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Characterization of pulmonary 
immune responses to hyperoxia by 
high-dimensional mass cytometry 
analyses
D. Hanidziar1,5*, Y. Nakahori2,5, L. A. Cahill   2, D. Gallo3, J. W. Keegan2, J. P. Nguyen2, 
L. E. Otterbein   3, J. A. Lederer2,6 & S. C. Robson   4,6*

Prolonged exposure to hyperoxia has deleterious effects on the lung, provoking both inflammation and 
alveolar injury. The elements of hyperoxic injury, which result in high rates of lethality in experimental 
models, are thought to include multicellular immune responses. To characterize these alterations 
in immune cell populations, we performed time-of-flight mass cytometry (CyTOF) analysis of CD45-
expressing immune cells in whole lung parenchyma and the bronchoalveolar space of mice, exposed to 
48 hours of hyperoxia together with normoxic controls. At the tested time point, hyperoxia exposure 
resulted in decreased abundance of immunoregulatory populations (regulatory B cells, myeloid 
regulatory cells) in lung parenchyma and markedly decreased proliferation rates of myeloid regulatory 
cells, monocytes and alveolar macrophages. Additionally, hyperoxia caused a shift in the phenotype 
of alveolar macrophages, increasing proportion of cells with elevated CD68, CD44, CD11c, PD-L1, 
and CD205 expression levels. These changes occurred in the absence of histologically evident alveolar 
damage and abundance of neutrophils in the parenchyma or alveolar space did not change at these time 
points. Collectively, these findings demonstrate that pulmonary response to hyperoxia involves marked 
changes in specific subsets of myeloid and lymphoid populations. These findings have important 
implications for therapeutic targeting in acute lung injury.

Administration of supplemental oxygen is likely the most common medical intervention in critical care. High 
concentrations of inspired oxygen (up to 100%) are often administered to patients during thoracic and cardiac 
surgery and to critically ill patients with acute respiratory distress syndrome (ARDS) in order to achieve adequate 
oxygenation. However, it is now recognized that hyperoxia may have deleterious consequences by promoting 
inflammation, acute lung injury and impairing anti-microbial immunity1–10. Recent data also suggest that hyper-
oxia increases mortality of mechanically ventilated patients and patients with ARDS11,12.

Pulmonary responses to hyperoxia likely involve multiple immune cell populations. Separate studies have 
reported that hyperoxia inhibits macrophage proliferation13,14, heightens the ratio of F4/80lowCD206low (proin-
flammatory, “M1”) to F4/80highCD206high (anti-inflammatory, “M2”) alveolar macrophages15, and promotes influx 
of CD11bhighCD11clow cells (“inflammatory monocytes”) and CD11bhighCD11chigh macrophages (“exudative mac-
rophages”) into the bronchoalveolar space16. Increased infiltration of parenchyma by invariant NKT cells17 and 
late recruitment of neutrophils18 have also been described. However, an integrative analysis of changes across all 
immune populations of the lung has not yet been undertaken.

To address this gap and develop further potential therapeutic targets, we used time-of-flight mass cytometry 
(CyTOF)19 to deeply phenotype immune cells in lung parenchyma and bronchoalveolar space of mice breath-
ing room air and mice exposed to 48 hours of hyperoxia. At this early experimental time point, the exudative 
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injurious phase of hyperoxic lung injury has not yet developed20,21 and in keeping with this, there was no histo-
logic evidence of alveolar damage.

The systems immunology approach utilizing CyTOF allowed us to describe early immune cell compositional 
changes in the lung during hyperoxia. Characteristics of immune subsets (abundance, proliferation, pheno-
type) were contrasted between normoxia and hyperoxia using appropriate systems biology algorithms (viSNE, 
CITRUS)22–25; as well as traditional biaxial manual gating approaches. The innovative high-dimensional analysis 
revealed heterogeneous in vivo reactions of alveolar macrophages, parenchymal B cells, myeloid regulatory cells 
and other subsets with a less definitive lineage specification. Collectively, our findings illustrate the complexity 
of early immune-modulatory effects of hyperoxia and potentially have therapeutic implications for specific cell 
targeting in acute lung injury.

