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Abstract: GABAA receptor modulators are structurally almost as diverse as their target protein.
A plethora of heterocyclic scaffolds has been described as modulating this extremely important
receptor family. Some made it into clinical trials and, even on the market, some were dismissed. This
review focuses on the synthetic accessibility and potential for library synthesis of GABAA receptor
modulators containing at least one heterocyclic scaffold, which were disclosed within the last 10 years.

Keywords: GABAA modulators; allosteric modulators; heterocyclic modulators; heterocyclic
synthesis; nitrogen heterocycles

1. Introduction

Heterocycles are an extremely diverse compound class since any cyclic system in which at least
one carbon is exchanged for any other atom belongs to it. Consequently, they occur abundantly in
nature, where they exhibit important functions. For example, the purine and pyrimidine bases in DNA,
are heterocyclic, or the amino acids proline, histidine, and tryptophan contain heterocyclic motifs.
Naturally, many heterocyclic scaffolds can be found in biologically active natural products such as
coniine, atropine, tetrodotoxin, etc. This list could be extended ad infinitum. Hence, it is not surprising
that drug development also makes excessive use of heterocyclic scaffolds. Their use enabled us to
explore and expand the drug-like chemical space. Some privileged structures contain heterocyclic
moieties, which are most frequently nitrogen, oxygen, and sulfur. Heterocycles are useful structures to
optimize ADME/toxicity features of drug candidates, such as solubility, lipophilicity, or their hydrogen
bond donor/acceptor properties. The presence of heterocyclic moieties in recently developed drugs
has increased due to advances in synthetic chemistry such as the development of cross-coupling or
hetero-coupling reactions, which allow synthetic accessibility to molecules containing functionalized
heterocycles. Additionally, some heterocyclic drug compounds have been developed to be inspired by
natural product isolates [1].
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Even though many small synthetic organic molecules with high medicinal potential contain
heterocyclic rings, the range of easily accessible and suitably functionalized heterocyclic building
blocks is surprisingly limited, and the construction of even a small array of relevant heterocyclic
compounds is far from trivial. Heterocyclic chemistry, therefore, continues to attract the attention of
medicinal and synthetic chemists. The development of novel methodologies allowing for efficient
access to heterocycles is still highly beneficial [2]. In particular, synthesis of heterocyclic scaffolds has to
implement novel reaction technologies for expanding the chemical space of biologically-active molecules
such as biocatalytic methods [3], electrochemical methods, flow chemistry [4], and photochemistry [5]
to expedite medicinal chemistry programs [6,7].

Within this review, heterocyclic compounds acting as GABAA receptor modulators will be revised.
First, an introduction to this specific receptor family and the biological responses related to modulation
will be provided. Subsequently, synthetic methods, which have been disclosed in the last 10 years to
access various heterocyclic GABAA receptor modulators, will be highlighted. The selection criteria for
the examples of compounds included was mainly based on synthetic originality and versatility, and
not on any specific pharmacological property. Scaffolds are arranged according to their heterocyclic
motif rather than according to their activity profile or binding site.

1.1. The Receptor Family

Among the mammalian ligand-gated ion channels, the GABAA receptor family comprises the
largest family with subunits encoded by 19 different genes. Some of these undergo alternative splicing,
and, thereby, increase the variety [8,9]. Their endogenous ligand known as the gamma-aminobutyric
acid (GABA) has been established as the main inhibitory neurotransmitter in the central nervous
system [10]. These chloride channels are homopentamers or heteropentamers, whereby the subunits
share a 30–80% sequence identity [11]. It is generally accepted (though not proven) and suggested
by the bulk of experimental evidence that the majority of GABAA receptors in the adult brain are
pentamers with the subunit composition two α1, two β2, or β3 and one γ2 subunits, i.e., (α1)2(β2
or β3)2(γ2)1 [9]. The subunit arrangement of this type of receptor is depicted in Figure 1. Each
subunit is defined by its position in the pentamer and by its interfaces perceived from the extracellular
side, going into counter-clockwise directions. A principal (or plus, +) face is in contact with the next
complementary (or minus, −) face, i.e., the canonical orthosteric β+/α− interface.

For heteromeric receptors of different compositions (such as αβ or αβδ combinations), the
arrangements are debated controversially and have not yet been defined conclusively [12,13]. The
number of pentameric assemblies that exist has also not been determined [9]. Figure 1 depicts a generic
subunit interface, which features sites known or proposed at and near a subunit interface. Regions 1
and 1a form the extracellular domain (ECD) interface site which harbors, e.g., GABA or benzodiazepine
sites (see panel b). Region 2 is a cation site while region 3 corresponds with the etomidate or barbiturate
sites in the upper transmembrane domain (TMD) (see panel c), while region 4 at the lower TMD is the
site where positive modulatory steroids have been observed [14]. Sites more remote to the interface
(intrasubunit-sites and lipid-associated sites) for which ligands are confirmed include site 9 [14] for
negative modulatory steroids, and tentative sites in positions 5, 6, 7, and 8 [15]. One α subunit shows
the remaining sites with the numbers to illustrate their approximate localization from this perspective.

For the major receptor subtypes that have been observed in the mammalian central nervous
system, subtype-selective targeting to address specific circuitry and physiology selectively has been
attempted and is still an ongoing major direction of ligand development [16]. Knowledge of binding
sites is crucial for subtype-selective targeting so that pockets that feature sequence differences can be
taken into consideration as discussed for some relevant examples below.
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Figure 1. Overview of pentamer structure and localization of orthosteric and allosteric binding sites. 
(a): Generic subunit interface, featuring ECD, TMD, and lower TMD. (b) View of the ECD. GABA 
sites, the benzodiazepine (BZD) site, and the modulatory pyrazoloquinolinone (PQ) site are shown 
explicitly. (c) View of the TMD of a canonical receptor with etomidate (Eto) and barbiturate (Bbt) sites 
shown explicitly. 
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1.2. Allosteric Binding Sites 

GABAA receptors are targets of many heavily used pharmaceuticals such as benzodiazepine-
based sedatives, hypnotics, and anxiolytics, barbiturate-based anticonvulsants, and general 
anesthetics of a broad range of chemotypes[16,17]. Nearly all pharmaceuticals and a wide range of 
toxins that target members of the GABAA receptor family do not interact with the binding site for the 
physiological agonist (GABA) as orthosteric ligands, but rather with one or several allosteric-binding 
sites [12,15,17]. Figure 1 provides an overview of the described allosteric sites. 

Of the sites depicted in Figure 1, some display a high degree of variability, while others are fairly 
conserved throughout the family [15]. The extracellular interfaces have large variable pocket-forming 
regions and are, thus, particularly suited for the development of selective agents. The ECD α+/γ− 
interface features potentially 18 subtypes (six α and three γ subunit isoforms) and is the major site of 
action of high-affinity benzodiazepine effects [18]. 

Since their serendipitous discovery and the introduction of chlordiazepoxide (Librium®) in 1960, 
benzodiazepines have spurred enormous efforts to develop benzodiazepine site ligands with further 
improved properties compared to classical benzodiazepines. Dozens of chemotypes, among them β-
carbolines, pyrazoloquinolinones, and imidazopyridines, have been identified as high-affinity 
ligands of benzodiazepine binding sites. The exact number of high and low-affinity benzodiazepine 

Figure 1. Overview of pentamer structure and localization of orthosteric and allosteric binding sites.
(a): Generic subunit interface, featuring ECD, TMD, and lower TMD. (b) View of the ECD. GABA
sites, the benzodiazepine (BZD) site, and the modulatory pyrazoloquinolinone (PQ) site are shown
explicitly. (c) View of the TMD of a canonical receptor with etomidate (Eto) and barbiturate (Bbt) sites
shown explicitly.

1.2. Allosteric Binding Sites

GABAA receptors are targets of many heavily used pharmaceuticals such as benzodiazepine-based
sedatives, hypnotics, and anxiolytics, barbiturate-based anticonvulsants, and general anesthetics of a
broad range of chemotypes [16,17]. Nearly all pharmaceuticals and a wide range of toxins that target
members of the GABAA receptor family do not interact with the binding site for the physiological
agonist (GABA) as orthosteric ligands, but rather with one or several allosteric-binding sites [12,15,17].
Figure 1 provides an overview of the described allosteric sites.

Of the sites depicted in Figure 1, some display a high degree of variability, while others are fairly
conserved throughout the family [15]. The extracellular interfaces have large variable pocket-forming
regions and are, thus, particularly suited for the development of selective agents. The ECD α+/γ−

interface features potentially 18 subtypes (six α and three γ subunit isoforms) and is the major site of
action of high-affinity benzodiazepine effects [18].

Since their serendipitous discovery and the introduction of chlordiazepoxide (Librium®) in
1960, benzodiazepines have spurred enormous efforts to develop benzodiazepine site ligands with
further improved properties compared to classical benzodiazepines. Dozens of chemotypes, among
them β-carbolines, pyrazoloquinolinones, and imidazopyridines, have been identified as high-affinity
ligands of benzodiazepine binding sites. The exact number of high and low-affinity benzodiazepine
binding sites is still not completely defined, and even high affinity sites that are not localized to the
canonical α+/γ− interfaces have been described [18].

Due to the high homology of the α+/β− interfaces with the α+/γ2− interfaces (see Figure 1),
benzodiazepine binding site ligands such as the class of pyrazoloquinolinones can bind at both these
interfaces, eliciting different functional effects [19]. While still being in an early stage, the α+/β−

interfaces are considered to be highly promising targets for novel therapeutic principles as well as a
wide range of tool compounds to be utilized in (human brain) imaging or research applications [20].
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Some benzodiazepines also bind at non-homologous sites located in the TMD [21,22]. These sites
are thought to be the main site of action of intravenous anesthetics such as etomidate or propofol.
Promiscuous binding of chemotypes that bind at the high-affinity benzodiazepine binding site at both
extracellular and TMD sites has been observed unexpectedly often [22]. In this review, ligands of the
high-affinity benzodiazepine sites, the extracellular α+/β− interfaces, and the TMD sites with which
barbiturates and etomidate interact are covered.

1.3. Allosteric Ligands and Their Action on GABAA Receptors

Ligands that bind to allosteric sites can have a multitude of effects on the receptor complex in the
presence or absence of orthosteric ligands. The structural basis of the GABAA receptor pharmacology
has been reviewed recently based on a surge of structural data of heteropentameric receptors with
various ligands present in ortho- and allosteric sites [23].

Many compounds can interact with several binding sites that are contained within a receptor. The
ones that bind at the location of the endogenous ligand are known as orthosteric ligands, whereas
compounds that interact in other binding sites that are different from the orthosteric binding site are
known as allosteric ligands.

1.3.1. Orthosteric Ligands

Orthosteric ligands can be classified into agonists, antagonists, or inverse agonists, based on the
response that their binding causes to the receptor (definitions were taken from NIH, NIC dictionary).
Agonists cause the same effect as the endogenous ligand that normally binds to the receptor. Antagonists
attenuate or block the effect of an agonist. Inverse agonists bind to the receptor and produce the
opposite pharmacological effect that would be produced by the endogenous ligand [24].

An example of a GABAA agonist is muscimol, whereas a well-known antagonist is
bicuculline [25–27]. Figure 2 depicts the structure of examples of an agonist and an antagonist/inverse
agonist of the GABAA receptor.
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Figure 2. Examples of a GABAA receptor agonist and antagonist.

1.3.2. Allosteric Ligands

When allosteric ligands interact with a receptor, they can either exert an effect in the receptor’s
physiology or just bind but produce no modification on the receptor’s physiology. In the former case,
some allosteric ligands can directly exert their effects without the orthosteric ligand present. On the
other hand, allosteric ligands that require the presence of the endogenous ligand to exert an effect are
commonly referred to as allosteric modulators.

