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Abstract

Perceptual performance in a visual task can be enhanced by simultaneous multisensory information, but can
also be enhanced by a symbolic or amodal cue inducing a specific expectation. That similar benefits can
arise from multisensory information and within-modality expectation raises the question of whether the
underlying neurophysiological processes are the same or distinct. We investigated this by comparing the in-
fluence of the following three types of auxiliary probabilistic cues on visual motion discrimination in humans:
(1) acoustic motion, (2) a premotion visual symbolic cue, and (3) a postmotion symbolic cue. Using multivari-
ate analysis of the EEG data, we show that both the multisensory and preceding visual symbolic cue en-
hance the encoding of visual motion direction as reflected by cerebral activity arising from occipital regions
;200–400 ms post-stimulus onset. This suggests a common or overlapping physiological correlate of cross-
modal and intramodal auxiliary information, pointing to a neural mechanism susceptive to both multisensory
and more abstract probabilistic cues. We also asked how prestimulus activity shapes the cue–stimulus com-
bination and found a differential influence on the cross-modal and intramodal combination: while alpha
power modulated the relative weight of visual motion and the acoustic cue, it did not modulate the behav-
ioral influence of a visual symbolic cue, pointing to differences in how prestimulus activity shapes the combi-
nation of multisensory and abstract cues with task-relevant information.
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Significance Statement

Perception can be enhanced by the combination of multisensory information and by the exploitation of
amodal or symbolic cues presented within the same modality as the task-relevant information. We here
asked whether the physiological correlates reflecting the behavioral benefits induced by each type of cue
are similar or not. Using multivariate analysis of EEG data, we show that the perceptual enhancement in-
duced by an acoustic cue and a visual-symbolic cue for the discrimination of visual motion arise from the
same physiological source. This suggests that the impact of multisensory information and more abstract
sensory expectations on perception arise from shared mechanisms.

Introduction
Perception often benefits from additional information in

addition to that made available by the primary and task-
relevant features. One example is multisensory integra-
tion: often, our performance in detecting or discriminating
stimuli is enhanced when the same information is

presented in more than one sensory modality (Stein and
Meredith, 1993; Kayser and Logothetis, 2007; Stein and
Stanford, 2008). Here, perceptual benefits can arise both
from the combination of partially redundant information,
as in Bayesian fusion (Ernst and Bülthoff, 2004; Angelaki
et al., 2009), or the auxiliary influence of one apparently
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irrelevant stimulus onto task performance in another mo-
dality (Jaekl and Harris, 2009; Caclin et al., 2011; Kim et
al., 2012; Gleiss and Kayser, 2014b). As suggested by re-
cent work, the neural mechanisms underlying multisen-
sory benefits comprise a cascade of neural processes
that commence with early multisensory influences in low-
level sensory regions, continue with the automatic merg-
ing of multisensory information in parietal cortex, and cul-
minate in the task- and context-dependent arbitration of
different perceptual strategies of exploiting multisensory
information in the frontal lobe (Rohe and Noppeney, 2015;
Aller and Noppeney, 2019; Cao et al., 2019; Rohe et al.,
2019).
From a behavioral perspective, similar benefits for per-

ception also emerge from other types of auxiliary informa-
tion, such as prior knowledge or expectations elicited by
cues presented either within the same modality or in an
amodal fashion (Summerfield and Egner, 2009; de Lange
et al., 2013; Summerfield and de Lange, 2014). For exam-
ple, priming participants to expect a specific sensory at-
tribute boosts perceptual performance and reduces
reaction times in discrimination tasks. One proposed
mechanism by which expectation can improve perception
is by an enhancement of the encoding of sensory informa-
tion in low-level sensory cortices, in addition to post-
sensory decision-level effects (Kok et al., 2012; Jiang et
al., 2013; Cheadle et al., 2015; Bang and Rahnev, 2017;
de Lange et al., 2018; Rungratsameetaweemana et al.,
2018). The parallels between traditional cueing paradigms
and studies investigating multisensory paradigms, in par-
ticular those focusing on auxiliary multisensory influen-
ces, raise the question of how far the neural mechanisms
mediating the behavioral benefits arising from multisen-
sory combination are the same as those mediating within-
modality priming effects.
We here compare the physiological correlates of multi-

sensory combination and within-modality cueing using
EEG while human participants performed a visual motion
discrimination task. Specifically, we capitalize on previous
work that has established the cerebral correlates of multi-
sensory combination in a task where acoustic motion en-
hances the discrimination of horizontal visual motion
(Kayser et al., 2017; Kayser and Kayser, 2018): the physi-
ological correlates of the perceptual benefit arising from
congruent audiovisual stimuli in this task were shown to
comprise the enhancement of visual motion encoding in
(low-level) visual cortices at latencies of ;300ms post-
stimulus onset. We here exploit this validated paradigm to
ask whether the perceptual enhancement induced by a
probabilistic within-modality visual cue arises from the

same physiological processes that mediate the multisen-
sory benefit.
Furthermore, we investigated the role of prestimulus ac-

tivity in shaping the influence of task-relevant visual mo-
tion and the visual cue on behavior. Previous work has
shown that multisensory perception is shaped by the
state of oscillatory brain activity prior to a stimulus (Keil et
al., 2012; Lange et al., 2013; Gleiss and Kayser, 2014b;
Kaiser et al., 2019). For example, the overall tendency to
combine visual and acoustic cues during temporal rate
judgments was influenced by the level of prestimulus
alpha power (Rohe et al., 2019). Given this link of presti-
mulus activity and multisensory combination, we asked
whether between-modality multisensory integration and
within-modality combination of a cue and stimulus are
shaped in a similar manner by prestimulus activity.