Results
viSNE analysis delineates immune cell composition of the lungs during normoxia and hyper-
oxia.  Immune cells were isolated from whole lung parenchyma, and in the independent experiment, from 
bronchoalveolar lavage fluid (BALF) of C57BL/6 mice breathing room air (FiO2 = 21%) and mice exposed to 
48 hours of hyperoxia (FiO2 > 95%). At this early experimental time-point, there was no histologic evidence of 
lung parenchymal damage (Fig. S1). Single-cell suspensions were stained with a panel of 36 metal isotope-tagged 
monoclonal antibodies (Table S1). Multi-dimensional data were acquired by time-of-flight mass cytometry and 
analyzed with viSNE (visualization of t-distributed stochastic neighbor embedding) algorithm. Live CD45+ 
immune cells for analysis were identified by a sequence of gating steps (Fig. S2). ViSNE analysis was run on equal 
numbers of events per each sample and data were pooled to generate final 2-dimensional density plots (Fig. 1). In 
tSNE plots, immune cells are clustered based on their phenotypic similarity. This unbiased analysis identified 9 
major clusters in lung parenchyma (Fig. 1A; clusters 1–5 representing myeloid cells and 6–9 lymphoid cells) and 
5 major clusters in the bronchoalveolar space (Fig. 1B; clusters 1–3 representing myeloid cells and 4–5 lymphoid 
cells). The immune lineage of clusters was determined based on their distinct expression pattern of surface and 
intracellular markers, further validated by overlays of manually gated populations on tSNE plots (Figs. S3 and S4). 
The same numbers of major immune clusters were identified in lungs and BALF during normoxia and hyperoxia. 
BALF data revealed that there was no infiltration of neutrophils into the alveolar space at this early time-point. 
However, we note that distribution of several density clusters (e.g., alveolar macrophages, B cells) in relation to 
tSNE1 and tSNE2 axis was shifted during hyperoxia, indicating multicellular immune responses. We next sought 
to further characterize specific changes in these immune cell clusters induced by hyperoxia.

Lung response to hyperoxia involves specific lymphoid and myeloid subsets.  We first com-
pared frequencies (% CD45+ cells) of major immune cell subsets as defined by manual gating strategy between 
normoxia and hyperoxia. The absolute cell numbers within immune populations are reported in Fig. S6. This 
approach identified significant reduction of a distinct immune cell population with a myeloid regulatory cell phe-
notype (CD172a + CD11bhi CD11clo Ly6C + Ly6G − Siglec-F + F4/80 + CD39+) in lung parenchyma (Fig. 2), a 
change further evident in tSNE plots from two independent experiments (Fig. S5).

To further explore whether abundance of other smaller subpopulations (not primarily identified by biaxial 
manual gating strategy) differs between normoxia and hyperoxia, we utilized an unbiased CITRUS (cluster iden-
tification, characterization, and regression) analysis of whole lung CD45+ cells. Significance analysis of microar-
rays (SAM) association model was selected. When applying the most stringent statistical cutoff of 0.01 FDR (false 
discovery rate), CITRUS analysis identified 6 clusters of interest which distinguished normoxic and hyperoxic 
lungs (Fig. 3A). We next determined the phenotypic identity of these 6 clusters identified by CITRUS (Fig. 3B,C).

Clusters 1–3 were interpreted as B cells by their expression of CD19 and MHCII. Cluster 3 additionally 
expressed higher levels of PD-L1 and CD69 consistent with regulatory B cell phenotype. Cluster 1 (Sca-1lo) 
was increased, while clusters 2 and 3 (both Sca-1hi) were decreased in hyperoxia (cluster 3 most significantly). 
Significant reduction of regulatory B cells was further evident in tSNE plots from two independent experiments 
(Fig. S7). Clusters 4 and 5 were interpreted as alveolar macrophages by their high expression of CD68 and 
Siglec-F. Cluster 4, which was significantly increased in hyperoxia, expressed higher levels of CX3CR1, PD-L1, 
CD205 and TLR2 as compared to cluster 5. The abundance of cluster 5 alveolar macrophages was decreased 
in hyperoxia. Cluster 6, which was significantly increased, did not exhibit definitive lineage specification (low 
expression of CD3, NK1.1, CD49b and CD11b). Significant differences in the frequencies (% CD45+ cells) of the 
6 clusters during normoxia and hyperoxia were additionally confirmed using unpaired t-test (Fig. S8).