Allosteric ligands that produce an enhanced response when interacting with the receptor in the
absence of the endogenous ligand are known as allosteric functional agonists or termed GABAmimetics.
Examples of these kinds of allosteric functional agonists are etomidate, barbiturates, or neuroactive
steroids [28,29]. Similarly, allosteric ligands can reduce or block channel activity in non-competitive
ways. An example of a GABAA receptor blocker is picrotoxin, which has a binding site located within
the channel pore [30]. Functional allosteric antagonism that is not based on a channel block can occur
at a variety of allosteric sites, such as the effects elicited by inhibitory steroids [14]. Figure 3 depicts the
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structure of some examples of allosteric ligands, which impact the receptor function in the absence or
presence of GABA.
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Allosteric modulators (in the strict sense) require the presence of the endogenous ligand to exert
their effects. In other words, they modulate the GABA-elicited channel response. In general, allosteric
modulators are classified in the following way.

• Positive allosteric modulators (PAM): they enhance the effect of the endogenous ligand
• Negative allosteric modulators (NAM): they diminish the effect of the endogenous ligand
• Silent allosteric modulators (SAM): they do not influence the effects of the endogenous ligand, but

they can compete with a PAM or a NAM for the occupation of a binding site [31].

Figure 4 shows a schematic representation of the effect that a GABAA receptor PAM, NAM, and SAM
can produce in comparison to the response that GABA produces.Molecules 2019, 24, x FOR PEER REVIEW 6 of 48 
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Since some ligands can fall into more than one category of these classifications, each receptor
subtype must be considered separately for each case. Some ligands can act as a SAM in a certain
receptor subtype, whereas, in other receptor subtypes, it can show a PAM behavior. Flumazenil is an
example of a GABAA receptor SAM [18]. Etomidate is another example of a GABAA receptor ligand
with a mixed behavior. Depending on the concentration that is being studied, etomidate can behave as
an allosteric modulator or as an allosteric functional agonist.

The next chapter presents the most commonly used assays, which are used to characterize GABAA

receptor ligands. In terms of the specific activity of any ligand, it is important to note that terminology
is very heterogeneous and has developed historically, and terms such as “modulator” and “agonist”
are often used synonymously and without clear experimental evidence for one or the other mechanism
of action.

2. Assays to Probe Interactions of Small Molecules with the Receptors, or with Specific Binding
Sites

Historically, radioligands were used to test substances’ ability to displace or modulate a known
ligand, where usually tritiated ligands are used and where brain membranes are used as a preparation
of all receptors found in the brain. To test specific receptor subtypes, membrane preparations from
cells used for recombinant expression are employed (typically HEK, COS, Ltk cells, etc.). The most
commonly used radioligands interact with the orthosteric site, with the high-affinity benzodiazepine
sites, and with the channel pore.

Ligands of the orthosteric site (GABA sites) such as muscimol, GABA, gabazine (and likely many
others) were and still are used. They display different degrees of specificity for different isoforms
(subtypes). To indicate the challenges and limitations, in a recent study, it was shown that the majority
of high-affinity muscimol sites in brain membranes are not the most expressed αβγ receptors, but are a
smaller population of δ- containing receptors [32].

In this scenario, we are interested chiefly in allosteric ligands. Historically, radioligands for
the high-affinity benzodiazepine sites predate the cloning of receptor subunits and were originally
considered as ligands of an unidentified “benzodiazepine receptor.” Thus, ligands that displaced
radiolabeled benzodiazepines were termed “agonists,” “antagonists,” and “inverse agonists” of the
“benzodiazepine receptor.” This leads to the unfortunate situation that benzodiazepine site ligands
are often referred to as “GABAA receptor agonists or inverse agonists,” which is rather misleading.
Several radioligands for high-affinity benzodiazepine sites exist and are widely used: flunitrazepam,
flumazenil, Ro-15 4513 are the most commonly used ones. They do not show complete overlap in the
subtypes to which they are binding with high affinity. Therefore, some radioligands bind to more
receptor subtypes than others due to differential interactions with isoforms of α or γ subunits.

Radioligands that bind in a state-dependent way to the ion channel also exist, where a prominent
example is EBOB. EBOB binding is state-dependent. Therefore, its binding is dependent on the absence
or presence of GABA and often even responds to allosteric modulators. Thus, modulation (rather than
displacement) of EBOB binding can also be used to detect ligands that bind at sites other than the
channel lumen, but these sites then remain unspecified [33].

Limitations of radioligand based assays include the following. Competitive displacement is the
gold standard to confirm binding site usage. Radioligand modulation helps to detect ligands that use
unknown sites [33], but may fail to respond to sites that cause only small or no conformational changes
(silent binders that may not be silent in the presence of other agents).

As discussed in the previous chapter, ligands not only bind to the receptors, but they exert complex
effects such as negative or positive modulation, or direct channel block, or allosteric “activation” on
them. These effects can only be detected with functional assays. This more comprehensive approach
directly assesses the effects of ligands on channel activity, or on agonist-elicited channel activity. The
biggest disadvantage of functional studies is that the binding sites cannot be identified by the assay.
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Competitive functional assays are exceedingly challenging and often allosteric and competitive effects
cannot be reliably distinguished.

The most commonly used methods to determine ligand function comprise low and high
throughput electrophysiological assays and diverse methods that are based on fluorescent probes that
are charge-sensitive or, otherwise, coupled to changes in membrane potential. Functional assays are
performed in recombinantly expressing cell systems to determine the effects of ligands on defined
receptor species or on known mixtures of subunits that are expressed, or on ex vivo preparations such
as acute brain slices, synaptosome or membrane preparations, or on primary cultured cells (typically
hippocampal neurons). It has to be noted that the large diversity of receptor subtypes renders every
assay incomplete in the sense that effects only on those receptors that are present in a given preparation
can be captured.

Due to the big complexity of GABAA receptor-mediated pharmacology and the wide diversity of
assays, which are used to investigate ligand properties such as affinity, potency, electrophysiological
efficacy, and in vivo effects and efficacy, it is challenging to compare ligand characteristics across
different studies. Even though, by now, it is well acknowledged that radioligand-based competition
assays can fail to detect modulatory interactions, there is still a lack of consensus concerning functional
testing. The large number of receptor subunits, the lacking knowledge about the precise number of
existing subtypes, and the observation that neurons, glia cells, and non- neuronal cells express a broad
and heterogeneous mixture of subunits documents that no single in vitro or ex vivo protocol can be
designed and research relies on combining multiple assay types to define ligand effects on molecular
species. A recent review illustrates the complexity and discusses many of the problems that are faced
on the path toward receptor subtype-specific ligand characterization [16].

Generally, after binding or functional effects are confirmed in either heterologously expressed
protein or suitable ex vivo preparations (such as brain membranes, acute brain slices, or neuronal cell
cultures), a broad range of toxicological and behavioral testing will follow for the most promising
compounds. The behavioral animal experiments are out of the scope of this review. As a very broad
rule, compounds that are chiefly GABAmimetic or positive allosteric modulators display sedative-like
and anticonvulsant-like effects while ortho- and allosteric antagonists and blockers will be anxiogenic
and pro-convulsant. If individual subtypes respond differently, very complex combinations of effects
can occur and raise hopes for the development of totally novel therapeutics that combine silent, PAM,
and NAM characteristics toward different receptor subtypes [34].

3. Clinical Pharmacology of Allosteric Ligands Used in Human Medicine

Three large groups of heavily used GABAergics are allosteric modulators of GABAA receptors, and
additional indication groups exist and are summarized in this case as a fourth heterogeneous group.

3.1. Sedative General Anesthetics

Drugs with reliable sedative-hypnotic, amnestic, anxiolytic, antinociceptive, and immobilizing
properties represent an indispensable component of state-of-the-art general anesthesia. After the
introduction of diethyl ether as the first viable anesthetic for surgery in the middle of the 19th century,
drug discovery became a prime focus of research in the field of anesthesia [35]. The ongoing quest
for novel compounds with rapid-onset, potent sedative-hypnotic effects, predictable clearance to
inactive metabolites and minimal side effects has yielded a range of clinically established drugs. The
vast majority of anesthetic compounds in use today interact with GABAA receptors [36]. In this
scenario, we provide a glance at the clinical roles of four important anesthetics, with the primary effects
to rely predominantly on positive allosteric modulation of GABAA receptors: Propofol, Etomidate,
Midazolam, and Thiopental (Figure 5).
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Propofol is a hydrophobic compound for intravenous application in a lipid-solution. It was first
approved for use in the 1980s and has quickly advanced to become the most frequently administered
intravenous drug for the induction of general anesthesia and a common choice for the maintenance of
general anesthesia as well as procedural sedation [37]. Rapid inductions, rapid terminal half-life time,
low incidence of postoperative nausea and vomiting, as well as rapid psychomotor recovery make it a
very versatile hypnotic drug [38].

Propofol substantially inhibits sympathetic nerve activity, contributing to a significant,
dose-dependent decrease of mean blood pressure [39] as well as moderate respiratory depression [40].
While these cardiopulmonary side-effects are predictable and well manageable in most settings, they
often present a challenge in hemodynamically constrained patient populations. Other adverse events
include pain on the injection site and less commonly hyperlipidemia resulting from lipid formulation.

Etomidate is an imidazole derivative, where its anesthetic activity was coincidentally discovered
during animal testing as an antifungal agent in the 1960s. Its rapid onset of effects can be explained
by the compound’s lipid solubility and large non-ionized fraction at physiological pH and make it a
common choice for induction of general anesthesia and short procedures requiring deep sedation. The
prolonged application of etomidate, however, is not feasible due to the incidence of adrenocortical
suppression, which negatively impacts the outcome, especially in critically-ill populations. Compared
to propofol, etomidate only causes a modest decrease of arterial blood pressure and leaves the
respiratory system largely unaffected [41].

Midazolam is a short-acting, rapid-onset benzodiazepine primarily used during procedural
sedation. Its low hemodynamic side-effects also make it a common choice for general anesthesia
during cardiac surgery. Its amnestic effects are advantageous in treating intraoperative awareness [42]
and its application may be correlated with a decreased likelihood of delayed recall of procedural
sedation [43]. As with other benzodiazepines, paradoxical excitement, cognitive impairment, and
prolonged recovery time present known complications.

Thiopental is an ultra-short acting barbiturate derivative. Barbiturates were used extensively over
several decades to induce and maintain general anesthesia. They have been largely replaced by newer
compounds with safer pharmacokinetic and pharmacodynamic profiles. Thiopental remains the only
anesthetically used barbiturate with a firm place in today’s surgery rooms and emergency departments.

Many additional anesthetic compounds such as inhalational fluranes and ketamine also
allosterically modulate GABAA receptors but rely on other primary mechanisms of action.

3.2. Prescription Hypnotics and Sleeping Aids

GABAA receptors present the prime molecular targets in the pharmacological treatment of
insomnia. Barbiturates undoubtedly played a historically significant role as prescription hypnotics but
have been largely replaced by safer options over the years. Their low therapeutic index paired with
high tolerance formation and addiction potential contribute to the significant risks associated with
their use [44].

Benzodiazepines are known for their ability to promote sleep, dampen anxiety, and provide
muscle relaxation with a much broader therapeutic index than barbiturates. Their aggressive marketing
and extensive prescription during recent decades after their market introduction are now being
increasingly criticized after tremendous evidence for risks associated with long-term usage emerged.
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Prescription of benzodiazepines such as temazepam and nitrazepam still constitute a significant
fraction of prescribed hypnotics [45]. The largest fraction of prescribed treatments for insomnia today
is newer non-benzodiazepines such as zolpidem and zopiclone (Z-Drugs). While they are promoted
and attributed to possessing greater benefits and fewer side effects than benzodiazepines, there is no
evidence of significant differences in clinical effectiveness and safety [46].

Many nature-derived compounds of which some are used as OTC sleep-aids, also seem to mediate
their sleep-promoting effects via interactions with GABAA receptors [47].

The development of new drugs with high efficacy, lower addiction liability, and lower incidence
of paradoxical reactions remains imperative in order to create safer long-term treatment options
for insomnia.