Materials and Methods
We report data obtained from a planned sample of 20

healthy adult participants (9 males; mean age, 23.46
3.3 years). These adults participated after giving written
informed consent and receiving a briefing about the pur-
pose of the study. All had self-reported normal hearing
and tested normal vision, declared no history of neurologic
disorders, and were right handed (Oldfield, 1971). The
study was conducted in accordance with the Declaration of
Helsinki and was approved by the ethics committee of
Bielefeld University. The sample size was decided a priori
based on general recommendations for behavioral studies
(Simmons et al., 2011). Data collection proceeded until the
sample of 20 acceptable participants was obtained, where-
by some (n=7) participants dropped out because they ei-
ther did not pass the sight test (one) or, during an initial
screening session, exhibited a perceptual threshold for vis-
ual motion discrimination that was higher than an a priori
set criterion of 25%motion coherence (six participants; see
below).

Experimental design and stimuli
The task required participants to discriminate the direc-

tion (leftward or rightward) of random dot visual motion
(Fig. 1A). The motion stimulus was presented following
the onset of a fixation dot (800–1200ms uniform delay),
lasted 800ms, and was presented on a 24 inch high-per-
formance LCD monitor (catalog #PG279Q, ASUS) at
1920� 1080 pixel resolution and a refresh rate of 120Hz.
The random dot pattern consisted of 1300 white, limited-
lifetime dots that were presented on a neutral gray screen
(16 cd/m2 background luminance) and covered 10° of vis-
ual angle (with the center 0.8° devoid of dots). Individual
dots were 0.1° in diameter and moved at 4°/s. Each dot
had a lifetime of 9 frames (at 120Hz). A small percentage
of dots moved coherently in the same direction (left or
right). In an initial screening session, we determined the
participant’s psychometric thresholds (;71% correct
performance) for discriminating motion directions using
three interleaved 2-down, 1-up staircases. In the actual
experiment, the motion coherence was additionally ma-
nipulated over the 800ms (96 frames) of stimulus presen-
tation: every period of 12 consecutive nonoverlapping
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frames was characterized by a different and independent
coherence level (drawn from a normal distribution cen-
tered on the participant’s specific threshold with an SD of
10%, limited to the range 0–100%). This was performed
to allow the quantification of perceptual weights, that is,
how much each epoch of 12 frames contributed to the
participant’s responses (see below). Across participants,
the coherence thresholds were 18.26 1.9% (mean 6
SEM). From 400–500ms following stimulus offset, a re-
sponse cue was presented prompting the participants to
respond. Given that some of the analyses reported here
essentially reproduce a previous study (Kayser et al.,
2017), it is important to note that the stimulus used here
differed from that used in the previous study in that the
motion coherence here changed randomly over the course
of a single trial, while it was constant in that previous study.
Also, the previous study used a speeded reaction time
task, while we here used a fixed stimulus duration and a
task emphasizing accuracy (see below).
The experiment comprised three conditions (Fig. 1A). In

the first condition, visual motion was accompanied by a
dynamic acoustic stimulus mimicking motion in either the

same direction (“congruent”; 66% of trials) or the oppo-
site direction (“incongruent”; 33% of trials) as the visual
motion. Sounds were composed from white noise (at
44.1 kHz sampling rate) with an amplitude that was line-
arly modulated from 0 to the maximal level in opposite di-
rections on left and right speakers over the stimulus
period, inducing a percept of continuous acoustic motion
(Meyer and Wuerger, 2001; Moore, 2003). Sounds were
presented with a peak (P) amplitude of 65dB(A) SPL rms
level using speakers placed to the left and right of the
monitor; onsets and offsets were cosine ramped (8ms). In
the second condition, visual motion was preceded by a
symbolic visual cue that indicated the likely (66% correct)
direction of the subsequent visual motion stimulus. The
cue was presented during the entire fixation period. In the
third condition, the visual motion stimulus was followed by
a symbolic visual cue that indicated the likely (66% correct)
direction of the preceding motion stimulus. The cue was
presented starting 400–500ms (uniform) following stimulus
offset for a period of 500–600ms. Participants completed
936 trials in total, 156 per motion direction and cue condi-
tion. Individual trials were separated by intertrial intervals of

L
R

Acoustic motion

<

<

Acoustic cue Visual cue – pre stimulus Visual cue – post stimulus

Time
Time

Time
800ms 800ms800ms

800-1200ms
400-500ms

0.2

0.3

0.4

0.5

0.6

re
ac

tio
n 

tim
e 

[s
]

50

60

70

80

90

ac
cu

ra
cy

 [%
 c

or
re

ct
]

cong incong

Acoustic
Vis–pre
Vis–post

0 0.2 0.4 0.6 0.8

0

1

W
ei

gh
t [

z]
-2

0

2

cong incong
time [s]

W
ei

gh
t d

iff
. [

z]

B C

A

Behavioral performance Psychophysical weights

Figure 1. Paradigm and behavioral data. A, Participants discriminated the direction of visual random-dot motion (800ms stimulus
duration). Across three conditions, the visual motion was accompanied by different auxiliary cues: simultaneous acoustic motion, a
visual symbolic cue preceding the visual motion, or a visual symbolic cue following the motion stimulus. Each cue was congruent
with the random-dot motion on 66% of trials. B, For each cue type, response accuracy was higher for congruent trials, while reac-
tion times (relative to a response cue) were not affected by congruency (mean and SEM across participants; dots represent single-
participant data). C, Psychophysical response templates (weights) were calculated to quantify the influence of the moment-by-mo-
ment motion energy on behavior. These templates were significant for most time points (top; thick black line, grand average; thin
black line, 5% bootstrap confidence interval across conditions; thick colored lines, condition-wise group means), but were not af-
fected by cue–stimulus congruence (bottom; think lines, condition wise group means; dashed lines, 5% bootstrap confidence
intervals).
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1200–1500ms (uniform) and were grouped into four exper-
imental blocks, with each block comprising all three condi-
tions. Within each block, groups of 78 subsequent trials
featured the same condition (“mini-blocks”), with the three
conditions (mini-blocks of 78 trials) appearing in pseudor-
andom order within each experimental block. Participants
were instructed “to discriminate the direction of visual mo-
tion and to respond as quickly and accurately as possible
following the response cue, while making use of the auxil-
iary information” by pressing a left or right arrow key on a
keyboard (Das Keyboard) using the same hand for both
keys.
During the experiment, monocular (right) eye move-

ments were monitored using an EyeLink 1000 System (SR
Research) at 250Hz. For six participants, the system did
not reliably track the eye, and the eye-tracking data could
not be analyzed.