We next analyzed ki67 protein expression to compare proliferation rate of major nine immune cell clusters in 
the lungs during normoxia and hyperoxia. We found a significantly reduced proliferation rate of myeloid regula-
tory cells, monocytes and alveolar macrophages during hyperoxia, while proliferation rates of other populations 
did not change significantly (Fig. 4).

Hyperoxia promotes an aberrant macrophage phenotype in the alveolar space.  Given the com-
plex changes involving populations of alveolar macrophages, we next investigated their phenotype in greater 
detail. Macrophages were the dominant population in the alveolar space during normoxia and after 48 hours 
of hyperoxia. We compared expression levels of select markers on the entire pool of alveolar macrophages in 
normoxia and hyperoxia. We found significant up-regulation of CD44, CD45, CD11c, CD68, CD172a, CD73, 
CD205, PD-L1 in hyperoxia, consistent with an activated macrophage phenotype (Fig. 5). Increased expression of 
these markers at a single cell level during hyperoxia was also confirmed by tSNE plots of CD45+ cells from whole 
parenchyma and CD45+ cells from BALF, obtained from 2 separate experiments (Fig. 6). Collectively, our data 
indicate that the aberrant macrophages expressing elevated levels of PD-L1, CD68, CD11c and CD205, infrequent 
in normal alveoli, become enriched during hyperoxia.
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Small populations of myeloid cells (MHCIIhi), T cells (CD3+) and B cells (CD19+) were present in the alve-
olar space during both normoxia and hyperoxia. Phenotypic changes of these small intra-alveolar populations 
were not detected in our study.

Figure 1.  The viSNE analysis defines distinctive immune cell clusters in the lungs during normoxia and 
hyperoxia. (A) Whole lung major immune cell clusters1–9 during normoxia and hyperoxia. Presented tSNE plots 
were constructed based on data obtained from 7 mice in normoxia and 7 mice in hyperoxia. (B) BALF major 
immune cell clusters1–5 during normoxia and hyperoxia. Presented tSNE plots were constructed based on data 
obtained from 6 mice in normoxia and 8 mice in hyperoxia. FlowSOM was used to color-code the clusters. The 
immune lineages of the clusters are listed in the corresponding tables.
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Discussion
High inspired concentrations of oxygen are frequently administered to anesthetized or critically ill patients to 
ensure adequate tissue oxygenation. However, hyperoxia may promote inflammation, contribute to acute lung 
injury and impair antimicrobial immunity. Hyperoxia is thought to trigger a multicellular immune response, 
implicating monocytes, macrophages, neutrophils and NKT cells, as noted in separate studies13–18. However, a 
global view of the immune populations during hyperoxia has not been previously studied.

The key contribution of our study is an unbiased identification of immune populations which respond to 
hyperoxia by changes in their abundance, proliferation rate or phenotype. With an intent to identify the early 
responses to hyperoxia, the immune populations were analyzed at 48 hours of hyperoxia exposure, before the 
exudative phase of acute lung injury is developed. No evidence of parenchymal damage was found histologically 
at this experimental time point. In the mouse model of hyperoxia used by us and other authors, lung injury 
becomes evident histologically at 72 hours, with further hyperoxia exposure leading to uniformly lethal lung 
injury at 80–90 hours17,20.

By applying CyTOF mass cytometry approach, we described previously unrecognized heterogeneous effects 
of hyperoxia, including, 1) reduction of immune regulatory populations (parenchymal regulatory B cells and 
myeloid regulatory cells), 2) diminished proliferation rate of myeloid regulatory cells, monocytes and alveolar 
macrophages, and 3) enrichment of macrophages with an aberrant phenotype in the alveolar space. At this tested 
time point, no increases in neutrophil population were observed.

