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Abstract: In this era of precision medicine, insights into the resistance mechanism of drugs are
integral for the development of potent therapeutics. Here, we sought to understand the contribution
of four point mutations (N51I, C59R, S108N, and I164L) within the active site of the malaria
parasite enzyme dihydrofolate reductase (DHFR) towards the resistance of the antimalarial drug
pyrimethamine. Homology modeling was used to obtain full-length models of wild type (WT)
and mutant DHFR. Molecular docking was employed to dock pyrimethamine onto the generated
structures. Subsequent all-atom molecular dynamics (MD) simulations and binding free-energy
computations highlighted that pyrimethamine’s stability and affinity inversely relates to the number
of mutations within its binding site and, hence, resistance severity. Generally, mutations led to
reduced binding affinity to pyrimethamine and increased conformational plasticity of DHFR. Next,
dynamic residue network analysis (DRN) was applied to determine the impact of mutations and
pyrimethamine binding on communication dispositions of DHFR residues. DRN revealed residues
with distinctive communication profiles, distinguishing WT from drug-resistant mutants as well as
pyrimethamine-bound from pyrimethamine-free models. Our results provide a new perspective on
the understanding of mutation-induced drug resistance.

Keywords: malaria; drug resistance; dihydrofolate reductase; pyrimethamine; dynamic residue
network; MD-TASK

1. Introduction

Human malaria is a disease of global public health importance. Among the five causative
Plasmodium species, Plasmodium falciparum is the most devastating [1]. The parasite is responsible
for the highest share of the disease burden in sub-Saharan Africa, where it accounts for over 90%
of malaria-related morbidity and mortality [2]. The prevalence and severity of clinical malaria
in the endemic areas of this region are higher in pregnant women and in children below the age
of 10 years [3,4]. Scientific reports highlighting the efficacy of the antimalarial drug combination,
sulphadoxine pyrimethamine (SP), in intermittent preventive treatment during pregnancy (IPTp) and
seasonal malaria chemoprevention (SMC) in children [4–6] led to the current WHO recommendations
of its usage for IPTp and SMC in children.

The pyrimethamine component of SP is an antifolate and a selective inhibitor of P. falciparum
dihydrofolate reductase (Pf DHFR). Pf DHFR is among the best clinically validated and well-defined
targets for antimalarial drug discovery [7]. Structurally, it forms part of a dimeric assembly consisting
of monomeric bifunctional units (Figure 1A,B). Each monomer is 608 residues long and is made up of a
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DHFR subunit (231 residues long N-terminal domain) and a thymidylate synthase (TS) subunit (288
residues C-terminal domain) joined by an 89-residue junction region [8]. DHFR functions by catalyzing
the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF), using the reduced form of
nicotinamide adenine dinucleotide phosphate (NADPH) as cofactor [9]. It thus plays a key role in
the folate biosynthetic pathway and generation of the DNA base, deoxythymidine monophosphate
(dTMP), hence its indispensability in parasite replication [9–11].
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Figure 1. (A) Illustration of the P. falciparum thymidylate synthase domain of dihydrofolate reductase 
(DHFR-TS) dimeric assembly: The structure was generated using homology modeling technique. P. 
falciparum Protein Data Bank (PDB) ID: 3QGT was used as a template. Color key: blue: DHFR 
domain, red: DHFR-TS junction, grey: TS domain. (B) Zoomed in image of the DHFR domain 
complexed with nicotinamide adenine dinucleotide phosphate (NADPH) cofactor and 
pyrimethamine. (C) Structural mapping of pyrimethamine-resistant mutations assessed in this 
study. (D) Wireframe representation of the structure of pyrimethamine. 

  

Figure 1. (A) Illustration of the P. falciparum thymidylate synthase domain of dihydrofolate reductase
(DHFR-TS) dimeric assembly: The structure was generated using homology modeling technique. P.
falciparum Protein Data Bank (PDB) ID: 3QGT was used as a template. Color key: blue: DHFR domain,
red: DHFR-TS junction, grey: TS domain. (B) Zoomed in image of the DHFR domain complexed with
nicotinamide adenine dinucleotide phosphate (NADPH) cofactor and pyrimethamine. (C) Structural
mapping of pyrimethamine-resistant mutations assessed in this study. (D) Wireframe representation of
the structure of pyrimethamine.
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While the TS domain of Pf DHFR-TS shares considerably high sequence identity across various
species, including humans [8], the DHFR domain is relatively divergent. Sequence differences,
particularly around the active site region, have allowed for the development and use of species-specific
antifolates such as pyrimethamine and cycloguanil [8]. However, application of currently approved
drugs against this target is being impaired by the development and spread of drug resistance [12].
Generally, drug resistance in Plasmodium parasites is associated with either point mutations or copy
number variations in related genes [13], which results in either impaired drug uptake by the parasite,
parasite efflux of the drug from target site, disruption in mitochondrial membrane potential, or steric
hindrance to drug binding within the parasite enzyme target [13,14].