Analysis of behavioral and eye-tracking data
From the behavioral responses, we calculated the per-

centage of correct responses and reaction times aligned
to the response cue. For an analysis based on signal de-
tection theory, we computed hit and false-alarm rates rel-
ative to leftward motion (Green and Sweets, 1966). To
compute the response bias, we analyzed trials with the
cue pointing to the left and right separately, and com-
bined the bias measures (c), after converting both sides to
have the same sign (Bang and Rahnev, 2017). We quanti-
fied the perceptual use of the moment-by-moment visual
motion evidence using reverse correlation (Marmarelis,
1978; Eckstein and Ahumada, 2002). Specifically, we
computed perceptual response templates (weights) rela-
tive to the two response options and normalized these
within participants to z scores using a shuffling procedure
(Neri and Heeger, 2002; Chauvin et al., 2005). These tem-
plates were computed based on the amount of motion
evidence available in the random dot motion at each mo-
ment in time. This level of motion evidence was extracted
post hoc from the single-trial motion stimulus based on al-
gorithms previously used to detect horizontal motion
using parameters suitable for the human visual system
(Kiani et al., 2008; Urai et al., 2017). The resulting percep-
tual weights indicate how strongly (relative to chance) the
visual motion influenced the participant’s response. We
also modeled the participants’ single-trial choice using lo-
gistic regression, entering the visual motion stimulus, the
cue, and their interaction with prestimulus power as pre-
dictors. Similarly, we modeled performance (response ac-
curacy) based on prestimulus power and its interaction
with motion–cue congruency.
From the eye-tracking data we extracted fixation events

detected by the eye-tracking system (using the EyeLink
1000 “cognitive” setting) and computed the SD of all fix-
ated positions along horizontal and vertical dimensions
during stimulus presentation. In addition, we extracted
saccadic eye movements, as detected by the EyeLink
100 system (velocity threshold, 30°/s; acceleration thresh-
old, 8000°/s). We then counted the number of saccades
exceeding an amplitude of 0.8° executed during the

stimulus interval, hence excluding smaller microsaccades
(Rolfs, 2009).

Setup and EEG recordings
The experiment took place in a dark and electrically

shielded room (E:Box, Desone). Stimulus presentation
was controlled from Matlab (MathWorks) using routines
from the Psychophysics toolbox (Brainard, 1997). Sound
levels were calibrated using a sound level meter (Model
2250, Brüel & Kjær). EEG signals were continuously re-
corded using an active 128-channel system (BioSemi)
using Ag-AgCl electrodes mounted on an elastic cap.
Four additional electrodes were placed near the outer
canthi and below the eyes to obtain the electro-occulo-
gram (EOG). Electrode offsets were kept to ,25mV. Data
were acquired at a sampling rate of 1000Hz using a low-
pass filter of 208Hz.

EEG data analysis
Data analysis was conducted offline with MATLAB

(R2017a, MathWorks), using the FieldTrip toolbox (version
fieldtrip-20171001; Oostenveld et al., 2011) and custom-
written routines. The data from the different blocks were
preprocessed separately by bandpass filtering (0.6–70
Hz), resampling to 150Hz, and denoising using ICA. We
removed ICA components that likely reflect eye move-
ment artifacts, localized muscle activity, or poor electrode
contacts. These were identified following definitions pro-
vided in the literature (O’Beirne and Patuzzi, 1999; Hipp
and Siegel, 2013). On average, we rejected 16.46 1.6
components (mean 6 SEM). Periods contaminated by
eye blinks or movements were identified using horizontal,
vertical, and radial EOG signals (Keren et al., 2010; Quax
et al., 2019). We rejected trials based on a threshold of
three SDs above the mean of the high pass-filtered EOGs,
or during which the peak amplitude on any electrode ex-
ceeded 6175 mV. On average, we retained 93.762.1%
of trials. Also, for three participants one channel was
deemed bad and interpolated with its neighbors, and for
one participant two channels were interpolated. For sub-
sequent analysis, the EEG signals were referenced to the
common average reference. The analysis of eye-tracking
data showed that the retained trials contained very few
saccadic eye movements, suggesting that the EEG data
were confounded very little by eye movements (see
Results).
To extract EEG signatures of brain activity relevant for

the visual motion discriminant task, we used a multivariate
regularized linear discriminant analysis (LDA). We imple-
mented an LDA to identify a projection of the EEG data in
sliding windows of 92ms duration (a window step of
46ms) that maximally discriminated between the two di-
rections of motion (across all three cue conditions). Within
each window, the EEG activity of each electrode was
averaged over time and the multivariate classifier was
trained using the activity of all EEG electrodes. The data
are presented such that the classification performance, or
time points, noted correspond to the first time point within
the classification window. Each LDA projection obtained
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at one time point (i.e., from one 92ms data window) was
defined by a projection vector, w, which describes a one-
dimensional weighted combination of the EEG data (Parra
et al., 2005). The regularization parameter was taken from
previous work and set to 0.1. The classification perform-
ance was quantified using the area under the curve (AUC)
receiver operating characteristic (ROC) based on sixfold
cross-validation. Given potentially unequal trial numbers
for each condition, we repeated the discriminant analysis
100 times using a random subset of 80% of the available
trials for each condition, averaging the resulting AUC and
projection vectors. The scalp topographies for each dis-
criminant component (i.e., time point) were derived using
the corresponding forward model defined as the normal-
ized correlation between the discriminant component and
time averaged EEG activity (Parra et al., 2005).