3.3. Anticonvulsants

Several different antiepileptic drugs with various known and unknown mechanisms of action are
in use for long-term prophylactic treatment. The treatment of acute seizures and status epilepticus,
however, requires potent and fast-acting drugs capable of effectively disrupting the convulsive state.
Many of these compounds are modulators of GABAA receptors. Parenteral benzodiazepines such as
midazolam, lorazepam, and diazepam are recommended during the initial phase of therapy, which
begins after 5 min of a persistent seizure. If the seizure continues after a duration of 20 min, a second
treatment phase begins, which consists of, not predominantly, GABAergic drugs such as fosphenytoin,
valproic acid, or levetiracetam. Due to a higher incidence of adverse events, phenobarbital is only
recommended in case the other options are unavailable. At the 40-min mark, a third treatment phase
begins, where anesthetic doses of thiopental, midazolam, or propofol should be considered [48].

3.4. Additional Indication Groups for Therapeutically Used Allosteric Modulators of GABAA Receptors Exist

Other indication groups for benzodiazepines include anxiolysis and central muscle relaxation.
In such cases, sedative effects are unwanted and tolerance formation limits the duration of effective
treatment. Since there are differences in the effect profiles of benzodiazepines, specific derivatives are
recommended for specific indications, which are not only based on their pharmacokinetic profiles [45].

Barbiturates are still regularly used in the management of severe traumatic brain injury, where
lowering intracranial pressure and optimization of cerebral oxygenation are critical [49].

3.5. PET and SPECT Imaging Ligands

Allosteric ligands of specific groups of GABAA receptor subtypes are not only in use as therapeutics
but also as isotope-labeled imaging ligands for positron emission tomography (PET) or single-photon
computed tomography (SPECT) to investigate altered receptor expression patterns in a wide range of
neuropsychiatric disorders [50]. At this time, all commonly used ligands for human brain imaging are
ligands of some of the high-affinity benzodiazepine binding sites. Prominent examples are flumazenil,
iomazenil, and Ro 15-4513. Imaging ligands that interact with other receptor subtypes and do not rely
on the presence of a γ-subunit would be highly desired.

4. Allosteric Ligands and Their Synthetic Accessibility

Many heterocyclic scaffolds have been investigated as GABAA receptor ligands. In addition, it
turns out that many of them contain nitrogen heterocycles. In fact, a large part contains even fused
heterocycles, which represent scaffolds that are often complex to synthesize. Within this chapter,
the more recent (last 10 years) synthetic developments in the large field of GABAA receptor ligands
are summarized. This means that the selection of examples is based on new or improved synthetic
methods that have been applied, and not on improved biological activity. Hence, examples synthesized
via long-standing synthetic procedures are not included even though they might show interesting
properties. For completion, the pharmacological data reported along with the synthesis are briefly
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summarized. Additionally, the subchapters are ordered according to the chemical relation, and not
according to activity, a binding site, or factors alike.

The chemotypes herein covered are a non-limiting list of the GABAA receptor modulators that
have been, so far, discovered and synthesized via new or improved routes within the last 10 years. For
this reason, synthetic accessibility of heterocycles is reviewed.

4.1. Monocyclic GABAA Receptor Modulators

4.1.1. Monocyclic GABAA Receptor Modulators with 5-Membered Rings

Imidazole Derivatives

Etomidate is a general anesthetic that not only positively allosterically modulates the GABAA

receptor, but also, at subclinical doses, it can activate the GABAA receptor in the absence of GABA.β2 and
or β3-subunit containing receptors are much more sensitive to etomidate than β1 containing receptors.
Another relevant etomidate derivative is methoxycarbonyl metomidate (MOC-etomidate), which
modulates GABAA receptors with similar potency, but it is quickly metabolized and inactivated [51,52].
Azietomidate also enhances the GABAA receptor function whereas TFD-etomidate has a low
GABAA receptor activity. Achiral etomidate analogs have been designed and tested, such as
dihydrogen etomidate and cyclopropyl etomidate, but both of them have low potencies, comparable to
S-etomidate [53]. The structures of these etomidate derivatives are depicted in Figure 6.
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Figure 6. Structures of etomidate enantiomers and analogs.

The synthesis of etomidate was reported for the first time in the US patent
3,354,173. In this process, methyl benzylamine (compound 9) is treated with
ethyl chloroacetate to yield N-ethoxycarbonylmethyl-N-1-phenylethylamine (compound
10). This product is subsequently formylated with formic acid and the resulting
N-ethoxycarbonylmethyl-N-formyl-N-l-phenylethylamine is again C-formylated with ethyl
formate and sodium ethoxide, which yields compound 11 as a result. The product (compound
11) is treated with thiocyanate in hydrochloric acid. This causes the N-formamide protecting
group to hydrolize and the resulting product with an aldehyde moiety will undergo a Marckwald
heterocyclization, which forms compound 12. In the final step, the thiol group is removed under
oxidative conditions with nitric and nitrous acids and further treated with IPA HCl to achieve the
corresponding hydrochloride salt of the etomidate. Neutralization yielded etomidate (compound 1 or
2) as a free base (Scheme 1). [54,55].
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Scheme 1. a) Ethyl chloroacetate, TEA, DMF, rt., overnight, yield not reported. b) HCOOH, xylene,
reflux, few hours, quant. yield. c) 1. NaOEt/HCOOEt, EtOH, r.t., 2. KSCN/HCl. d) 1. HNO3/NaNO2,
25–35 ◦C, 2 h, r.t. 2. Na2CO3, yield not reported. e) 30% H2O2, Toluene, H2O, 40–45 ◦C, yield
not reported.

Subsequently, a slightly modified approach was described in which the last step is performed
by using hydrogen peroxide as an oxidizing agent to perform the final desulfurization in order to
avoid highly exothermic conditions and the generation of nitrous oxide gas. This modified approach is
only reported with the R-enantiomer of etomidate (compound 1), whereas the original procedure was
performed with the corresponding racemate (Scheme 1) [54].

An alternative approach was reported by using a Mitsunobu alkylation of ethyl imidazole
carboxylate (compound 13), which was followed by a palladium-catalyzed cyclization in very good
yields. Racemization was avoided by performing the reaction at low temperatures (Scheme 2) [56].
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The synthesis of etomidate derivatives with a space linker (MOC-etomidate, (compound 3),
cyclopropyl etomidate (compound 4), and azietomidate (compound 5)) can be achieved from the
desired etomidate enantiomer (compound 1 or 2) in a two-step procedure (Scheme 3). Azietomidate
(compound 15) can be easily obtained by treating etomidate in its chirally pure desired form (compound
1 or 2) with an excess of a base in order to hydrolyze the ester moiety. The resulting carboxylic acid was
re-esterified with 3-azibutanol in the presence of dicyclohexylcarbodiimide (DCC) and a nucleophilic
catalyst, 4-(dimethylamino)pyridine (DMAP), to yield azietomidate (compound 5) as a product [57].
This same approach is also reported to obtain the MOC-Etomidate (compound 3) and cyclopropyl
methoxycarbonyl metomidate (compound 4), but using the corresponding alcohol instead [58].
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selectivity [60]. In particular, selectivity towards β2 and β3 over β1 containing receptors has been 
demonstrated with mutational studies and points to an overlapping site of action with etomidate 
[61]. Loreclezole (compound 21) is synthesized in a two-step synthesis, as outlined in Scheme 5. The 
first step, an N1-alkylation of the 1H-1,2,4-triazole with compound 22 is performed under microwave 
irradiation to yield compound 23 [62,63]. In the second step, 1-(3,5-dichlorophenyl)-2-(1H-1,2,4-
triazol-1-yl)ethan-1-one (compound 23) is transformed to loreclezole (compound 21) upon treatment 
with phosphorus pentachloride. 

Scheme 3. a) NaOH 10 M, 100 ◦C, 1 h. b) R1-OH, 4-(dimethylamino)pyridine,
dicyclohexyl-carbodiimide, or 1-ethyl-3-[3(dimethylamino)propyl]carbodiimide hydrochloride.

The dihydrogen derivative of etomidate (compound 7) was synthesized with a phase
transfer–catalyzed N-alkylation of imidazole ethyl ester (compound 13) with benzyl bromide
(compound 17) and tetra-n-butylammonium bromide. This procedure yielded the desired dihydrogen
etomidate as well as its respective isomer (compound 18) (Scheme 4) [59].
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Arylalkylazoles

Compounds containing an azolic ring have been reported as ligands for the GABAA receptors.
Among them, compounds such as loreclezole (compound 21), nafimidone (compound 20), and
denzimol (compound 19) belong to the class of arylalkylazoles, which is a class of experimental
anticonvulsants (Figure 7).
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Loreclezole (compound 21) was shown to be anticonvulsant in animals, and features β-isoform
selectivity [60]. In particular, selectivity towards β2 and β3 over β1 containing receptors has
been demonstrated with mutational studies and points to an overlapping site of action with
etomidate [61]. Loreclezole (compound 21) is synthesized in a two-step synthesis, as outlined
in Scheme 5. The first step, an N1-alkylation of the 1H-1,2,4-triazole with compound 22 is
performed under microwave irradiation to yield compound 23 [62,63]. In the second step,
1-(3,5-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one (compound 23) is transformed to loreclezole
(compound 21) upon treatment with phosphorus pentachloride.Molecules 2019, 24, x FOR PEER REVIEW 13 of 48 
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Modifications of the loreclezole scaffold have been investigated to discover new potential
anticonvulsants. The synthesis of these derivatives is shown in Scheme 6. After alkylation of
1,2,4-triazole with 2,4′-dichloroacetophenone (compound 24). The hydroxylamine 26 was obtained by
refluxing with hydroxylamine hydrochloride under basic conditions. Lastly, esterification using DCC
as a coupling agent yielded the final compound 27.
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Similarly, nafimidone (compound 20) is synthesized, as shown in Scheme 7 [64–66], and also
denzimol (compound 19) is synthesized in a similar fashion, starting from the correspondingα-haloalkyl
ketones [66].
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4.1.2. Monocyclic GABAA Receptor Modulators with Six-Membered Rings

Barbiturates

Barbiturates (structures 30 and 31) are derivatives of barbituric acid, which can positively modulate
the GABAA receptor and, at higher concentrations, can activate the receptor without the endogenous
ligand [67,68].

The synthesis of this family of compounds has been reviewed by Vardanyan and Hruby [67].
Thus, only contributions since then are discussed in this chapter. Traditionally, barbiturates can be
prepared by a condensation reaction of urea and the corresponding malonic ester with sodium alkoxide
in ethanol or DMSO [2,67]. A disadvantage of this traditional procedure is that it yields barbiturate
derivatives in a modest yield due to several well-known side reactions. Additionally, this procedure
requires dry solvents, high temperatures, inert atmospheres, and metallic sodium, which limits the
scope of the derivatives that can be obtained [2].

Volonterio and Zanda developed a one-pot procedure to synthesize 1,3,5-substituted and
1,3,5,5-substituted barbiturates (Scheme 8). In this procedure, carbodiimides (structure 32) reacted with
malonic acid monoethyl esters (structure 33) in order to yield N-acylurea intermediates (structure 34)
that would be, afterward, cyclized by adding a base and the desired electrophile (structure 30). Besides
being a single-step strategy, the advantage of this procedure is that all reactions were performed
under mild conditions. The solvents employed were THF, dioxane, acetonitrile, or DCM, even though
dioxane provided, in general, the best results. With this protocol, the yields mostly were superior to
60% [2].
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A limiting step of this procedure was identified for dialkyl carbodiimides that were employed as
reagents (i.e., diisopropyl carbodiimide). In these cases, decarboxylation of the malonate (structure 33)
occurred. Thus, reactions with this type of carbodiimides were performed in a less polar solvent (DCM)
and in the presence of TMP in order to enhance the O-N acyl migration process. This modification
satisfactorily resolved the issue and yielded respective desired products in yields over 67% [2].

C-monosubstituted barbiturates (structure 30) were obtained by quenching the barbituric carbanion
with protic acids and using 2N NaOH as a base. However, in the case of the tetrasubstituted barbiturates,
it was found that some carbanions of barbiturates failed to react with their respective electrophiles.
Thus, a slightly modified procedure was developed, where anhydrous K2CO3 was employed as a
base. ACN became the solvent of choice and the reaction was carried out at 120 ◦C in a sealed tube.
This protocol yielded the desired tetrasubstituted barbiturates (structure 31) in yields superior to 65%
(Scheme 8). It is noteworthy to mention that this alkylation protocol was also directly tested with
barbituric acid as a starting point with satisfactory yields (Scheme not shown) [2].