In this work, we focus on resistance to pyrimethamine which is mediated by non-synonymous
mutations in the DHFR gene of P. falciparum [15]. Previous reports indicate that the mechanism
of resistance is based on steric constraints to pyrimethamine binding and to changes in the main
chain configuration of Pf DHFR, both caused by mutations involving residues with bulky side groups
in the active site region of the enzyme, with exacerbated effects as mutations accumulate [8,12,13].
Accordingly, this compromises the use of SP and is further aggravated by the drug pressure resulting
from continuous usage [7,9,10,13].

Several experimental studies have demonstrated various mutations that are responsible for
pyrimethamine and other antifolate drug resistance [14–19]. However, only mutations at four loci 51,
59, 108, and 164 (Figure 1C) have been associated with pyrimethamine resistance from field isolates [16].
Lone mutation at codon 108 (S108N) (single mutant (SM)), which is the least resistant mutant found
in nature, was shown to be the genesis for all pyrimethamine-resistant mutations [15]. Stepwise
mutations at other loci resulted in moderately resistant double mutants N51I+S108N (DM1) and
C59R+S108N (DM2), high resistant triple mutants N51I+C59R+S108N (TM1) and C59R+S108N+I164L
(TM2), and highly resistant quadruple mutant N51I+C59R+S108N+I164L (QM) [15]. While resistance
is seen to increase with added mutations, this is not the case with the catalytic efficiency of the
enzymes [15]; SM and DM1 share similar enzymatic kinetics with the WT enzyme, QM possesses
relatively impaired enzymatic kinetics [15], while DM2, TM1, and TM2 are highly compromised [15].
X-ray crystallography and molecular modeling experiments have provided valuable information
on resistance-specific protein–ligand interactions [13]. Primarily, limited molecular dynamics (MD)
simulation studies have leveraged the understanding of system stabilities in the presence or absence
of mutations [13,18,19]. These have however not included all the relevant mutations, and analyses
have hardly explained function-related essential motions and intra-protein residue communication
dynamics, which provide further insights into the understanding of protein behavior.

In this work, we sought to understand the effects of mutations (described above) in the active site
of DHFR domain, responsible for resistance to pyrimethamine. We employed comparative modeling
techniques to build full-length 3D structures of both wild type (WT) and clinically relevant mutant
DHFR proteins. Using molecular docking, pyrimethamine was docked to each of the proteins. This
revealed differences in binding poses which apparently translates to unfavorable binding affinities
in some of the mutants. All holo and DHFR-pyrimethamine complexes were subjected to 100-ns
all-atom MD simulations. Post-MD analysis revealed that overall structural folds of DHFR remain
relatively preserved in the presence of mutations and pyrimethamine. However, mutations moderately
modulate pyrimethamine-complexed DHFR conformations along with innate structural flexibility,
thus weakening pyrimethamine binding affinity. For the first time, we applied DRN analysis
on these systems to reveal critical communication patterns underlying resistance. We found that
active site and inter-domain residues are, natively, high traffic centers. These residues show varied
adjustments to mutations or pyrimethamine binding in different systems. Altogether, this work depicts
mutation-induced changes in PfDHFR that have resulted in pyrimethamine resistance: highlighting
conformational, energetic, and residue communication differences.
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2. Results and Discussion

2.1. Pyrimethamine Docked Differently to Protein with Resistance Mutations due to the Changes in the
Active Site

Although the DHFR domain (Met1-Asn231) was considered in this study, the entire DHFR-TS
dimeric assembly was modeled (Figure 1A) with slight modifications as outlined in the methodology.
Multiple sequence alignments failed to identify suitable templates for most of the missing residues
which constituted predominantly loop regions. This however is not surprising as the Plasmodium
genome possesses unique sequences which account for up to two-thirds of its rather distinctive
proteome [20]. The missing residues in the DHFR domain were modeled as an entire loop while only 9
out of the 51 missing residues in the junction region (linked to the N-terminal of the TS domain) were
included in the model. This was done to allow for the critical length necessary for TS activity in the
dimer [21]. Top models passing assessments by all applied evaluation metrics were considered for this
study (Table S1). These models were trimmed to obtain the DHFR domain and further prepared for
molecular docking.