In our study, myeloid regulatory cells have been identified as a distinct cluster of CD172a + Siglec-F + CD68 −  
F4/80 + CD11bhi CD11clo Ly6C + Ly6G − CD39+ cells. The lack of CD68 expression differentiated these innate 
immune cells from pulmonary monocytes and macrophage subsets, and lack of Ly6G differentiated them from 
neutrophils. The expression of Siglec-F and F4/80 on some of these cells indicates close phenotypic similarity with, 
and/or admixture, of eosinophilic granulocytes26–29. Expression of CD39 (ENTPD1), an ectoenzyme hydrolyzing 
extracellular adenosine triphosphate, supports immunoregulatory activity of this population30,31. Our observation 
that hyperoxia adversely affects the size of this population mirrors observations in tumor immunology. Hyperoxia 
has anti-tumor effects, at least in part, by depleting myeloid derived suppressor cells (MDSC) from tumors32. In con-
trast, hypoxia promotes maintenance of MDSC in tumor tissues33. From these and our studies, we might conclude 
that myeloid regulatory cells are highly sensitive to oxygen tension in vivo. Whether depletion of myeloid regulatory 
cells promotes lung inflammation, or is merely a bystander effect, requires further studies.

Regulatory B cells were identified as a distinct cluster of CD19+ B cells expressing high levels of PD-L1. 
Regulatory B cells are a subset of B cells exerting immunoregulatory suppressive functions, in part, by engaging 

Neutrophils Myeloid regulatory cells Monocytes

Alveolar Mφ Interstitial Mφ CD4+ T cells

CD8+ T cells B cells NK cells

Control Hyperoxia
0.0

0.5

1.0

1.5

%
 in

 C
D

45
+ 

C
el

ls

****

Control Hyperoxia
0

5

10

15

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
0

2

4

6

8

10

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
0

5

10

15

20

25

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
4

5

6

7

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
0

5

10

15

20

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
0

5

10

15

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
20

25

30

35

40

45

%
 in

 C
D

45
+ 

C
el

ls

Control Hyperoxia
0

2

4

6

8

%
 in

 C
D

45
+ 

C
el

ls

Figure 2.  Proportions of major immune subsets in normoxia and hyperoxia. Frequencies of major subsets in 
whole lung during normoxia and hyperoxia, compared by unpaired t-test. Each dot represents data from one 
lung. ****Indicates p < 0.0001. Myeloid regulatory cells are found to be significantly reduced in hyperoxia.
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PD-1 on target cells34,35. Further characteristics included high levels of CD69 and Sca-1, consistent with an acti-
vated/memory phenotype36,37. We speculate that the early depletion of pulmonary immunoregulatory popula-
tions such as regulatory B cells and myeloid regulatory cells may facilitate development of tissue-destructive 
inflammation (e.g., NKT cell, neutrophil infiltration) during later stages of hyperoxic lung injury. Our data infer 
association only but do provide new avenues of study.

Hyperoxia was previously found to inhibit macrophage proliferation in vitro13 and in vivo14. We therefore 
analyzed ki67 protein expression in all major immune cell clusters. We have found a significantly diminished 
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Figure 3.  Unbiased identification of immune clusters modified by hyperoxia. (A) CITRUS algorithm identifies 
6 major immune cell clusters1–6 where the abundance is significantly altered between hyperoxia and normoxia. 
(B) Expression of CD19, Siglec-F, CD3 and NK1.1 relevant for the clusters identified by CITRUS. (C) The 
boxplots indicate the spread of the abundance of the clusters, and the histograms depict the expression of 
specific cellular markers (blue depicts background expression in all cells, and red indicates marker expression of 
cells in a cluster).
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proliferation rate of alveolar macrophages, myeloid regulatory cells and monocytes during hyperoxia. Hyperoxia 
did not alter proliferation of other immune populations at the tested time point.