Additionally, another synthesis of heterocyclic-substituted barbiturates (structure 36) was reported
by performing a Knoevenagel condensation of barbituric acid and/or thiobarbituric acid (structure
37) and differently substituted aldehydes (structure 38). This procedure was performed either in the
presence of acetic acid or in the presence of sodium acetate. Modified conditions were also performed
under microwave irradiation, which substantially improved yields. This procedure enabled the access
to barbituric acid derivatives (structure 36) with different aromatic or heteroaromatic substituents and,
thus, represents a methodology that enhances the diversity of this scaffold (Scheme 9) [69].Molecules 2019, 24, x FOR PEER REVIEW 15 of 48 
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4.2. Fused Bicyclic GABAA Receptor Modulators

4.2.1. Fused Bicyclic GABAA Receptor Modulators Containing One Nitrogen

Quinolones

4-Quinolinone derivatives have been reported as high-affinity ligands at the BZD binding site
of GABAA receptors [70]. More recently, this scaffold was used for the synthesis of fluoro-labeled
compounds (compounds 39 and 40) as PET radiotracers for the GABAA receptors [71]. Starting from
41, the addition of diethyl ethoxymethylenemalonate yielded 42 that was heated in the presence of
diphenyl ether to deliver 43. Hydrolysis of the ester 43 and amide formation in the presence of HATU
led to (compounds 39 and 40) (Scheme 10). Among these, compound 45 (structure 39, R=CH2Ph) was
found to be a potent ligand of the GABAA receptors (Ki = 0.70 ± 0.66 nM).

Other quinolinone derivatives have been reported as anticonvulsants. Starting from the
pharmacophore of nitrocoumarine-derivatives (structure 46, Figure 8), 4 amino-3-nitro-quinolin-2-one
derivatives were designed (structure 47, Figure 8) [72]. These structures are synthesized as displayed
in Scheme 11 the reaction of malonic acid ester (compound 49) and aniline (compound 48) yielded
compound 50. Compound 51 was obtained via cyclo-condensation of compound 50 in the presence
of polyphosphoric acid. In the following steps, nitration and chlorination were performed to deliver
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compound 53. Lastly, the reaction with GABA methyl ester and the following hydrolysis delivered
compound 55 (Scheme 11). Additionally, structure 47 showed anticonvulsant activity. In the same work,
4-amino-3-nitro-1-thiocoumarins were investigated. However, the thio-coumarin derivatives were
found to have a lower anticonvulsant activity compared to the coumarin derivatives (O-containing).
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Indol-3-yl glyoxyl Derivatives

The indol-3-yl glyoxyl scaffold (structure 56) has also been explored as a template for designing
GABAA receptor ligands. Efficacy on co-application with GABA has been screened for several
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derivatives and some derivatives behaved as positive modulators with efficacies comparable to
diazepam. The general structure of this scaffold is depicted in Figure 9.
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Synthesis of this scaffold (structure 56) is reported by first performing an acylation of the accordingly
substituted indole (structure 57) with oxalyl chloride in anhydrous ether [73] and, afterward, treating
the resulting compound with the desired glyoxalyl chloride (structure 58) with either the corresponding
hydrazine hydrochloride (structure 61) in the presence of a base [74] or the corresponding amine
(structure 62) [75]. Alternatively, derivatives with a heterocyclic triazole moiety (structure 59) can
be prepared by reacting the corresponding indole-3-glyoxalyl chloride (structure 58) with propargyl
amine to afford the corresponding derivative with a terminal alkyne (structure 60). The alkyne moiety
was cyclized with click chemistry conditions using the accordingly substituted azide (Scheme 12) [76].Molecules 2019, 24, x FOR PEER REVIEW 17 of 48 
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Scheme 12. a) Oxalyl chloride, dry diethyl ether, r.t., 30 min, quant. b) NH-Aryl, TEA, Toluene, r.t. c)
Arylhydrazine hydrochloride, TEA, toluene, r.t., 24–36 h. d) Propargyl amine, dry Pyridine, r.t., 8 h,
quant. e) Aryl-azide, CuSO4·H2O, sodium ascorbate, t-BuOH/H2O (1:1), r.t., 8 h.

4.2.2. Fused Bicyclic GABAA Receptor Modulators Containing Two Nitrogens and 5–6 Membered
Rings

Benzimidazoles

Benzimidazoles are a scaffold that was first reported in 1999 as modulators of the GABAA receptor
with the aim to develop functionally selective ligands [77]. Figure 10 depicts examples of this family of
compounds are NS 2710 (compound 63), NS 11,394 (compound 64), and NS 16,085 (compound 65).
NS 11,394 (compound 64) is a positive allosteric modulator for which functional selectivity has been
explored in a small panel of α5-, α3-, α2-, and α1-containing GABAA receptors. [78,79]. The profiles of
NS 2710 (compound 63) and NS16085 (compound 65) showed subtle differences in comparison [79,80].
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Figure 10. Structure of benzimidazole derivatives.

Synthetic accessibility of this scaffold is reported in general via a Suzuki-Miyaura coupling, using
3-bromophenyl-1H-benzo[d]imidazole with the desired substituent in position 5, the accordingly
substituted aryl boronic acid, sodium carbonate as a base, and 5 mol% of the catalyst (Scheme 13) [81].
This procedure is compatible with several functional groups in position 5 (alkyl alcohols, trifluoromethyl,
ketones, aldehydes, nitriles, amides, and heterocyclic rings such as oxazoles, pyrazoles, and imidazoles).
Additionally, the corresponding arylboronic acids can be substituted with halogens, methoxy groups,
short-chain alkyl groups such as methyl or ethyl, sulfonamides, or even a heterocyclic ring such as
a pyridine.Molecules 2019, 24, x FOR PEER REVIEW 18 of 48 
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Compounds such as NS11394 (compound 64) and NS16085 (compound 65) can be obtained
using intermediate 72 as a starting point (Scheme 14). The synthesis of 72 begins with an SNAr of
4-fluoro-3-nitro-acetophenone (compound 69) with 3-bromoaniline (compound 70) giving compound
71. Compound 71 is converted to the key intermediate 72 via reduction of the nitro group to the
corresponding ortho-dianiline and cyclization to the benzimidazole using formic acid as a methylene
source in a one-step fashion. In order to obtain compound NS 2710 (compound 63), intermediate
72 undergoes a Suzuki-Miyaura coupling using pyridine-4-ylboronic acid and, subsequently, the
resulting product (compound 73) is treated with o-ethylhydroxylamine hydrochloride to obtain the
corresponding oxime (compound 63). Further treatment of intermediate 72 with methylmagnesium
chloride yielded the tertiary alcohol 74. The synthesis of both NS11394 (compound 64) and NS1685
(compound 65) requires the Suzuki-Miyaura coupling of intermediate 74 with the corresponding aryl
boronic acid.



Molecules 2020, 25, 999 18 of 47

Molecules 2019, 24, x FOR PEER REVIEW 18 of 48 

 

 
Scheme 13. a) (Ph3P)2PdCl2, Na2CO3, DME/H2O. 

Compounds such as NS11394 (compound 64) and NS16085 (compound 65) can be obtained 
using intermediate 72 as a starting point (Scheme 14). The synthesis of 72 begins with an SNAr of 4-
fluoro-3-nitro-acetophenone (compound 69) with 3-bromoaniline (compound 70) giving compound 
71. Compound 71 is converted to the key intermediate 72 via reduction of the nitro group to the 
corresponding ortho-dianiline and cyclization to the benzimidazole using formic acid as a methylene 
source in a one-step fashion. In order to obtain compound NS 2710 (compound 63), intermediate 72 
undergoes a Suzuki-Miyaura coupling using pyridine-4-ylboronic acid and, subsequently, the 
resulting product (compound 73) is treated with o-ethylhydroxylamine hydrochloride to obtain the 
corresponding oxime (compound 63). Further treatment of intermediate 72 with methylmagnesium 
chloride yielded the tertiary alcohol 74. The synthesis of both NS11394 (compound 64) and NS1685 
(compound 65) requires the Suzuki-Miyaura coupling of intermediate 74 with the corresponding aryl 
boronic acid. 

 
Scheme 14. a) NMP, 80 °C, N2 atm, 72 h, 95% yield. b) Fe, formic acid, acetic acid, EtOAc, 70 °C, 30 h, 
88% yield. c) Suzuki coupling, conditions not specified, yield not reported. d) o-ethylene 
hydroxylamine HCl, EtOH abs, reflux, 1.5 h, 60% e) MeMgCl, THF, rt, overnight, 57% f) 2-
cyanophenyl boronic acid, sodium carbonate, dichlorobis(triphenylphosphine)palladium, 1,2-
Dimethoyxethane, 90 °C, 6–8 h, yield not reported. g) (2-Chloro-5-cyanophenyl)boronic acid, sodium 
carbonate, dichlorobis(triphenylphosphine)palladium, 1,2-Dimethoyxethane, 90 °C, 6–8 h, yield not 
reported [81–83]. 

 

Scheme 14. a) NMP, 80 ◦C, N2 atm, 72 h, 95% yield. b) Fe, formic acid, acetic acid, EtOAc,
70 ◦C, 30 h, 88% yield. c) Suzuki coupling, conditions not specified, yield not reported. d)
o-ethylene hydroxylamine HCl, EtOH abs, reflux, 1.5 h, 60% e) MeMgCl, THF, rt, overnight,
57% f) 2-cyanophenyl boronic acid, sodium carbonate, dichlorobis(triphenylphosphine)palladium,
1,2-Dimethoyxethane, 90 ◦C, 6–8 h, yield not reported. g) (2-Chloro-5-cyanophenyl)boronic acid,
sodium carbonate, dichlorobis(triphenylphosphine)palladium, 1,2-Dimethoyxethane, 90 ◦C, 6–8 h,
yield not reported [81–83].

Imidazopyridines

Zolpidem (compound 75) (Ambien®) is the most prominent representative of the imidazopyridine
compound class. It belongs to the “Z-Drugs,” which take their name from the initial letter of the
drugs name such as zolpidem (Ambien ®), zaleplon (Sonata®), and zopiclone (Imovane, Zimovane,
Dopareel®). [84] Z-drugs are non-benzodiazepines that act as positive modulators at some of the same
binding sites as the benzodiazepines, but with a different selectivity profile toward the α-isoforms.
They are mostly prescribed in treating insomnia and sleeping disorders [85]. Zolpidem has a short
elimination half-life and a rapid onset of effect, which makes it a short-acting sleeping aid [86,87].

Different strategies have been investigated for the synthesis of Zolpidem [88]. The most
common routes involve the synthesis of the acetonitrile intermediate 76 [89–91]: treatment of
2-bromo-1-(p-tolyl)ethan-1-one (compound 77) with 2-amino-5-methylpyridine yielded compound 78.
The addition of formalin, dimethylamine, and acetic acid lead to the dimethylamino-imidazopyridine
(compound 70), which, upon addition of methyl iodide, followed by the addition of sodium cyanate
delivers intermediate 76. In the last two steps, hydrolysis and amidation are performed to obtain
zolpidem (compound 75), as depicted in Scheme 15.

Other strategies involve a formylation approach for the synthesis of the acetonitrile intermediate
76 (Scheme 16) [91]. Formylation is obtained by the treatment of 78 with oxalyl chloride and
dimethylformamide, which is followed by a reduction to yield alcohol 83. This is, subsequently,
transformed to the pyridinium tosylate salt 84. The addition of sodium cyanide to 84 leads to the
formation of 76. However, both procedures are not suitable for large-scale production due to the
toxicity of the reagents (oxalyl chloride, methyl iodide), their moisture sensitivity (carbonyldiimidazole),
their volatility (methyl iodide), and unsatisfactory yields. Therefore, different strategies have been
investigated. As reported by Eswaraiah et al. [92], intermediate 76 can be obtained using ethyl
chloroformate for the synthesis of the quaternary salt that, upon treatment with sodium cyanide,
delivered the key intermediate 76 (scheme not shown). Furthermore, the treatment of acid 81 with
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pivaloyl chloride in triethylamine followed by the addition of aqueous dimethylamine solution led to
the formation of zolpidem in good yields.
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Scheme 16. a) Oxalyl chloride, DMF −30 ◦C to 0 ◦C, 30 min, yield not reported. b) NaBH4, rt, 8 h, yield
not reported. c) p-toluenesulfonyl chloride, pyridine, rt, 8 h, yield not reported. d) NaCN, H2O, reflux,
2-5 h, yield not reported.

