Skip to main content
. 2020 Feb 15;20(4):1068. doi: 10.3390/s20041068

Table 3.

A comprehensive comparison of different models used for the detection of Pneumonia from CXR images. These algorithms have been compared on basis of no. of epochs at which model converged, CapsNet accuracy (CN Acctr, CN Accvalid, CN AccTe), CapsNet loss (CN Losstr, CN Lossva), Decoder accuracy (D Acctr, D Accva), Decoder loss (D Losstr, D Lossva), and total loss (sum of all losses) (Losstr, Losstr). Here, CapsNet in the first row is the Simple CapsNet model discussed in this work.

Metrics CapsNet ICC ECC E3CC E4CC E8CC E16CC
epochs 162 100 148 213 300 182 190
CN Acctr 90.25% 94.29% 95.70% 71.78% 95.53% 95.36% 94.19%
CN Accva 93.75% 95.22% 95.41% 77.69% 96.29% 94.53% 95.30%
Accte 93.96% 95.33% 95.90% 81.54% 96.36% 94.19% 95.67%
CN Losstr 0.089 0.048 0.043 0.186 0.049 0.050 0.057
CN Lossva 0.086 0.045 0.062 0.1979 0.045 0.063 0.054
D Acctr 6.63% 33.32% 33.33% 33.39% 33.33% 33.35% 33.32%
D Accva 4.91% 33.34% 33.32% 33.25% 33.38% 33.36% 33.29%
D Losstr 0.017 0.022 0.021 0.023 0.015 0.015 0.017
D Lossva 0.019 0.023 0.022 0.028 0.016 0.019 0.021
Losstr 0.106 0.070 0.065 0.2094 0.064 0.065 0.074
Lossva 0.105 0.068 0.087 0.226 0.061 0.082 0.075