The discriminant output provides a measure of the sin-
gle-trial evidence contained in the EEG signal about two
conditions of interest. It can serve as a sensitive represen-
tation of the cerebral encoding of the task-relevant sensory
information (Parra et al., 2005; Philiastides et al., 2014;
Kayser et al., 2016; Grootswagers et al., 2018; Cichy et al.,
2019). Following previous work, we exploited this projec-
tion to ask which specific LDA component (i.e., when in
time) is affected by each of the cues. To this end, we ob-
tained single-trial projections of the discriminant activity by
applying the weights extracted at specific time points of in-
terest (Fig. 2A, P1, P2, and P3) to all trials and time points.
We then compared the amount of sensory evidence in the
discriminant components by comparing their magnitude
(ignoring the difference in sign arising from the two motion
directions) between congruent and incongruent trials. This
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Figure 2. Electrophysiological correlates of cue–stimulus congruency. A, Single-trial LDA was used to determine EEG components
sensitive to the direction of random-dot motion, that is, sensitive to the task-relevant visual information. The curve shows the classi-
fier performance as the area under the curve of the receiver operating characteristic (mean and SEM across participants), which
was significant (cluster-based permutation test, p, 0.05) ;300ms (peak at P2). The topographies show the forward models of the
LDA classifiers at three local peaks. B, Effect of cue–stimulus congruency on the single-trial LDA evidence in the component derived
at time P2, separately for each cue condition and shown as the group-level t value. Epochs with a congruency effect are indicated
(cluster-based permutation test, p,0.05). C, Congruency effects on LDA evidence at the time points of the respective global peaks
(mean and SEM across participants). D, Test for a latency difference of the congruency effect in the acoustic and visual precondi-
tions. The graph shows the group-level bootstrap distribution (2000 samples) of the latency difference between the congruency ef-
fects. E, Source localization of the LDA component (at P2) determined as source-level correlation (z-scored) between gridwise
activity and the LDA activity (group averaged; shown at MNI coordinate z = �5).
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was done using sixfold cross-validation, computing LDA
weights based on one subset of trials and quantifying the
congruency effect on the remaining trials. Similarly, we
used cross-validation when entering the LDA evidence as
a predictor into a linear model of choice (or accuracy),
again computing the LDA weights and the neurobehavioral
regression model using distinct sets of trials.
Time–frequency representations of the prestimulus activ-

ity were obtained using wavelet analysis in FieldTrip.
Frequencies ranged from 2 to 50Hz, in steps of 1Hz below
16Hz and steps of 2Hz above. The wavelet width scaled
with frequency, from three cycles at 2Hz to nine cycles
above 35Hz. To ensure that power estimates were not con-
taminated with stimulus-evoked responses, we zero-win-
dowed the poststimulus period. Power estimates were z-
scored across trials. To reduce the statistical complexity of
testing for significant effects across time, frequency, and
electrodes, we applied this time–frequency analysis to the
one-dimensional single-trial LDA projections of interest,
hence focusing on time and frequency dimensions only.

EEG source analysis
A confirmatory source analysis was implemented by

first obtaining single-trial source signals using a linear
constrained minimum variance beamformer in Fieldtrip
(6% normalization, using the covariance matrix obtained
from �0.6 to �0.1 s prior to response). A standardized
head model based on the average template brain of the
Montreal Neurologic Institute (MNI) was used as single-
participant MRI data were not available. Lead fields were
computed using a 3D grid with 6 mm spacing. The activity
at individual grid points was correlated with the linear dis-
criminant signal over trials at the single-participant level,
analogous to obtaining the forward scalp distribution via
the correlation of sensor and discriminant activity (Parra
et al., 2005; Haufe et al., 2014). Correlation volumes were
z-transformed and averaged across participants.

Statistical procedures and effect sizes
The analysis of behavioral data was based on a re-

peated-measures ANOVA and post hoc paired t tests.
Effect sizes are reported as Cohen’s d for paired t tests
and partial h2 (hP

2) for the ANOVA (Kline, 2004). Measures
of signal detection theory were derived relative to leftward
motion as the “to-be-detected” stimulus. Statistical testing
for perceptual weights was based on a percentile boot-
strap distribution obtained by randomly resampling (2000
times) participants with replacement. Here the effect sizes
are reported as Cohen’s d for the underlying paired t test.
Significance testing of the single-trial discriminant perform-
ance (AUC), of congruency effects in discriminant activity,
and of the influence of oscillatory power in the regression
model of choice were based on group-level cluster-based
permutation procedures computed by randomly permuting
effect signs (Nichols and Holmes, 2002; Maris and
Oostenveld, 2007). The detailed parameters were as fol-
lows: 2000 permutations; clustering bins with significant
first-level tests (uncorrected at p, 0.05; or ROC above the
95% percentile of the distribution across bins); minimal

cluster size of at least three neighbors; computing the clus-
ter mass within each cluster; and performing a two-sided
test at p, 0.05 on the clustered data. For these tests, we
report the cluster value (tsum) of the significant cluster as ef-
fect size in addition to Cohen’s d derived from the univari-
ate t value at the peak location.

Results
Cueing improves discrimination performance
Participants (n=20) performed a visual motion discrimi-

nation task (leftward vs rightward random dot motion;
800ms fixed duration) around their respective individual
thresholds, as determined in an initial screening session.
The different experimental conditions offered participants
three types of additional cues (Fig. 1A). (1) During the
acoustic cue condition, visual motion was accompanied
by acoustic spatial motion that moved, in 66% of trials, in
the same direction as the visual motion stimulus. For this
task, previous work has established the electrophysiologi-
cal correlates of audiovisual integration, by first extracting
visual motion-sensitive EEG components using single-
trial linear discriminant analysis, and then determining
when this component is enhanced by congruent (vs in-
congruent) audiovisual information (Kayser et al., 2017;
Kayser and Kayser, 2018). (2) During a visual precue con-
dition, we provided participants with a prior visual sym-
bolic cue that indicated the likely (66% chance of being
correct) direction of the subsequent motion stimulus. This
type of cue is known to facilitate perceptual performance,
possibly by enhancing the encoding of the task-relevant
subsequent information (Summerfield and de Lange,
2014). And last (3), during a visual postcue condition, we
provided participants with a visual symbolic cue that was
presented subsequent to the random dot pattern and in-
dicated the likely (66% correct) direction of the preceding
motion stimulus. While such a poststimulus cue can also
facilitate performance (Bang and Rahnev, 2017), it cannot
do so by influencing the encoding of visual motion infor-
mation during the stimulus, and here served as a control
condition for the EEG analysis.
As expected, response accuracy was significantly af-

fected by the congruency between cue and motion stimu-
lus. A repeated-measures ANOVA revealed no overall
effect of cue (F(21,19) = 1.17, hP