Another reported strategy involves the condensation of the α-tosyloxy ketone 86, obtained from
N,N-dimethyl-4-oxo-4-tolylbutanamide 85 upon treatment with HTIB, with 2-amino-5-methylpyridine
(Scheme 17) [88].
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Scheme 17. a) Iodosobenzene (PhIO), p-TsOH/CH3CN, reflux 2 h. b) 2-Amino-5-methyl pyridine,
reflux 2 h, 47%.

Other structures containing the imidazopyridine scaffold, such as TP-003 (compound 87) are
described as GABAA modulators. This chemotype reflects an effort to achieve anxio-selective
activity (with reduced sedation) by functional selectivity toward receptor subtypes containing specific
α-isoforms. TP-003 (compound 87) was initially proposed as an α3-selective modulator with anxiolytic
effects, but the in vitro selectivity and the in vivo effects were discussed controversially in subsequent
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follow-up studies [93–95]. The synthesis of TP-003 (compound 87) is described in WO 03/099816
and depicted in Scheme 18 [96,97]. 2-Bromo-5-Fluorobenzonitrile (compound 88) is coupled with
compound 89 to yield compound 90. The addition of SnCl2 and sodium hydroxide in THF afforded
compound 91. Bromo-deamination led to the formation of compound 92, which is transformed in
compound 93 by treatment with bis(pinacolato)diboron. The following coupling led to the protected
precursor (compound 95), which was de-protected to obtain TP-003 (compound 87).Molecules 2019, 24, x FOR PEER REVIEW 21 of 48 
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selective modulators of GABAA receptors (Figure 11) [98,99]. δ-Subunits are present in certain 
extrasynaptic GABAA receptors and contribute to pentamers devoid of high-affinity benzodiazepine 
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derivatives have been investigated. Among them, compound 98 and compound 99 (Figure 11) have 
shown promising pharmacological profiles with potential selectivity for α6ß2/3δ GABAA receptors, 
besides the δ selectivity, which is an interesting selectivity for the α6 subunit observed.  

Generally, the synthesis of such derivatives can be obtained in two steps [102] by reacting with 
an aromatic aldehyde with 2-amino pyridines in a multi-component fashion, which is followed by 
the formation of an amide bond. 
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EtOH:THF (1:1), rt, 12 h; 2. 2 N NaOH, rt, 1 h, 75%. c) 1. HBr (aq. 48%), NaNO2, 0 ◦C, 2 h, 2. CuBr,
NH4OH 0 ◦C to 50 ◦C, 10 min, 64%. d) KOAc, bis(pinacolato)diboron, PdCl2[P(cy)3], 1% DMSO in
dioxane, 90 ◦C, 16 h, 100%. e) Pd(PPh3)4 (5 mol%), 2 M Na2CO3, THF, 75 ◦C, 16 h, 60%. f) HCl (aq.37%),
EtOH, 95%.

Among the imidazopyridines, not only ligands of the high-affinity binding site have been described.
DS1 (compound 96) and DS2 (compound 97) have been introduced as somewhat δ-selective modulators
of GABAA receptors (Figure 11) [98,99]. δ-Subunits are present in certain extrasynaptic GABAA

receptors and contribute to pentamers devoid of high-affinity benzodiazepine binding sites [100,101].
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Even though DS2 (compound 97) cannot be considered fully δ selective [102], it shows a
considerable functional preference for δ-containing GABAA receptors and, therefore, different
derivatives have been investigated. Among them, compound 98 and compound 99 (Figure 11) have
shown promising pharmacological profiles with potential selectivity for α6β2/3δ GABAA receptors,
besides the δ selectivity, which is an interesting selectivity for the α6 subunit observed.
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Generally, the synthesis of such derivatives can be obtained in two steps [102] by reacting with an
aromatic aldehyde with 2-amino pyridines in a multi-component fashion, which is followed by the
formation of an amide bond.

As shown in Scheme 19, compound 102 is obtained by the reaction of thiophene-2-carbaldehyde
(compound 100) with 2-amino-5-bromopyridine (compound 101). The reaction of compound
102 with 4-butoxybenzoyl chloride yielded compound 98. For the synthesis of compound 99,
thiophene-2-carbaldehyde (compound 100) is reacted with 2-amino-3,5-dibromopyridine (compound
104) in the presence of 2-isocyano-2-methylpropane to yield compound 105. Upon treatment of
compound 105 with HBr (5 M), intermediate 106 was formed. In the following step, the amide formation
was performed via reaction with 4-((tert-butyldiphenylsilyl)oxy)benzoyl chloride (compound 107).
Deprotection with TBAF followed by a Williamson ether formation delivered compound 99 in a
moderate yield (35%). These two syntheses already show that the substitution pattern on the core
scaffold can be easily varied by using differently substituted starting materials and reagents.Molecules 2019, 24, x FOR PEER REVIEW 22 of 48 
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4.2.3. Fused Bicyclic GABAA Receptor Modulators Containing Two Nitrogens and 6–7 Membered
Rings

Benzodiazepines

Benzodiazepines have dominated the scene of “tranquilizers” since the first representative
chlordiazepoxide (Librium®, 1960) was introduced into the market [103]. Benzodiazepines are a
large group of compounds widely used in clinical treatment. They are used for a range of different
indications such as insomnia, anxiety, and depression, but also as anticonvulsants and anesthetics.
Such a versatile use requires different characteristics. For example, when used in the treatment of
anxiety or depression, the sedation and the hypnotic effect should be reduced, while, in procedural
anesthesia, rapid sedation is highly desired. Pharmacologically, benzodiazepines can be classified
according to their elimination half-life time in short-, intermediate-, and long-acting. Short-acting
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benzodiazepines, such as midazolam, are mostly used in anesthesia or insomnia due to their rapid
onset. Long-acting benzodiazepines such as diazepam are preferred in the treatment of alcohol or drug
withdrawal [104].

Classical Benzodiazepines

The first benzodiazepine, chlordiazepoxide (compound 111), was synthesized serendipitously, as
depicted in Scheme 20.
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Scheme 20. a) Hydroxylammonium chloride, EtOH, reflux, 8 h, 75%. b) chloroacetyl chloride, acetic
acid, 50 ◦C, 10 min, 91%. c) NaOH, d) Methylamine, MeOH, rt, 3 d, 36%. e) H2O, f) 1. PCl3, 2.
CH3I/base.

The addition of hydroxylamine to 2-amino-5-chlorobenzophenone (compound 112) yielded oxime
113, which, upon chloro-acetylation, yielded compound 114. The cyclized benzodiazepine N-oxide
(compound 115) is formed by the treatment of 114 with NaOH. Interestingly, methylamine did not attack
the methylene group carrying the Cl, but the equally electron-deficient C2-position of the heterocyclic
core unexpectedly leading to compound 111, via the proposed rearrangement mechanism displayed in
Scheme 20. To further investigate the interesting sedative properties, many more compounds of the
same class were then synthesized purposely. The synthetic routes via new synthetic approaches of
selected examples are described in the following paragraphs.

The structure of diazepam (compound 117) can be obtained from the chlordiazepoxide 111
(Scheme 21) upon oxidative deamination, which is followed by a reduction of the N-oxide with PCl3
and N-methylation with methyl iodide [103].
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Scheme 21. a) 1. Chloroacetyl chloride, toluene, rt, 2 h. 2. NH4OH/K2CO3, r.t, 3 h. b) dimethyl sulfate,
K2CO3, r.t, 2 h. c) bromoacetyl bromide, toluene, reflux, 30 min, 88%. d) NaN3, EtOH, reflux, 30 min,
90%. e) PhP3, Toluene, rt. f) reflux, 1 h, 63%.

Alternatively, diazepam can also be obtained starting from 2-amino-5-chlorobenzophenone
(compound 112 or structure 118 R1: Cl) with chloroacetyl chloride and hydroxylamine, followed by
a methylation (Scheme 21) [105]. Similar syntheses are used for nitrazepam (Mogadon ®), used as
a hypnotic agent, delorazepam (En®), used as anxiolytic, and nordazepam (Nordaz®)(Scheme 21).
An alternative synthesis for nitrazepam involves azide intermediate 121, which is reacted with
triphenylphosphine towards 122 including the substrate for cyclization to nitrazepam (compound
123, Scheme 21) [106]. In principle, the same route was applied for the synthesis of the bromazepam
(Lexotan®), which contains a 2-pyridyl ring instead of a phenyl ring in position 5 [107]. Additionally,
substitution with different halogens on both rings of the benzophenones is reported. However, other
substituents should, in principle, be tolerated.

Acetylated Benzodiazepines

Position 3 of the general scaffold was modified to increase the polarity and, therefore, to increase
the speed of metabolic elimination. A hydroxyl group is introduced in the case of lorazepam (compound
128) (Tavor®) and oxazepam (compound 127) (Alepam®, Murelax®, Serepax®). The general synthesis
of these derivatives is depicted in Scheme 22 via an oxidation followed by an acetylation step [108–110].
Alternatively, acetylation using lead (IV) acetate and potassium iodide in acetic acid is reported
(Scheme 22, conditions e and f) without the isolation of the iodinated intermediate [111,112].
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Scheme 22. a) R = H: 30% H2O2, AcOH, Na2WO4 cat., 70–100 ◦C, 6 h, 84%. b) R = Cl, m-CPBA, DCM,
rt, 10 h, 77%. c) R = H: acetic anhydride, 100 ◦C, 78%, 20 min or R = Cl: acetic anhydride, 70 ◦C; 79%, 3
h. d) NaOH, reflux. 80%. e) 1.1 eq. KI, 2 eq. Cu(Oac)2, 2 eq. KOAc, HOAc, 80 ◦C, 5 h (73%). f) 1 eq. I2,
2 eq. NH4S2O8, 2 eq. KOAc, HOAc, 80 ◦C, 6 h (84%).
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Diazolobenzodiazepines

Among the different synthetic strategies developed after the discovery of the first benzodiazepines,
the introduction of new rings annellated to the benzodiazepine scaffold was investigated. In 1982,
midazolam (compound 129) was marketed as Versed ® and was initially used as a general anesthetic
in procedural sedation and in the treatment of epileptic seizures due to its rapid onset [113]. Its water
solubility makes it suitable for oral or buccal administration and, therefore, it makes it suitable to
administer to children [114].

The synthesis of midazolam (compound 129) is achieved as depicted in Scheme 23. The nitrosation
of amidine 130 afforded compound 131 in good yields. Compound 132 was obtained by the treatment
of nitroso-amidine 131 with nitromethane in the presence of potassium t-butoxide. The hydrogenation
over Raney nickel of compound 132 yielded compound 133 in high yields. Acetylation of compound
133 followed by a thermal cyclization delivered compound 134. Alternatively, compound 134 could be
obtained directly from 133 upon treatment with triethyl orthoacetate. In the last step, oxidation with
MnO2 afforded compound 129 [113].
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lithiation, as outlined in Scheme 24. This method allows the insertion of different residues on the 
imidazole ring independently of the cyclization step [115].  

Scheme 23. a) NaNO2, acetic acid, rt, 3 h, 60%. b) CH3NO2, KotBu, DMF, rt, 1 h, 53%. c) Ni/H2, THF,
155 psi, 24 h, 83%. d) CH3C(Oet)3, xylene, reflux, 2 h, 68%. f) AC2O, pyridine, 100 ◦C, 4 h, 43%. g) PPA,
150–170 ◦C, 10 min., 23%. e) MnO2, toluene, reflux, 40 min., 58%.

