Quant StudioTM 3 Real Time PCR System (Waltham, MA,USA) using 
PowerupTM SYBR green mastermix. The quantitative data was normalized using Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) and the relative gene expression was assessed using 2-ΔΔCt method.

Data analysis.  Lipid search software 4.1.30 was employed for data processing and identification of SPLs 
based on their accurate MS/MS data. Relative quantification was done under MS mode and peak areas of the 

Figure 9.  Schematic representation of the method for sphingolipid isolation from breast tissue.
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highly-resolved extracted ion chromatograms (EICs) were integrated to obtain the area under curve of each SPL. 
The chromatogram for the internal standards is shown in Fig. 10.

The quantitative results were obtained by internal standard (IS) normalization and calculated as follows: 
Concentration of target SPL (nmol/mg of tissue) = (Area of target SPL/Area of corresponding IS) spiked con-
centration of IS.

All quantitative data was converted to Microsoft Excel and imported into MetaboAnalyst 4.058 software for 
Partial Least Square-Discriminant Analysis (PLS-DA). Multivariate analysis was used to differentiate the levels 
of SPLs between tumor and adjacent normal specimens. Variable Importance in Projection (VIP >1) values were 
used for the identification of sphingolipid metabolites that can be used as potential biomarkers. VIP score >1 
were considered as significant. The statistical analysis was performed with Graph Pad Prism-5 Version (Inc., La 
Jolla, CA, USA) and MedCalc software for Windows, version 15.0 (Ostend, Belgium). The differentially expressed 
SPLs and the corresponding metabolizing genes were evaluated between tumor and adjacent normal tissues using 
Wilcoxon t-test (non-parametric) or paired t-test (parametric) after the outlier exclusion. Unpaired t–test was 
used to compare the tumoral sphingolipid levels in different clinical subgroups. ROC curve was used to deter-
mine the diagnostic potential of the sphingolipid metabolites and the corresponding genes. Further, combined 
ROC estimation was done using logistic regression analysis. The obtained predicted probabilities were plotted as 
ROC curve along with the individual metabolites. Correlation of SPLs with clinicopathological characteristics 
was carried out using Pearson’s or Spearman’s coefficient.

Gene 
Name Forward Primer Reverse Primer

GAPDH 5′-ACCCACTCCTCCACCTTT-3′ 5′-CTGTTGCTGTAGCCAAATTCGT -3′

SPHK1 5′-AGGCTGAAATCTCCTTCACGC-3′ 5′-GTCTCCAGACATGACCACCAG-3′

CERK 5′-TGGTTGGGTCTTGCCAGATAC-3′ 5′-ACTTCCCACAGACGACTTGC-3′

SGMS1 5′-GTCGGAGAGCGCGATTGG3′ 5′-ATGCTGTCGTCACGTTGCAC-3′

Table 4.  Primer sequence of the genes.

Figure 10.  Chromatograms for the Internal Standards. 1: C17 Sphingosine; 2: C17 Sphinganine; 3: C17 
Sphingosine-1- Phosphate; 4: C17 Sphinganine-1-Phosphate; 5: C12 Sphingomyelin; 6: C12 Ceramide; 7: C12 
Glucosyl(β) Ceramide; 8: C12 Lactosyl(β) Ceramide; 9: C12 Ceramide-1-Phosphate; 10: C25 Ceramide.
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Analysis of gene expression in TCGA.  The gene expression data pertaining to Breast invasive carcinoma 
(TCGA abbreviation BRCA) was retrieved from the Firehose portal of Broad Institute (gdac.broadinstitute.org); 
this dataset comprise lowess-normalized level-3 microarray data (Agilent 244 K [G4502A]) from 529 tumor and 
61 adjacent normal tissues. Mann-Whitney U test (non-parametric) was used to calculate the difference in gene 
expression between tumor and normal tissues in TCGA cohort. All statistical analysis and image rendering was 
performed in R 3.4.4 statistical environment (www.r-project.org).
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