Contributions of alveolar macrophages to the evolution of hyperoxic lung injury are not fully understood. We 
found that hyperoxia promotes an aberrant macrophage phenotype with elevated expression of multiple markers, 
including CD44, CD68, CD11c, CD73, PD-L1 and CD205. The functional consequences of this phenotypic shift 
have not been investigated in the present study. However, we speculate that the upregulation of PD-L1 by mac-
rophages may be an early adaptive response to counteract oxygen-induced alveolar inflammation. PD-L1 delivers 
an inhibitory signal to macrophages and other immune cells38, perhaps contributing to reduced proliferative rate 
of macrophages observed during hyperoxia by several authors13,14. In human ARDS, low expression of PD-L1 by 
alveolar macrophages is associated with prolonged mechanical ventilation and increased mortality39, indicating 
importance of PD-1/PD-L1 pathway in regulating the evolution of lung injury.

Importantly, we cannot exclude that other populations of lung immune cells undergo significant changes dur-
ing hyperoxia, however, these changes were not captured by our analytic approach. This may be due to the limita-
tions of CyTOF, our chosen panel of antibodies, or a chosen time-point. For instance, we found that proportion of 
neutrophils remains unchanged at 48 hours of hyperoxia and neutrophils did not migrate into the alveolar space. 
This is in contrast with significant expansion of neutrophils that we previously described in later stages of hyper-
oxic lung injury, at 72 hours of hyperoxic exposure17. The late infiltration by neutrophils coinciding with devel-
opment of lung injury has also been shown by other authors18. In the present study, we did not identify a distinct 
cluster of NKT cells, likely due to small numbers of these cells in normal lungs as well as at 48-hour time point. 
Similar to neutrophils, we have previously reported significant NKT cell expansion at 72 hours of hyperoxia17.
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Figure 4.  Proliferation of immune cell subsets in normoxia and hyperoxia. (A) ki67 staining in tSNE plots from 
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compared using two-way ANOVA. Proliferation rate of myeloid regulatory cells (cluster 2), monocytes (cluster 3) 
and alveolar macrophages (cluster 4) is significantly reduced in hyperoxia. ****Indicates p < 0.0001.
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No targeted therapies currently exist to inhibit lung inflammation and injury due to oxidative stress. Clinical 
management of patients with lung failure due to ARDS is currently only supportive and often involves adminis-
tration of supraphysiologic concentrations of oxygen. It is therefore crucial that immune pathways linking hyper-
oxia, inflammation and organ injury are better characterized to allow and hasten development of therapies.

Our findings highlight the need to consider a variety of potential immune cell targets (macrophages, B cells, 
myeloid regulatory cells) when designing and testing immune-targeted therapies for acute lung injury or ARDS. 
Unbiased, systems immunology approaches like the ones used in this study may accelerate the discovery and 
development of immune-modulating therapies for sepsis and ARDS40–42.

Methods
Animals and exposure to hyperoxia.  Eight-week-old male wild-type C57BL/6 mice were purchased 
from Jackson laboratory (Bar Harbor, ME) and were housed in accordance with guidelines from the American 
Association for Laboratory Animal Care. Mice between ages 9 and 16 weeks were used for experiments. For 
hyperoxia exposure, mice were placed in cages in a customized disinfected Plexiglas chamber, and continuous 
oxygen exposure was performed for 48 hours as previously published by our group17. A calibrated oximeter was 
placed in the chamber for a continuous measurement of FiO2. The inspired fraction of oxygen was maintained at 
above 95% by a fresh flow of oxygen at 2–3 L/min. Mice had unlimited access to food and water and the typical 
light-dark cycle was maintained. The hyperoxia exposure took place in a barrier animal facility. Our previous 
studies have determined that this exposure to hyperoxia results in severe lung injury and respiratory distress that 
would require euthanasia at 70–90 hours of exposure. The experiments received approval from the Beth Israel 
Deaconess Medical Center IACUC. All procedures involving animals were conducted in accordance to US federal 
guidelines in the AAALAC accredited animal facility.

Histology.  Whole lungs were harvested, fixed in neutral buffered formalin and embedded in paraffin. Tissue 
sections were stained with hematoxylin and eosin (H&E) using standard protocol43.