In a different strategy, the methyl group can be inserted in position 2 of the imidazole via a
lithiation, as outlined in Scheme 24. This method allows the insertion of different residues on the
imidazole ring independently of the cyclization step [115].
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Scheme 24. a) 1. KotBu, THF, 0 ◦C. 2. ClPO(Oet)2, −20–0 ◦C. b) 1. TosMIC, 2. KotBu, −20 ◦C–rt, 4 h,
80%. c) 1. BuLi, −78 ◦C 2. MeI, −78 ◦C–rt, 90%. d) Na-Hg amalgam, K2HPO4, EtOH/H2O, ultrasound,
72%. e) 1. CNCH2COOEt, 2. KotBu, 4 h, 60%. f) NaOH, EtOH, rt, 4 h, 98%. g) HCl, EtOH, rt, 4 h, 83%.
h) NMP, 200 ◦C, 2 h, 70%. i) 1. BuLi, −78 ◦C 2. MeI, −78 ◦C to rt, overnight, 90%.

Triazolobenzodiazepines

Drugs containing a 1,3,4-triazole moiety, such as triazolam (Halcion ®), estazolam (Prosom®),
and alprazolam (Xanax®) [116] were synthesized and introduced to the market to treat insomnia and
panic attacks. The general synthesis of alprazolam (compound 144) is depicted in Scheme 25 starting
from diazepam (compound 117) [105]. After the acetylation, the imide (compound 145) is cyclized
with hydrazine hydrate to the 1,3,4-triazole motif. Variation in the phenyl rings can again be obtained
by using differently substituted benzophenones as starting materials for the benzodiazepine synthesis.
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Scheme 25. a) AC2O, K2CO3/KOH, r.t, 3 h, 80%. b) NH2NH2·H2O, NaOAc, reflux, 12 h, 75%.

The synthesis of a 1,2,3-triazolobenzodiazepine scaffold (structure 146) is outlined in Scheme 26.
Compound 148 was obtained via a Buchwald-Hartwig coupling from 1,2-diiodobenzene (compound
147) and aniline. Subsequent Sonogashira coupling, which was followed by acetylation, yielded
compound 115 in low yields. Even though this step represents a drawback of this synthesis, for
similar derivatives (e.g., with a bromine atom in position 9), better yields could be achieved with the
same conditions. Lastly, a cyclo-addition with sodium azide and a carbonyl reduction with BH3 were
performed to obtain the triazolobenzodiadepine scaffold 146 [117]. The cyclo-addition in this specific
example gave only a poor yield of 13% due to unoptimized reaction conditions.



Molecules 2020, 25, 999 26 of 47
Molecules 2019, 24, x FOR PEER REVIEW 27 of 48 

 

 

 
Scheme 26. A) Aniline, Pd(dba)2, Xantphos, Cs2CO3, toluene, 110 °C, overnight, 27%. B) 
trimethyl(prop-1-yn-1-yl)silane, TBAF, CuI, Pd(PPh3)4 , THF, 70 °C, overnight, 84%; c) 2-chloroacetyl 
chloride, K2CO3, DCM, 45 °C, overnight, 64%. D) NaN3, DMF, 150 °C, 2 h, 13%. E) BH3, THF, 70 °C, 2 
h, 88%. 

Differently substituted anilines are tolerated, such as p-chloroaniline or m-bromoaniline. 
Additionally, a slightly modified procedure starting from substituted 2-iodoanilines (R = Br, COOMe) 
instead of 1,2-diiodobenzene, allows the introduction of substituents on ring A of the benzodiazepine 
scaffold (scheme not shown). These bromo or ester derivatives can be used for further modifications 
(e.g., with coupling reactions). Furthermore, in the last few years, multi-component reactions have 
been reported for the synthesis of various triazolobenzodiazepine scaffolds (A, B, C), which deliver 
compound libraries quickly (Scheme 27). Multi-component reactions involving aldehydes, amines, 
and acylating agents are a suitable and versatile strategy to access polycyclic heterocyclic scaffolds 
[118]. In particular, structures containing both the 1,4 benzodiazepine ring system and the triazole 
system are of high interest because of their medical potential [119]. All three strategies require a 2-
azidobenzaldehyde (structure 154) and a propargylamine derivative (structure 154) as key 
compounds with the addition of other reagents. 

 
Scheme 27 a) 1. AcOH, NaB(Oac)3H, DCE, rt, 3 h. 2. Toluene, 100 °C, 4.5 h. b) 1. Amine and aldehyde, 
DMF, rt, 2.5 h, 2. TosMIC, K2CO3, rt, 17 h. c) InCl3, (10 mol%), MeOH, 60–100 °C, 10–72 h. 

For example, Donald et al. [120,121] demonstrated that the triazolobenzodiazepine scaffold 
(structure 156) is easily accessible via a reductive amination and an azide-alkyne cycloaddition as 
shown in Scheme 27 (route A). The scaffold obtained can be further modified to rapidly access a 
variety of compounds with different N-substituents.  

Scheme 26. a) Aniline, Pd(dba)2, Xantphos, Cs2CO3, toluene, 110 ◦C, overnight, 27%. b)
trimethyl(prop-1-yn-1-yl)silane, TBAF, CuI, Pd(PPh3)4, THF, 70 ◦C, overnight, 84%; c) 2-chloroacetyl
chloride, K2CO3, DCM, 45 ◦C, overnight, 64%. d) NaN3, DMF, 150 ◦C, 2 h, 13%. e) BH3, THF, 70 ◦C, 2
h, 88%.

Differently substituted anilines are tolerated, such as p-chloroaniline or m-bromoaniline.
Additionally, a slightly modified procedure starting from substituted 2-iodoanilines (R = Br, COOMe)
instead of 1,2-diiodobenzene, allows the introduction of substituents on ring A of the benzodiazepine
scaffold (scheme not shown). These bromo or ester derivatives can be used for further modifications
(e.g., with coupling reactions). Furthermore, in the last few years, multi-component reactions have
been reported for the synthesis of various triazolobenzodiazepine scaffolds (A, B, C), which deliver
compound libraries quickly (Scheme 27). Multi-component reactions involving aldehydes, amines, and
acylating agents are a suitable and versatile strategy to access polycyclic heterocyclic scaffolds [118]. In
particular, structures containing both the 1,4 benzodiazepine ring system and the triazole system are of
high interest because of their medical potential [119]. All three strategies require a 2-azidobenzaldehyde
(structure 154) and a propargylamine derivative (structure 154) as key compounds with the addition of
other reagents.
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For example, Donald et al. [120,121] demonstrated that the triazolobenzodiazepine scaffold
(structure 156) is easily accessible via a reductive amination and an azide-alkyne cycloaddition as
shown in Scheme 27 (route A). The scaffold obtained can be further modified to rapidly access a variety
of compounds with different N-substituents.

Another azide-alkyne cycloaddition was investigated by Djuric et al. as a modification of the van
Leusen imidazole synthesis for the synthesis of imidazole and triazole-fused benzodiazepines [122].
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As shown in Scheme 27, after the formation of the imidazole (structure 152), an intramolecular
cycloaddition is performed. The different fused triazole benzodiazepines accessible with this route
have the general formula 157, with R1 being -H or F-, R2 being H- or dioxolane and R3 being either -H,
-Me or -Ph.

A third variation was reported by Nguyen et al. [123] (Scheme 27C) when taking advantage
of an intramolecular 1,3-dipolar Huisgen cyclo-addition. The triazolobenzodiazepine scaffold is
obtained in a one-pot reaction using a 1,2-diketone (structure 160), an azido-aldehyde (structure 154), a
propargylamine (structure 155), and an ammonia reactant in the presence of a Lewis acid. This method
tolerates a variety of 1,2-diketones (R1: Ph, CH3, H, p-BrPh, p-MeOPh, p-MePh) as well as different
azo-benzaldehydes (R2: CO2Me, Br, dioxolane and -H) and propargylic amines (R3: H, Et, Ph) with a
yield range of 18–72%.

Recently, a one-pot synthesis of triazolobenzodiazepines (structure 164) has been accomplished
using a [3 + 2] cycloaddition of azomethine yield and N-ethylmaleimide (structure 163), which is
followed by an N-propargylation and a click reaction [124] (Scheme 28). The method accommodates
the use of readily available amino acids (R2 and R3 = CH3 or R2 = H and R3 = iPr. Or Ph), different
azido-aldehydes (R1 = H, CF3, Br, Cl), and different maleimides (R4 = Et, Me, Bn, Ph), which generates
as a byproduct of only H2O and CO2.
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4.2.4. Fused Bicyclic GABAA Receptor Modulators Containing Three Nitrogens

Pyrazolopyrimidine

Zaleplon (compound 165), also belonging to the Z-drugs, is a pyrazolopyrimidine used as a
short-acting hypnotic [125,126]. The synthesis of zaleplon (compound 165) is performed as outlined in
Scheme 29 with the reaction of acetamide 167 with 5-amino-1H-pyrazole-4-carbonitrile (compound
168. One major drawback of the synthesis of zaleplon (compound 165) is the formation of the isomer Z
(compound 169) as a side-product. Different acidic conditions are reported. Aqueous acetic or formic
acids are preferred over anhydrous acetic acid, which leads to the formation of a high amount of the
desired isomer (compound 165) [89,127].

Molecules 2019, 24, x FOR PEER REVIEW 28 of 48 

 

Another azide-alkyne cycloaddition was investigated by Djuric et al. as a modification of the 
van Leusen imidazole synthesis for the synthesis of imidazole and triazole-fused benzodiazepines 
[122]. As shown in Scheme 27, after the formation of the imidazole (structure 152), an intramolecular 
cycloaddition is performed. The different fused triazole benzodiazepines accessible with this route 
have the general formula 157, with R1 being -H or F-, R2 being H- or dioxolane and R3 being either -
H, -Me or -Ph. 

A third variation was reported by Nguyen et al. [123] (Scheme 27C) when taking advantage of 
an intramolecular 1,3-dipolar Huisgen cyclo-addition. The triazolobenzodiazepine scaffold is 
obtained in a one-pot reaction using a 1,2-diketone (structure 160), an azido-aldehyde (structure 154), 
a propargylamine (structure 155), and an ammonia reactant in the presence of a Lewis acid. This 
method tolerates a variety of 1,2-diketones (R1: Ph, CH3, H, p-BrPh, p-MeOPh, p-MePh) as well as 
different azo-benzaldehydes (R2: CO2Me, Br, dioxolane and -H) and propargylic amines (R3: H, Et, 
Ph) with a yield range of 18–72%. 

Recently, a one-pot synthesis of triazolobenzodiazepines (structure 164) has been accomplished 
using a [3 + 2] cycloaddition of azomethine yield and N-ethylmaleimide (structure 163), which is 
followed by an N-propargylation and a click reaction [124] (Scheme 28). The method accommodates 
the use of readily available amino acids (R2 and R3 = CH3 or R2  = H and R3 = iPr. Or Ph), different 
azido-aldehydes (R1 = H, CF3, Br, Cl), and different maleimides (R4 = Et, Me, Bn, Ph), which generates 
as a byproduct of only H2O and CO2. 

 
Scheme 28. 1. AcOH, CH3CN, 110 °C 6 h. 2. K2CO3, µw, 1 h, 35–65%. 

4.2.4. Fused Bicyclic GABAA Receptor Modulators Containing Three Nitrogens  

Pyrazolopyrimidine 

Zaleplon (compound 165), also belonging to the Z-drugs, is a pyrazolopyrimidine used as a 
short-acting hypnotic [125,126]. The synthesis of zaleplon (compound 165) is performed as outlined 
in Scheme 29 with the reaction of acetamide 167 with 5-amino-1H-pyrazole-4-carbonitrile (compound 
168. One major drawback of the synthesis of zaleplon (compound 165) is the formation of the isomer 
Z (compound 169) as a side-product. Different acidic conditions are reported. Aqueous acetic or 
formic acids are preferred over anhydrous acetic acid, which leads to the formation of a high amount 
of the desired isomer (compound 165) [89,127]. 

 
Scheme 29. A) 1. DMF-DMAc, reflux, 8 h, 2. NaH, EtBr, rt, 0.5 h, yield not reported, b) 30% acetic acid 
in H2O, 50 °C, 2 h, 86%. 
Scheme 29. a) 1. DMF-DMAc, reflux, 8 h, 2. NaH, EtBr, rt, 0.5 h, yield not reported, b) 30% acetic acid
in H2O, 50 ◦C, 2 h, 86%.