2 = 0.008, p=0.32; Fig. 1B),
but a significant influence of congruency (F(11,19) = 29.5,
hP

22 = 0.35, p, 10�4) and a cue–congruency interaction
(F(21,19) = 11.2, hP

2 = 0.09, p, 10�3). Post hoc tests re-
vealed that for each cue performance was more accurate
when cue and visual motion were congruent (paired
t tests; acoustic cue: t(19) = 6.3, Cohen’s d = 1.4, p, 10�5;
precue: t(19) = 2.3, d = 0.5, p=0.03; postcue: t(19) = 5.1, d =
1.1, p=0.001). Also, the congruency benefit was signifi-
cantly stronger for the acoustic cue compared with both
symbolic cues (t(19) = 4.4 vs visual precue; t(19) = 4.9 vs
visual postcue; both d . 0.9, p, 10�3), while the two
symbolic cues did not differ (t(19) = 0.7, d = 0.15,
p= 0.49).
When quantified using signal detection theory, the data

revealed that sensory precision (d9) was significantly higher
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for congruent compared with incongruent trials for each
cue (acoustic cue: d9=1.96 0.11 vs 0.546 0.14, t(19) = 6.7,
p, 10�3; precue: 1.4460.12 vs 0.926 0.12, t(19) = 2.6,
p=0.016; postcue: 1.606 0.08 vs 1.016 0.12, t(19) = 4.56,
p=0.0002). To quantify the influence of the cue on re-
sponse bias, we extracted the magnitude of this bias (Bang
and Rahnev, 2017; acoustic cue: 0.346 0.05; precue:
0.136 0.05; postcue: 0.146 0.03). This bias was signifi-
cantly stronger for the acoustic cue compared with the
symbolic cues (t(19) = 4.6 and 4.3, Cohen’s d. 1.0,
p, 10�3) and did not differ between the latter two (t(19) =
0.3, d=0.06, p=0.75). Overall, these results show that a
participant’s performance was affected by all three cue
types, although the acoustic stimulus had the strongest in-
fluence both in terms of decision bias and overall accuracy
benefit.
Reaction times were not affected by the cue–stimulus

congruency or cue type. An ANOVA revealed no signifi-
cant effects (all p. 0.05, maximal hP

2 = 0.01); as ex-
pected, post hoc t tests showed only small and
insignificant effects (acoustic cue: t(19) = �1.1, Cohen’s
d=0.25, p=0.27; precue: t(19) = �1.5, d=0.34, p=0.13;
postcue: t(19) =�0.98, d=0.22, p=0.33).
The eye-tracking data confirmed that participants main-

tained the required central fixation during the stimulus pe-
riod, as follows: the mean and SEM for the horizontal and
vertical eye positions during the stimulus were 1.86 0.5°
and 1.56 0.4° (n=14 available participants). In addition,
we found that saccadic eye movements (.0.8°) executed
during the stimulus epoch were very rare (mean 6 SD,
0.961.4% of trials; maximal, 4.1%).

Cueing does not affect temporal sampling of
information
To understand whether visual motion discrimination

was affected by the entire duration (800ms) of the visual
motion stimulus, or only a particular epoch of this, we
computed psychophysical response templates (Neri and
Heeger, 2002; Chauvin et al., 2005). This was possible as
the momentary amount of evidence about the visual mo-
tion direction was manipulated randomly over time and
trials, allowing us to determine the time course of the per-
ceptual use of this information using reverse correlation
(Marmarelis, 1978; Bang and Rahnev, 2017). This re-
vealed that for all cue types motion information was signif-
icantly related to a participant’s choices for most time
points throughout the stimulus, except for the first 120ms
(Fig. 1C, top; a group-level two-sided percentile bootstrap
confidence interval across all conditions, p, 0.01 uncor-
rected). To determine whether the congruency of cue and
visual motion affected the perceptual use of motion evi-
dence, we contrasted congruent and incongruent trials
for each cue separately (Fig. 1C, bottom). This revealed
no clear difference between congruent and incongruent
trials (a group-level two-sided percentile bootstrap con-
fidence intervals was inconclusive, p. 0.05 uncor-
rected), and the overall effect size of any congruency
effect was small [the peak Cohen’s d for the underlying
paired t test was moderate (d = 0.47) compared with
the overall mean effect across time and conditions

(d= 0.18)]. This suggests that any influence of cue–stimu-
lus congruency on response accuracy does not originate
from the differential sampling of sensory information at any
particular time point. This also indicates that for the analy-
sis of the EEG data all time points are a priori equally rele-
vant for the different conditions.

Cueing influences the physiological correlates of
visual motion encoding
To understand where and when the cues affected the

sensory encoding and decision process, we first ex-
tracted signatures of visual motion encoding from
the EEG data using single-trial classification. Previous
work has shown that the audiovisual perceptual benefit
correlates with the enhancement of the cerebral encod-
ing of visual motion information in occipital regions
;300ms post-stimulus onset (Kayser et al., 2017;
Kayser and Kayser, 2018). The physiological correlates
of this can be extracted by first determining EEG
components sensitive to visual motion direction using
single-trial classification, and then determining the in-
fluence of cue–stimulus congruency on this classifica-
tion component.
Here we computed a single-trial classification of visual