Docking validation in WT resulted in similar docking orientations (RMSD = 0.66 Å) and interactions,
relative to the crystal structure (PDB ID: 3QGT). The final docking experiment produced complexes
with slight differences in docking scores (Table S2). Further analysis revealed differences in binding
poses (Table S2 and Figure S1) especially for DM1 and TM2 in which pyrimethamine bound with
its 4-chlorophenyl group oriented towards the interior of the active site (Table S1). The observed
differences in binding affinity/poses are most likely due to induced changes within the active site
caused by mutations. Apart from the induced steric clash to pyrimethamine binding caused primarily
by S108N mutation, the N51I and I164L mutations are known to induce an increase in the active site
size [13], leading to low binding affinity for small inhibitors such as pyrimethamine. This could also
explain the change in orientation of pyrimethamine in these mutants DM1 and DM2.

2.2. Global Analysis Revealed Differences in the Conformational Spaces Between WT and Proteins with
Resistance Mutations in the Absence and Presence of the Drug

Although highly effective, molecular docking disregards various degrees of protein flexibility,
along with practical microenvironment conditions important for rational protein-function studies. For
this reason, MD simulations were implemented to comprehensively understand systemic effects of
resistance mutations. All-atom 100-ns MD simulations were performed for WT and six mutated DHFR
systems either in apo form or complexed with pyrimethamine, totaling fourteen runs as described in
the Methodology section. To understand the effect of mutations in the absence and presence of ligands
to the global protein motions, the protein backbone root mean square deviation (RMSD), radius of
gyration (Rg), principal component analysis (PCA), and the binding free energy (BFE) were calculated
for each system and compared.

2.2.1. RMSD Analysis

RMSD values of protein backbone atom coordinates were computed to assess conformational
evolution of DHFR with reference to the starting structure (Figure S2). RMSD values converged within
~0.35 nm (Table S3), suggesting that the overall structural folds were relatively preserved. Besides
RMSD values of S108N, N51I_C59R_S108N, and C59R_S108N_I164L-PYR which drift initially before
plateauing, RMSD differences between WT and mutant systems (both pyrimethamine-bound and
pyrimethamine-free) were mostly minimal.

To be able to observe potential discrete conformational changes in protein systems and hence to
understand the variation effect on them, RMSD distribution histograms of the WT and variant proteins
both in ligand free and ligand bound were generated, as previously applied [22–24] (Figure 2A). The
pyrimethamine-free WT model displayed nearly normal RMSD distribution while the bound system
showed a bimodal curve, suggesting that the former predominantly sampled a single conformer while
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the latter sampled at least two conformations during simulation. Compared to the WT and WT-PYR,
pyrimethamine-free mutated systems S108N, N51I_S108N, C59R_S108N, and N51I_C59R_S108N_I164L
and pyrimethamine-bound mutated systems S108N-PYR, N51I_S108N-PYR, C59R_S108N-PYR,
and C59R_S108N_I164L displayed multimodal RMSD distributions, indicating that mutations
destabilize the systems generating multiple equilibrium states during simulation.
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Figure 2. (A) Histograms showing protein root mean square deviation (RMSD) frequency distribution
during 100-ns simulations: RMSD values were computed based on back-bone atom positions. The
width corresponds to the number of conformations sampled by proteins over the molecular dynamics
(MD) simulation. Y-axis (frequency) represents number of times a specific conformation was sampled
during the MD simulation. (i) S108N, (ii) N51I_S108N, (iii) C59R_S108N, (iv) N51I_C59R_S108N,
(v) C59R_S108N_I164L, and (vi) N51I_C59R_S108N_I164L. Color key: black WT—holo, green
WT—pyrimethamine complex, magenta mutant—holo, and blue mutant—pyrimethamine complex.
(B) Kernel density estimation graphs overlaid with boxplots showing the distribution of ligand RMSDs
for each complex. Density traces were plotted symmetrically on each side: the width corresponds to
the frequency of RMSD occurrence. Boxplots highlight the first, second (median), and third quartiles.
The mean and standard deviation values are indicated by µ and σ, respectively.
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Further, ligand RMSD calculations were conducted to assess how much pyrimethamine’s binding
conformation adjusted over time. Periodic jumps in RMSD values around 0.08 nm were observed across
all models (Figure S3). Density plots of pyrimethamine RMSDs (Figure 2B) show the ligand samples’
multiple equilibrium states during 100-ns simulation. The WT-PYR model displays a symmetric
bimodal RMSD distribution. This observation is attributed to conformational isomerism exhibited
during simulation, whereby the 4-chlorophenyl group (Figure 1D) oscillates about the rotatable
phenyl-pyrimidine bond (Video S1). Mutated models show multimodal (of more than two peaks)
ligand RMSD distribution, suggesting that mutations destabilize protein–ligand interactions. Markedly,
RMSD values of the pyrimethamine bound to the highly resistant QM (N51I_C59R_S108N_I164L)
were largely spread out and recorded the largest standard deviation value (0.037 nm) (Figure 2B),
suggesting a highly mobile and unstable ligand. This hints that increasing the number of mutations
could engender significant detrimental effects on protein–ligand affinity, in agreement with previous
observations from in vivo and in vitro experiments [15].