Molecules 2020, 25, 999 28 of 47

Among the pyrazolopyrimidines investigated as sedative-hypnotic agents, Indiplon [128] received
an initial approval letter from the United States Food and Drug Administration (FDA). However, after
further investigations, it remained unapproved unless more clinical studies are conducted. Other
structures containing a pyrazolopyrimidine core (structure 172) were investigated as potential ligands
for the GABAA receptors [129,130]. One compound of this class (Ar: 3′-thienyl, R1: 2′-pyridyl)
showed a promising selectivity for α1 containing receptors [129]. These structures can be obtained in a
one-step reaction as displayed in general Scheme 30, which allows a rapid synthesis of a variety of
derivatives [131].
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Alternatively, compound 177 can be synthesized starting from pyrazine-2,3-dicarboxylic acid 
and 5-chloropyridine-2-amine in a one-step conversion in acetic anhydride (scheme not shown) [137].  
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Pyrazolotriazines 

Different structures are reported as being active on GABAA receptors with a pyrazolotriazine 
(PT) scaffold (Figure 12). 
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Cyclopyrrolones

The last Z-drug presented here is Zopiclone (compound 173) [132], which is commercially available
in Europe as a racemic mixture (Imovane ®), while, in the USA, the active S-enantiomer (compound
173) [133] is marketed as Lunesta ® in an optically pure form (Scheme 31). Like the two other drugs in
this class, it is prescribed for the treatment of insomnia. Chemically, zopiclone belongs to the class
of cyclopyrrolones.
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The synthesis of zopiclone is performed via the reaction of compound 178 and compound 179
or its hydrochloride in the presence of a base [134–136] (Scheme 31). The precursor (alcohol 178) can
be prepared by starting from the reaction between compound 174 and compound 175. The resulting
acid is refluxed in thionyl chloride to yield compound 177. The latter upon addition of potassium
borohydride in an aqueous solution is converted to compound 178. Final esterification delivers the
target R/S-Zopiclone (compound 173).

Alternatively, compound 177 can be synthesized starting from pyrazine-2,3-dicarboxylic acid and
5-chloropyridine-2-amine in a one-step conversion in acetic anhydride (scheme not shown) [137].
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4.2.5. Fused Bicyclic GABAA Receptor Modulators Containing Four Nitrogens

Pyrazolotriazines

Different structures are reported as being active on GABAA receptors with a pyrazolotriazine (PT)
scaffold (Figure 12).
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Compounds with structure 189 were found to have a Ki in the nM range for the benzodiazepine 
binding site. The product with R = 3-trifluoromethylphenyl showed selectivity towards α1. Of the 
same class of compounds, MRK-016 (compound 181) [139] is reported to be an “α5-selective inverse 
agonist,” which is the historical term for a negative allosteric modulator at the benzodiazepine 
binding site of receptors that contain α5 subunits.  
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heated with hydrazine hydrate to yield pyrazole 191. After protecting the hydroxyl moiety, the 
primary alcohol of structure 192 was oxidized to aldehyde 193. Condensation between the aldehyde 
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Figure 12. GABAA receptor ligands containing the pyrazolotriazine scaffold.

PT structures were synthesized and investigated as aza-isomers of pyrazolopyrimidines [138].
Pyrazolotriazines are prepared starting from differently substituted 3-aminopyrazoles (structure 183)
(Scheme 32). A diazotization to structure 184 followed by azo-coupling to structure 186 and a cyclization
with ethyl acetoacetate yielded 8-substituted structure 187. Compounds of general structure 187 were
then further transformed into structure 188 with a mixture of dimethylformamide-dimethylacetamide
(DMF-DMAc). Lastly, the addition of hydrazine hydrate in the presence of sodium acetate in acetic acid
led to structure 189. This synthesis could be used for a broad range of substituted aminopyrazoles with
R being 2- or 3-pyridyl, 2-thienyl, 1- or 2-naphthyl and substituted aryl rings carrying electron-donating
or withdrawing substituents.
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Scheme 32. a) HCl, NaNO2/H2O, rt. b) NaOAc, ethyl acetoacetate, EtOH, rt, 1 h. c) DMF-DMAc,
toluene, piperidine cat., 90 ◦C. d) hydrazine hydrate 60%, acetic acid, sodium acetate, reflux.

Compounds with structure 189 were found to have a Ki in the nM range for the benzodiazepine
binding site. The product with R = 3-trifluoromethylphenyl showed selectivity towards α1. Of the
same class of compounds, MRK-016 (compound 181) [139] is reported to be an “α5-selective inverse
agonist,” which is the historical term for a negative allosteric modulator at the benzodiazepine binding
site of receptors that contain α5 subunits.

The synthesis of this compound is described by Chambers et al. [140]. Compound 190 was heated
with hydrazine hydrate to yield pyrazole 191. After protecting the hydroxyl moiety, the primary
alcohol of structure 192 was oxidized to aldehyde 193. Condensation between the aldehyde 193
and the isoxazole 194 afforded compound 195. After deprotection, compound 196 was reacted with
5-chloromethyl-1-methyl-1H-1,2,4-triazole to yield MRK-016 (compound 181) (Scheme 33).
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prepared using Williamson etherification conditions. Additionally, a substituent of choice can be 
introduced to the initial 3,6-dichloropyridazine (compound 207) using either a homolytic alkylation 
in the heteroaromatic ring or by synthesizing the pyridazine using the substituted maleic anhydride 
(structure 204) as a source of the required 1,4-diketone, hydrazine, and subsequent halogenation with 
phosphorus oxychloride. Afterward, the substituted dichloropyridazine (structure 207) can be 
treated again either with the same conditions mentioned above to obtain the triazolopyridazine 
moiety or an alternative way in a stepwise manner, using hydrazine and the corresponding acyl 
chloride. Lastly, intermediate 202 can be obtained from 201 just by refluxing it with sodium 
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Scheme 33. a) NH2NH2‚H2O, EtOH, reflux, quant. b) p-toluenesulfonyl chloride, Et3N, DCM, 67%. c)
MnO2, CHCl3, reflux, 95%. d) Xylene, reflux, 67%. e) 4 N NaOH, MeOH, 65 ◦C, 85%. f) K2CO3, DMF,
5-chloromethyl-1-methyl-1H-1,2,4-triazole, 76%.

Triazolopyridazines

Triazolopyridazines are a scaffold from which compounds MRK-409 (compound 197), TPA023
(compound 198), and TPA023B (compound 200) have progressed into clinical trials. This scaffold
was developed under the controversially debated hypothesis that compounds that show a functional
preference toward the α2- or α3-subunits of the GABAA receptors should have selective anxiolytic
effects [141,142]. The structures of some highlighted derivatives of this family of compounds are shown
in Figure 13.
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Figure 13. Structure of most studied triazolopyridazine derivatives.

Synthesis of this scaffold (structure 204) has been reported from three different precursors
(structures 201, 202, and 203) for the final step. The synthesis of intermediates 201, 202, and 203 is
depicted in Scheme 34 and it begins with 3,6-dichloropyridazine (compound 205), which can be treated
with the desired hydrazide and further cyclized in one step to obtain the accordingly substituted
triazolopyridazine scaffold (structure 206). The desired ether in position 6 can be easily prepared using
Williamson etherification conditions. Additionally, a substituent of choice can be introduced to the
initial 3,6-dichloropyridazine (compound 207) using either a homolytic alkylation in the heteroaromatic
ring or by synthesizing the pyridazine using the substituted maleic anhydride (structure 204) as a source
of the required 1,4-diketone, hydrazine, and subsequent halogenation with phosphorus oxychloride.
Afterward, the substituted dichloropyridazine (structure 207) can be treated again either with the
same conditions mentioned above to obtain the triazolopyridazine moiety or an alternative way in a
stepwise manner, using hydrazine and the corresponding acyl chloride. Lastly, intermediate 202 can be
obtained from 201 just by refluxing it with sodium hydroxide in the presence of 1,4-dioxane [143–145].
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Scheme 34. a) Ar-CO-NH-NH2, TEA, xylene or 1,4-dioxane, reflux. b) Het-CH2-OH, Base (NaH or
LiHMDS), DMf. c) (NH4)2S2O8, AgNO3, R1-COOH, H2SO4, H2O, 70 ◦C. d) 1. NH2-NH2·H2O, AcOH,
NaOAc, reflux. 2. POCl3. e) Ar-CO-NH-NH2, TEA, xylene or 1,4-dioxane, reflux. f) NH2-NH2, solvent
not reported. g) Ar-CO-Cl, solvent not reported. h) NaOH, 1,4-dioxane, reflux.

Intermediates 201-203 are then converted to the target scaffold 204 via the three methods shown
in Scheme 35. Conditions a) and b) correspond to a classical Williamson etherification protocol, where
either the necessary alcohol or the halide is attached to the main heterocyclic core. The third reported
strategy was performed by a homolytic alkylation of the heteroaromatic ring, generating the required
alkyl radical from a silver-catalyzed decarboxylation of the corresponding carboxylic acid using
ammonium persulphate. The synthesis of the required intermediates 201-203 is shown in Scheme 35.
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4.3. Fused Tricyclic GABAA Receptor Modulators

4.3.1. Fused Tricyclic GABAA Receptor Modulators Containing Two Nitrogens

β-Carbolines

β-Carbolines were identified in the 1980s as potential endogenous ligands for the benzodiazepine
binding site (Figure 14). In this versatile scaffold, compounds with diverse profiles ranging from
strong to moderate unselective negative modulation DMCM (compound 210) and FG-7142 (compound
211) to mixed NAM/weak PAM subtype profiles (β-carboline-3-carboxylate-t-butyl ester, βCCt) were
identified, which makes them heavily used research tools in rodent studies [141–144].
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cyclization, which was performed on a 10-g scale and afforded a mixture of βCCT (compound 209) 
and its regioisomer, δCCT (compound 219), in a ratio 2:1, respectively. Despite this, overall yields 
improved significantly, from the previous 35% to 52% on a 10-g scale and authors declared that the 
separation of regioisomers was performed with simple flash chromatography (Scheme 37). This 
protocol was also applied to derivatives with different alkoxy substituents ortho to the pyridyl 
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by the substituents located ortho to the pyridyl nitrogen atom. Smaller substituents provided 
equimolar amounts of both isomers, but bulkier substituents (i-Pr, t-Bu) afforded β-carbolines as the 
main product (scheme not shown) [147].  

Figure 14. Chemical structure of carbolines as GABAA modulators.

The synthetic accessibility of derivatives such as βCCT (compound 209) is outlined in Scheme 36.
As the first step, tetrahydro-β-carboline (compound 213) was obtained from d,l-tryptophan (compound
212) via a Pictet–Spengler reaction on a kilogram scale. The tetrahydro-β-carboline (compound 213)
underwent a Fischer esterification, and, afterward, oxidation with activated MnO2, which yielded
the product βCCE (compound 215). The ester was further hydrolyzed and the corresponding acid
re-esterified with t-butanol and CDI to yield βCCT (compound 209) [146]. Compound FG 7142
(compound 211) can be easily achieved by treating intermediate (compound 216) with methylamine
overnight, which yields the product in a period of 12 h.
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Scheme 36. a) HCHO, NaOH, 37 ◦C, 95%. b) EtOH, 2 eq H2SO4, reflux, 83%. c) MnO2, benzene, reflux,
80%. d) NaOH, H2O, reflux, 90%. e) CDI/DMF, DBU, 50 eq. t-BuOH, 85 ◦C, 75%.