motion direction across all cue conditions. The time
course of classification performance exhibited three
peaks (P1 at 0.093 s; P2 at 0.32 s; and P3 at 0.64 s; Fig.
2A). A statistical test based on a permutation procedure
and controlling for multiple comparisons along time (at
p, 0.05) revealed a significant cluster (P2) between 0.28
and 0.4 s (p=0.014; tcluster = 0.15). We then focused on
the EEG component defined by the LDA projection ob-
tained at P2 to ask whether the encoding of visual motion
direction reflected by the underlying neural activity was
significantly affected by each cue (using a cluster-based
randomization procedure contrasting the LDA evidence
between congruent and incongruent trials, correcting for
multiple comparisons along time at p,0.05; Fig. 2B,C).
The visual postcue condition here served as a control, as
one should not expect significant congruency effects
given that the cue was presented following the stimulus.
We found a significant congruency effect on visual motion
encoding for the acoustic (p=0.032, tcluster =16.7, from
0.38 to 0.44 s, Cohen’s d at peak =0.8) and the visual pre-
cue conditions (p=0.005, tcluster = 34.3, from 0.26 to 0.37
s, d=1.0). No effect was found for the visual postcue, as
expected (p. 0.05, d=0.4). These results replicate previ-
ous findings of a sound-driven enhancement of visual mo-
tion encoding in EEG activity after 300ms post-stimulus
onset (Kayser et al., 2017; Kayser and Kayser, 2018) and
demonstrate that a within-modality visual symbolic cue
influences brain activity captured by the same EEG
component.
The above data suggest that the congruency benefit

emerges earlier for the visual precue than the acoustic
cue by ;130ms. To corroborate this result using a direct
statistical analysis, we implemented a group-level percen-
tile bootstrap test on the difference in the latencies of the
first significant congruency effects (Fig. 2D). The likeli-
hood of observing a positive (i.e., visual precue being
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earlier) latency difference was 99.6% (i.e., p=0.004 for
the observed difference, with the mean of the boot-
strapped distribution serving as measure of an effect size
of 96ms).
To obtain a better understanding of the cerebral sour-

ces giving rise to the motion-sensitive EEG component,
we obtained a source localization of this LDA component
(at time=0.32 s). This revealed the strongest contribution
from left occipital regions [Fig. 2E; the peak source was at
MNI: �43, �78, �5 around the inferior occipital gyrus, as
determined using the AAL (automated anatomical label-
ing) atlas], in line with the previous studies.
As a control analysis, and to determine how specific

this result was for this specific EEG component (i.e., the
LDA projection obtained at time=0.32 s), we repeated the
congruency analysis for the two EEG components defined
by the LDAs at the two local peaks that were not signifi-
cant with respect to motion direction classification (P1
and P3; Fig. 2A). For these, we found no significant con-
gruency effects for any of the cue conditions (at p, 0.05
corrected for multiple comparisons along time for each
condition, with the peak effect size across cue conditions
and the two LDA components being d=0.41).

Prestimulus activity shapes stimulus–cue interactions
Previous work has shown that patterns of rhythmic

prestimulus activity can influence how multisensory

information is combined (Keil et al., 2012; Rohe et al.,
2019). To understand the influence of prestimulus activity
in the present paradigm, we asked whether the power of
different frequency bands shapes the influence of visual
motion and of the respective cue on participants’ choice.
For this analysis, we derived the single-trial spectral
power from the visual motion-sensitive EEG component
(at P2) to avoid the statistical burden arising from a full
electrode by time by frequency analysis. We then mod-
eled participants’ single-trial responses (choice) based on
a logistic GLM including the visual motion direction, the
direction indicated by the respective cue, their interaction,
and their interactions with prestimulus power as predic-
tors (Fig. 3A). This revealed a significant contribution to
participants’ behavior of visual motion, as expected per
experimental design (t(19) = 13.5, 15.9, and 16.9 for the
acoustic, visual precues, and visual postcues; all at least
p, 10�5, Cohen’s d . 3), a significant contribution of
each cue confirming the above results (t(19) = 6.6, 2.4, and
4.5 for each cue condition respectively; all p,0.05, d =
1.4, 0.5, and 1.0, respectively), but no interaction between
the visual stimulus and any of the cues (t(19) = �0.25,
�0.09, and�1.05, respectively; all p. 0.05, d� 0.24).
Concerning the prestimulus activity, we found that

alpha power influenced how visual motion and the acous-
tic cue were combined. In the auditory condition, alpha
power significantly positively modulated the impact of the
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visual stimulus (7–8 Hz, �0.25 to �0.07 s, p=0.05, tcluster =
41, Cohen’s d at peak=0.68; Fig. 3A) and negatively modu-
lated the influence of the acoustic cue (7–9 Hz, �0.2 to
�0.03 s, p=0.023, tcluster = �65, d=0.88). Across individu-
als, the positive and negative alpha effects (i.e., the regres-
sion betas) were anticorrelated (r(19) = �0.45, p=0.038,
Spearman rank correlation), suggesting that these arise
from a common neural generator. This result was con-
firmed in a separate model, where we predicted perform-
ance (response accuracy, rather than choice) based on
prestimulus power and its interaction with the congru-
ency of visual motion and the acoustic cue (Fig. 3B). This
revealed no effect of power (no significant cluster, maxi-
mal d= 0.53) but a significant interaction of power and
congruency in the alpha band, as expected (p= 0.045,
tcluster = �50, d= 0.8).
For the visual precue alpha activity modulated how visual

motion shaped behavior (5–7 Hz, �0.18 to �0.01 s,
p=0.029, tcluster = �53, d=0.82), but there was no signifi-
cant interaction of prestimulus activity with the cue (maxi-
mal d=0.23). The influence of alpha band activity on
behavior in this condition was hence restricted to an influ-
ence of alpha power on how the visual information shaped
responses, but did not depend on the congruency between
visual motion and the cue. The latter conclusion was also
confirmed by an absence of a modulatory influence of
alpha power on congruency in a direct regression model of
performance on power and congruency. Here we con-
firmed the expected influence of alpha power (Fig. 3B;
p=0.022, tcluster = �64, d=0.79) and found no effect of
the interaction (no significant cluster, maximal d=0.61).
Because the cue preceeded the time window in which pres-
timulus activity was quantified, we also asked whether the
symbolic cue had a direct influence on oscillatory power:
we contrasted alpha power between the two directions of
the visual precue but found no significant effect (t(19) = 0.64,
p.0.05, d=0.004), suggesting that the visual precue did
not influence the subsequent alpha band activity. Finally,
and as expected, for the visual postcue condition there
were no significant effects (all p. 0.05, maximal d = 0.55).
Given that the analyzed LDA component reflects a mixture