Isolation of immune cells from whole lung and bronchoalveolar fluid.  To obtain immune cells 
from whole lung, mice were deeply anesthetized by intraperitoneal injection of ketamine and xylazine44 and lungs 
were excised through thoracotomy approach. Upon excision, pulmonary vasculature was not perfused in order 
to allow inclusion of potential intravascular immune cells in subsequent analysis. Mediastinal lymph nodes and 
central airways were separated from the lungs because the goal was to analyze pulmonary parenchyma. All lobes 
of the right lung were then subjected to gentle tissue digestion at room temperature for 10 minutes with Liberase 
TL enzyme (Roche) and mechanically dissociated through a 40-micron sieve to yield a single-cell suspension 
(~106 cells). Cells were cryopreserved in Cryostor CS10 (BioLife Solutions, Bothell, WA) following the manu-
facturer’s protocol to be used for subsequent staining with CyTOF-ready antibodies23. Bronchoalveolar fluid was 
obtained from mice, which were first euthanized by CO2 inhalation. Lack of respiratory and cardiac activity was 
confirmed and 22 G i.v. cannula was inserted into trachea via neck incision. Lungs were lavaged three times with 
1 mL of phosphate buffered saline, fluid collected, and cell suspension obtained, as previously described45. Cells 
were cryopreserved as described above for subsequent CyTOF antibody staining.

CyTOF staining method.  Cryopreserved cells were thawed at 37 °C, washed by centrifugation, plated, 
and immediately stained. All CyTOF stains were performed at room temperature in 96-well round-bottom 
polypropylene plates (Corning). After washing cells by centrifugation at 200 × g for 5 minutes, 5 μM cisplatin 
viability staining reagent (Fluidigm, South San Francisco, CA) was added for 5 minutes. After centrifugation, 
TruStain FcX Fc receptor blocking reagent (BioLegend) was added for 10 minutes. CyTOF antibodies were 
labeled using purified antibodies from several different suppliers (BioLegend [San Diego, CA], eBioscience 
[Waltham, MA], and R&D Systems [Minneapolis, MN])23. The CyTOF staining panels used in this study were 
custom labeled using MaxPar labeling kits (Fluidigm). The list of antibodies is shown in Table S1. The antibod-
ies for cell surface staining were incubated with cells for 30 minutes. After fixation and permeabilization of cells 
using the FoxP3 Staining Buffer Set (eBioscience), cells were barcoded using palladium barcoding reagents and 
combined into a single sample for pooled intracellular antibody staining for 30 minutes23,46. After intracellular 
staining, the cells were fixed with 1.6% formaldehyde. To stain DNA, 18.75 μM iridium intercalator solution 
(Fluidigm) was added to the cells. Cells were subsequently washed and reconstituted in Milli-Q filtered dis-
tilled water with EQ four element calibration beads (Fluidigm) and then analyzed on a Helios CyTOF Mass 
Cytometer (Fluidigm)23.

CyTOF analysis and statistics.  CyTOF data were first normalized and then debarcoded using the 
open-source Normalizer and Debarcoding software. Data analysis was performed using Cytobank (Mountain 
View, CA) and the available analysis algorithms (viSNE, CITRUS). ViSNE is a dimensionality reduction algo-
rithm allowing visualization of high-dimensional single cell data mapped onto two dimensions as a tSNE plot22. 
tSNE plots were utilized to visualize all components of lung immune system. To identify differences in the abun-
dance of cellular subsets between control and hyperoxia in an unbiased manner, we used CITRUS software. 
CITRUS (cluster identification, characterization, and regression) is an algorithm designed for the fully automated 
discovery of statistically significant stratifying biological signatures within single cell datasets containing numer-
ous samples across multiple known endpoints (e.g. normoxia vs hyperoxia)25. The CITRUS software performed 
the statistical analysis of the high-dimensional CyTOF data to identify significant clusters. For descriptive statis-
tics (comparison of cell cluster frequencies), unpaired t-test was performed using Graphpad Prism 8.0.0. (La Jolla, 
California). P-values <0.05 were considered statistically significant.
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Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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