Alternatively, an improved large-scale two-step route for carboline βCCT was developed
by performing a Buchwald-Hartwig coupling of t-butyl 5-bromopicolinate (compound 217) and
2-chloroaniline. The resulting diarylamine (compound 218) underwent an intramolecular Heck
cyclization, which was performed on a 10-g scale and afforded a mixture of βCCT (compound 209) and
its regioisomer, δCCT (compound 219), in a ratio 2:1, respectively. Despite this, overall yields improved
significantly, from the previous 35% to 52% on a 10-g scale and authors declared that the separation
of regioisomers was performed with simple flash chromatography (Scheme 37). This protocol was
also applied to derivatives with different alkoxy substituents ortho to the pyridyl nitrogen atom,
which yielded the desired coupling product in high yields. When the subsequent Heck cyclization
was performed, the ratios between ß-carbolines and δ-carbolines seemed to be influenced by the
substituents located ortho to the pyridyl nitrogen atom. Smaller substituents provided equimolar
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amounts of both isomers, but bulkier substituents (i-Pr, t-Bu) afforded β-carbolines as the main product
(scheme not shown) [147].Molecules 2019, 24, x FOR PEER REVIEW 34 of 48 
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4.3.2. Fused Tricyclic GABAA Receptor Modulators Containing Three Nitrogens

Pyrazoloquinolinones

Pyrazoloquinolinones (PQs) (structure 220) were reported for the first time as ligands of the
“benzodiazepine receptor” (which is a historical term for the high-affinity benzodiazepine sites present
at GABAA receptors) in 1982 [148] when the synthesis of three PQs was reported, and these derivatives
were presented as useful compounds to study the complex pharmacology of this receptor. The three
compounds, in fact, showed three different in vivo pharmacological behaviors, which were ascribed
to the benzodiazepine binding site. While the unsubstituted derivative, CGS8216 (compound 225),
showed benzodiazepine-antagonist properties, the p-chloro derivative (CGS9896) (compound 226)
showed benzodiazepine agonistic properties and the p-methoxy derivative (CGS9895) (compound 227)
behaved consistently with benzodiazepine partial agonists. Among these three, the agonist CGS9896
(compound 226) (p-chloro) was claimed to be a safe anti-anxiety agent due to the lack of neurological
deficits and its non-sedative behavior. Furthermore, functional studies revealed that PQs interact with
additional sites of GABAA receptors [149], which makes it impossible to assign their in vivo effects of
any single binding site.

The synthetic strategy for the synthesis of PQ derivatives remained unchanged with few
modifications and still follows the route displayed in Scheme 38. The quinoline derivative (structure
222) is obtained starting from the corresponding p-anisidine (structure 221) upon condensation with
diethyl ethoxymethylenemalonate (DEEMM), which was followed by a thermal cyclization. The
chlorination of the quinoline derivative with POCl3 (ii) yields the precursor of the PQ (structure
223). The required phenylhydrazine (structure 224) is used for the formation of PQs with different
substituents in the D ring. Different A-ring substitution patterns are obtained using different aniline
derivatives as starting materials.

Replacing the A-ring with electron-rich heterocyclic scaffolds (structure 223) requires modification
of the synthetic sequence (Scheme 39). Thiophene-3-amine would be too electron-rich to be a
stable starting material. Hence, compound 229 is used as starting material and in situ hydrolyzed,
decarboxylated, and reacted with DEEMM as reported in the supplementary information of
Varagic et al. [149]. From then on, the sequence follows the same steps as with carbocyclic A-rings.
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Due to the inconsistent results obtained during the investigation of their potential anxiolytic effect,
PQs were not further investigated as potential therapeutic agents [150,151], but they kept being used
as pharmacological tools in the studies of GABAA receptors.

Over the years, the general scaffold of PQ has been extensively modified, especially on ring A
and ring D [152–154], which results in compounds with different pharmacological profiles [155,156].
Additionally, studies on the binding site of PQs were performed. While displaying a higher affinity for
the BZD-site, PQs such as CGS9895 (compound 227) were reported to have a modulatory effect at a
binding site situated between the α+/β− interfaces, where it displays a lower potency compared to the
BZD-site [19,157]. Replacement of ring A with an aliphatic ring resulted in a null modulator at the
benzodiazepine (BZD) binding site, and the replacement with a thiophene ring led to the synthesis of a
non-binder [149]. Additionally, the relationship between the substitution pattern and binding activity
was investigated. It was demonstrated that substituents in positions 7 and 9 caused a lack of affinity at
the BDZ site, while substitution in position 8 associated with a substituent on the phenyl ring on N2
increased the activity [156].

4.3.3. Fused Tricyclic GABAA Receptor Modulators Containing Four Nitrogens

Triazoloquinazolines

After the discovery of PQ derivatives (structure 220), and their modulatory activity, more
compounds with heterotricyclic structures became appealing chemotypes. The replacement of ring
C with a triazole led to structure 234 (Figure 15). However, it did not lead to an improvement in the
activity in comparison with the PQ scaffold. The only exception was the ortho fluorophenyl, which
had a comparable activity [158,159].
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Triazole containing structures, such as compound 235 (Figure 15), were initially reported
as antagonists or partial inverse agonists for the BZR (the historical term for the high-affinity
benzodiazepine binding sites) [160]. The synthesis of such compounds is achieved by starting
from the arylhydrazines (structure 237) upon treatment with aryl chlorides, which was followed by a
chlorination. Structure 239 was then treated with ammonia to yield structure 241. The reaction of the
latter with ethyl oxalyl chloride led directly or upon further heating to structure 240. In the last step, a
reduction performed with Fe and acetic acid led to the final structure 235 (Scheme 40) [161].
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Looking at the structures of the GABAA receptors ligands, PQs, and phenyltriazoloquinoxalone
(structure 234), the design of triazoloquinazolinediones (structure 236) was the logical next step
(Figure 16) [162].
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Figure 16. Design of 2-Aryltriazoloquinazolinediones.

According to pharmacophore studies, this type of structure fulfills the requirements for a strong
affinity to the benzodiazepine binding site [163]. The synthesis of triazoloquinazolinedione (structure
254) was achieved starting with the anthranilic acid derivative (structure 242), which was treated
with ethoxycarbonyl isothiocyanate. This is followed by a cyclization in acetic anhydride (structure
244). Deprotection and methylation yielded the precursor (structure 246), which was treated with
3-nitro-1H-1,2,4-triazole to yield structure 247. The reaction between structure 247 and compounds
249-252 delivered (structure 243). Triazoloquinazolinediones (structure 254) are then obtained upon
treatment of (structure 243) with m-CPBA (Scheme 41).
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displacement of 3H-Flumazenil in rat cortical tissue, according to the pharmacophore model. 
Compound 256 can be further modified with cross-coupling reactions. For example, copper-free 
Sonogashira coupling conditions followed by hydrogenation (Scheme 43) are used for the synthesis 
of 258, which displayed high-affinity and a certain subtype selectivity for α1ß3γ2 GABAA receptors. 

Scheme 41. a) Ethoxycarbonyl isothiocyanate, MeCN, 80 ◦C, 4 h, 91–95%. b) Ac2O, 60 ◦C, 1 h, 93–100%.
c) 0.5 M NaOMe in MeOH, THF, reflux, 90 min, 88–100%. d) DMF, 0.5 M NaOMe in MeOH, then MeI, rt,
10 h 77–90%. e) 3-nitro-1H-1,2,4-triazole, PPh3, I2, toluene, DIPEA, 95 ◦C, 1 h, 89%. f) DIPEA, 249-252,
110 ◦C, 60 h, 51–70%. g) m-CPBA (77%), CH2Cl2, rt, 6-h quantitative yield. h) CuI, 1,10-phenantrolein,
ethyl carbazate, Cs2CO3, DMF, 80 ◦C, 16 h, yields compound 249: 83% compound 250: 76%, compound
251: 40%, compound 252: 22%.

Alternatively, structure 246 can be activated with phosphorous oxychloride before the addition of
compound 250 to yield structure 253 with yields comparable with the nitrotriazole strategy (Scheme 42).
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(77%), CH2Cl2, rt, 6 h, quantitative yields.

The compounds of this class display good affinities for the BZD site, determined in vitro
by displacement of 3H-Flumazenil in rat cortical tissue, according to the pharmacophore model.
Compound 256 can be further modified with cross-coupling reactions. For example, copper-free
Sonogashira coupling conditions followed by hydrogenation (Scheme 43) are used for the synthesis of
258, which displayed high-affinity and a certain subtype selectivity for α1ß3γ2 GABAA receptors.
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It was shown in the previous sections that a large number of heterocyclic scaffolds are, or have 
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Pyrazolobenzotriazines

The pyrazolobenzotriazine scaffold was first reported as a GABAA receptor ligand in 1998 [164].
During the past 10 years, N-oxide derivatives of this scaffold were synthesized and studied both
in vitro and in vivo with some derivatives having binding affinities to the benzodiazepine binding site
lower than 10 nM [165,166]. Some of them possess anxiolytic activity [166], which, together, suggests
positive modulatory effects elicited via the benzodiazepine binding site.

There are several strategies reported to access this scaffold. An example of how to synthetically
access the main scaffold is shown in Scheme 44. The accordingly substituted 2-nitrophenylhydrazine
(structure 260) was reacted with 2-oxosuccinonitrile (structure 261) to obtain the corresponding
2-(2-nitrophenyl)-5-aminopyrazole-4-acetonitrile (structure 262). Acidic hydrolysis of this compound
gave, as a result, the corresponding acetamide derivative, and further treatment in alkaline
media-initiated cyclization to the benzotriazine system (structure 259).
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Pyrazolobenzotriazine (structure 259) derivatives containing halogenated substituents were useful
building blocks to perform subsequent Suzuki-Miyaura cross-coupling reactions with several aryl
or heteroaryl boronic acids by incorporating these cyclic substituents into the main core. Further
modifications can be performed as well to the R4 substituents in order for convenient functional
groups such as carboxylic acids, amides, or other functional groups to introduce several heterocyclic
five-membered rings (Scheme not shown).

5. Conclusions

It was shown in the previous sections that a large number of heterocyclic scaffolds are, or have
been, under investigation as GABAA receptor modulators. It can be observed that the number of
examples for a given scaffold that underwent biological testing is directly proportional to the ease of
access of the corresponding structures. However, focusing on easily accessible chemotypes is not how
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medicinal chemistry will experience progress in the future. Hence, it is the task of synthetic chemists
to develop methods to make any scaffold accessible within only a few synthetic steps and to develop
the potential to deliver compounds with good diversity regarding substitution patterns. Thus, there is
still an infinite playground to develop new and exciting heterocyclic chemistry in order to enable the
discovery of improved or completely new biological activity, especially within the pending challenges
in GABAA pharmacology toward improved subtype-selective compounds. New (or re-discovered)
developments in synthesis will be important contributors to reach this goal. In particular, it will be
interesting to see how a broader implementation of biocatalysis, electrochemistry, continuous-flow
chemistry, and photo(redox)chemistry will impact drug development in the future.
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Abbreviations

ADME Absorption, Distribution, Metabolism, and Excretion
ACN Acetonitrile
Bbt Barbiturate
BZD Benzodiazepine(s)
BZR Benzodiazepine receptor
CDI 1,1′-Carbonyldiimidazole
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCC N,N′-Dicyclohexylcarbodiimide
DCE 1,2-dichloroethane
DCM Dichloromethane
DMAc Dimethylacetamide
DMAP 4-Dimethylaminopyridine
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
DEEMM Diethyl ethoxymethylenemalonate
DIPEA N,N-Diisopropylethylamine
EBOB Ethynylbicycloorthobenzoate
ECD Extracellular domain
Eto Etomidate
GABA Gamma-aminobutyric acid
GABAA GABAA receptors
HATU Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium
HTIB [Hydroxy(tosyloxy)iodo]benzene
IPA HCl Isopropanol hydrochloride
KOtBu Potassium tert-butoxide
NAM Negative Allosteric Modulator
NMP N-Methyl-2-Pyrrolidone
OTC Over-the-counter
PAM Positive Allosteric Modulator
PET Positron Emmission Tomography
PQ Pyrazoloquinolinone



Molecules 2020, 25, 999 39 of 47

SAM Silent Allosteric Modulator
TBBAB Tetra-n-butylammonium bromide
TBAF Tetrabutylammonium fluoride
TEA Triethylamine
THF Tetrahydrofuran
TMD Transmembrane domain
TMP 2,2,6,6-Tetramethylpiperidine
TosMIC p-Toluenesulfonylmethyl isocyanide
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