of different EEG sensors, we also computed these regres-
sion models at the sensor level, focusing only on the alpha
frequencies and time bins revealed by the above analysis
(Fig. 3A, insets). This confirmed a contribution of left occipi-
tal and frontocentral electrodes to the alpha effect.
To better understand how alpha activity influences be-

havioral responses in the audiovisual condition, we sorted
trials into groups composed of particularly low and high
alpha power (median split; using the intersection of the
two alpha clusters for the acoustic cue condition from Fig.
3A) and compared how alpha related to response accu-
racy depending on stimulus–cue congruency. That is, we
tested how behavioral performance covaries with alpha
power in congruent and incongruent trials. For the acous-
tic cue, this revealed a significant dependence of perform-
ance on alpha power in incongruent trials (t(19) = 2.8, d =
0.62, adjusted p=0.04, paired two-sided t test, false dis-
covery rate adjusted for multiple comparisons using the
Benjamini–Hochberg procedure), but not in congruent

trials (t(19) = 0.69, d = 0.15, adjusted p=0.39). This sug-
gests that the influence of the acoustic cue is shaped by
alpha power particularly when the cue mismatches the
visual information. For the visual precue, there was no sig-
nificant dependence of performance on alpha power in ei-
ther trial type (t(19) , 1.8, adjusted p . 0.05), in line with
the above null finding for an interaction of alpha power
and the symbolic cue.

Discussion
Both abstract sensory cues inducing specific expecta-

tions as well as multisensory information can improve
perceptual performance. Using a visual motion discrimi-
nation task we here compared the effect of within-modal-
ity symbolic cues and multisensory combination. The
behavioral data showed that both a prior visual symbolic
cue and a visual symbolic cue following the task-relevant
stimulus can induce similar behavioral benefits, which is
in line with previous work (Bang and Rahnev, 2017).
However, the congruency benefit from a congruent
acoustic cue was significantly stronger compared with
these symbolic cues, although all cue types had the same
level of accuracy in predicting the correct visual motion
direction, and the visual precue was already presented
before the task stimulus. It remains to be investigated
whether there is a genuine benefit for multisensory infor-
mation, or whether potential differences in attention for
within-modality and between-modality associations con-
tributed to these differences in cue efficiency (Talsma et
al., 2010).

Multisensory and expectation-based facilitation of
behavior
We asked whether the perceptual benefit arising from a

prior symbolic cue and from multisensory information arise
from similar neurophysiological correlates. Concerning the
acoustic cue, the present data reproduce previous find-
ings, in that congruent acoustic information facilitates the
encoding of visual motion in occipital brain regions at la-
tencies of ;300ms post-stimulus onset. These results
support the notion of multisensory influences in low-level
sensory regions (Rohe and Noppeney, 2015; Cao et al.,
2019), fit with previous neuroimaging studies reporting
multisensory influences in visual motion regions (Poirier et
al., 2005; Lewis and Noppeney, 2010; Alink et al., 2012),
and directly reproduce previous results obtained using a
very similar task (Kayser et al., 2017; Kayser and Kayser,
2018). The minor differences in the stimulus classification
performance obtained here and in that previous study may
have two potential explanations: first, we here used a stim-
ulus with dynamic motion coherence, as opposed to the
fixed motion coherence used previously (Kayser et al.,
2017; Kayser and Kayser, 2018). Second, the present task
emphasized response accuracy while the previous study
used speeded reactions.
Concerning the symbolic cue, our results suggest that

the benefits induced by priming and multisensory infor-
mation at least partly arise from a shared neural substrate.
This conclusion is supported by the observation that the
same visual motion-sensitive EEG component was
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affected by a prior visual cue and by multisensory congru-
ency. Still, the priming benefit emerged significantly ear-
lier in time. Possibly, the information provided by the
symbolic cue was already fully processed at the time of
visual motion onset, while the acoustic cue was presented
simultaneously with the visual motion. Previous studies
have shown that expectation can influence the activity of
neurons in regions processing visual motion (Schlack and
Albright, 2007; Kok et al., 2013), which is in line with the
localization of the cue–stimulus congruency benefit in the
present study to an occipital EEG component that is sen-
sitive to visual motion.
We did not include a neutral condition, that is, a sound

not inducing any motion percept or a neutral symbolic
cue. As a result, the present study cannot dissociate
whether congruent or incongruent cues enhance or re-
duce performance compared with a baseline condition
(de Lange et al., 2013; Bang and Rahnev, 2017). While a
neutral condition is required to judge the specific influ-
ence of each individual cue, and to understand how pre-
dictive versus unpredictive cues influence cerebral
processing, the comparison of between-modality and
within-modality cues, which is of relevance here, is not af-
fected by the lack of a neutral condition.
Expectation has been suggested to act via two types of

mechanisms, one reflecting a change in postsensory deci-
sion criteria and one reflecting an improvement in the en-
coding of sensory information in low-level brain regions
(Summerfield and Egner, 2009; Summerfield and de Lange,
2014; Bang and Rahnev, 2017; Rungratsameetaweemana
et al., 2018). The behavioral results obtained from the
visual postcue condition confirm the relevance of post-
sensory contributions: in this condition, the cue was pre-
sented only after the offset of the task-relevant stimulus,
but the perceptual benefit was comparable to the prior
visual symbolic cue. At the same time, our data provide a
direct cerebral correlate of the benefit induced by the
prior symbolic cue in a generator of physiological activity
that can be interpreted as arising from low-level (visual
motion-encoding) brain regions. The latency of the con-
gruency effect was .200ms, making it difficult to speak
of early (short-latency) neural effects, and leaving the
possibility that this congruency benefit arises in a top–
down manner.
Importantly, the same question of whether a benefit in-

duced by auxiliary information arises from sensory- or
decision-level mechanisms is discussed in the context of
multisensory perception (Bizley et al., 2016). Recent
work has shown that multisensory integration arises in a
hierarchical and distributed manner, which makes it diffi-
cult to pinpoint a specific single underlying mechanisms
or brain region underlying this (Rohe and Noppeney,
2015; Aller and Noppeney, 2019; Cao et al., 2019; Rohe
et al., 2019). A similar conclusion may hold for general
cueing effects. Hence, a parsimonious interpretation is
that both sensory-level and postsensory mechanisms
contribute to the symbolic cueing benefit in the present
paradigm, with the sensory-level contribution arising
from neural processes that are also susceptible to multi-
sensory influences.

Auxiliary multisensory effects and cueing
In the literature on multisensory perception, two types

of multisensory effects have been described. On the one
hand, there is sensory integration, also known as fusion,
where the partly redundant task-informative evidence
from two modalities is combined, possibly in a bottom–up
manner (Ernst and Bülthoff, 2004; Angelaki et al., 2009;
Cao et al., 2019). On the other hand, so-called auxiliary
multisensory interactions have been described. Here, the
perception of a task-relevant stimulus is affected by the
presentation of a stimulus in another modality, which by
itself does not offer primary task-relevant information
(Odgaard et al., 2003; Jaekl and Harris, 2009; Caclin et
al., 2011; Chen and Spence, 2011; Gleiss and Kayser,
2014a,b). One example is the enhanced contrast sensitiv-
ity when a visual stimulus is accompanied by an irrelevant
sound (Lippert et al., 2007). In these paradigms, the auxil-
iary stimulus could be interpreted as an additional “cue”
that does not carry information about the specific task-rel-
evant variable (e.g., motion direction or stimulus laterali-
zation) but carries other information, such as about
stimulus timing, that nevertheless helps to facilitate
performance.
Interestingly, one study (Kim et al., 2012) reported such

an auxiliary multisensory interaction in the context of vis-
ual motion detection: this study showed that the detec-
tion of which of two stimulus intervals carries coherent
(as opposed to random) motion can be enhanced when
both intervals are accompanied by the same acoustic
motion. Although the sound was identical across stimu-
lus intervals, performance was significantly enhanced
when the sound was congruent to the visual motion.
One could interpret this benefit as resulting from the
enhancement of visual motion encoding by acoustic in-
formation in a bottom-up manner (Kim et al., 2012).
However, an EEG study capitalizing on the same para-
digm linked the behavioral improvement to changes in
poststimulus parietal alpha-band activity, which is most
parsimoniously understood as reflecting an attentional
effect (Gleiss and Kayser, 2014b). In line with this, several
auxiliary multisensory influences have been considered to
arise from changes in sensory saliency or attentional gain
(Lippert et al., 2007; Chen and Spence, 2011; Gleiss and
Kayser, 2014a).
The present paradigm differed from this two-interval

task (Kim et al., 2012) in that the additional multisensory
or symbolic cues were directly predictive of the likely mo-
tion direction, and hence these could be used in principle
(by guessing in proportion to the cue validity) to solve the
task. In that sense, the present paradigm more directly
corresponds to a sensory integration task, where one
task-relevant stimulus (here visual motion) is accompa-
nied by a second task-informative stimulus (here the cue).
Further work is required to better understand which per-
ceptual and neural mechanisms are common to abstract
cueing, multisensory fusion, and other types of multisen-
sory effects, and which perceptual and neural mecha-
nisms differentiate these paradigms. The analysis used
here could provide one experimental approach to address
this question in the future.
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Prestimulus brain state and cue combination
To understand how prestimulus activity influences the

manner in which two pieces of sensory evidence are com-
bined, we modeled the influence of oscillatory power on
how visual motion and the cue are combined. This re-
vealed that alpha power significantly interacted with the
impact of visual motion on behavior regardless of the na-
ture of the cue, and was predictive of how an acoustic
but not a visual symbolic cue influenced behavior. In the
multisensory condition, stronger alpha power apparently
enhances the influence of the visual stimulus but re-
duces the influence of the sound stimulus, seemingly re-
flecting a relative weighting of the two stimuli. This
apparent influence of prestimulus activity was stronger
for incongruent trials, where a participant’s accuracy
was worse when alpha power was low. This is in line with
the recent suggestion that reduced prestimulus parietal
alpha reflects the a priori tendency with which partici-
pants combine multisensory information (Rohe et al.,
2019). With this interpretation in mind, the analyzed
alpha band activity is reflective of a high-level amodal
process arbitrating between sensory integration and
segregation.
In the visual precue condition, reduced alpha power in-

teracted with the influence of the visual stimulus, in line
with reduced alpha power reflecting enhanced visual at-
tention (Thut et al., 2006; Romei et al., 2007). However,
we did not find a significant interaction of alpha power
with the visual symbolic cue, nor was alpha power itself
directly influenced by the preceding cue. This is in con-
trast to previous studies proposing a role of prestimulus
alpha power in mediating the influence of prior expecta-
tions (Bauer et al., 2014; Mayer et al., 2016; Samaha
et al., 2018). One possibility is that alpha power medi-
ates expectations most strongly for spatial or temporal
stimuli (Worden et al., 2000; Samaha et al., 2015, 2016),
although effects for symbolic cues have been reported
as well (Mayer et al., 2016). Another possibility is that
the analyzed alpha activity in the two conditions origi-
nated from distinct neural structures. This may seem un-
likely given that the analysis of spectral activity was
based on the same electrode combination (“virtual sig-
nal”) for both conditions, and given that the respective
sensor-level topographies were similar between the two
cue types. However, it remains debated whether parietal
alpha band activity arises from a single supramodal
mechanism or distinct and modality-specific generators
(Banerjee et al., 2011). Previous work has linked parietal
alpha power to multiple sensory or cognitive processes,
including spatial attention or sensory arbitration (Thut et
al., 2006; Romei et al., 2007; Rohe et al., 2019), without
clear evidence for how to experimentally separate these
potentially different mechanisms reflected in the same
physiological activity pattern. As a result, future work
specifically needs to address the relevance of attention
and alpha band activity when investigating the possibly
shared or distinct mechanisms underlying abstract cue-
ing, multisensory fusion, and other types of multisensory
effects (Summerfield and Egner, 2009; Talsma et al.,
2010; Zuanazzi and Noppeney, 2019).
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