2.2.2. RMSF Analysis

To monitor residue fluctuations, the root mean square fluctuation (RMSF) of Cα atoms was
calculated. In general, most residues located at flexible loop regions (residues 20–40, 85–100, and 130–140)
yielded uppermost fluctuations (Figure 3); both pyrimethamine-free and pyrimethamine-bound
mutated systems exhibit enhanced and irregular fluctuation patterns in these regions. Although
comparisons of RMSF profiles between WT and mutants largely show inconsiderable global
differences, meaning invariably stable systems in the presence and absence of mutations or the
ligand (pyrimethamine), residues 210–225 of the C59R_S108N_I164L-PYR complex uniquely exhibited
larger RMSF values.Molecules 2018, 23, x FOR PEER REVIEW  7 of 25 
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Figure 3. Average per residue root mean square fluctuation (RMSF) computed from Cα atoms:
(a) S108N, (b) N51I_S108N, (c) C59R_S108N, (d) N51I_C59R_S108N, (e) C59R_S108N_I164L,
and (f) N51I_C59R_S108N_I164L. Color key: black: WT holo, green: WT complexed with
pyrimethamine, magenta: mutant holo, blue: mutant complexed with pyrimethamine.
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2.2.3. Rg Analysis

The radius of gyration (Rg) provides useful information about spatial packing of atoms relative to the
center of mass of a protein. Besides C59R_S108N, C51I_C59R_S108N, and N51I_ C59R_S108N_I164L-PYR
which depict more compact systems (Figure S4), Rg profiles of both wild type and mutated models
generally registered inconsiderable differences, with the Rg values converging within the range
of 1.85–1.90 nm. Assessment of relative Rg frequencies revealed different bimodal distributions
in C59R_S108N, N51I_C59R_S108N, and N51I_C59R_S108N_I164L (pyrimethamine-free) and in
S108N-PYR (pyrimethamine-bound) relative to the wild type systems (WT and WT-PYR), suggesting
that the associated mutations induce substantial adjustments in spatial packing of respective systems
(Figure S5).

2.2.4. Mutations Moderately Modulated Conformational Dynamics

To understand the impact of mutations on conformation redistribution in DHFR, essential
dynamics was performed on the protein backbone atoms. Realignment of conformation ensembles
can be correlated to a proteins’ gain/loss of function [25]. Considering the fact that the mutations
studied here occur at the active site, they are bound to influence protein recognition and hence
binding behaviour. Principal component analysis (PCA) enables the extraction of large-scale important
motions that occur during simulation by reducing the dimensionality of the conformational space.
To retain as much information as possible, the top two eigenvectors (PC1 and PC2), from a total
of 2079, corresponding to eigenvalues possessing the largest percentage variance (Table S4) were
selected for interpretation. Also, the trace values, which correspond to the sum of eigenvalues (total
variance), associated with the transformation matrix and which can highlight the overall intrinsic
protein flexibility, were noted (Table S5). Two-dimensional projections of these eigenvectors (PC1 and
PC2) show that the presence of either/both pyrimethamine and mutations yield different patterns of
motion, albeit within a restrained space as evidenced by small trace values (Figure S6 and Table S5).

While 2D projections offer a general outlook of clusters formed and the accessible conformational
space explored during simulation, the free energy landscape provides a perspective view of the
transition subspace along with conformer associated abundance.

We evaluated the effects of mutations on the simulated systems: (1) Regarding pyrimethamine-bound
complexes, the WT-PYR and N51I_C58R_S108N_I164L-PYR display nearly similar population
shift patterns, while S108N, C59R_S108N-PYR, N51I_S108N-PYR, N51I_C59R_S108N-PYR, and
C59R_S108N_I164L-PYR displayed reverse patterns during simulation (Figure S6). The WT-PYR (two
conformers), N51I_ C59R_S108N-PYR, and N51I_C59R_ S108N_I164L-PYR display conformation
population shifts leading to a single dominant energy basin (single well energy landscapes), suggesting
relatively rigid systems regardless of mutations (Figure 4). Contrarily, mutated complexes S108N-PYR
(two conformers), N51I_S108N-PYR (three conformers), C59R_S108N-PYR (three conformers), and
C59R_S108N_I164L-PYR (four conformers) constructed elongated valleys with a series of folding
funnels connected by low-lying energy barriers. This suggests that the above mutations induce
structural instability on the pyrimethamine-bound DHFR, resulting in conformational heterogeneity.
S108N-PYR spans a broader conformational space indicative of a highly flexible system. (2) Regarding
pyrimethamine-free systems, we observe that the models generally display more rugged energy
landscapes relative to pyrimethamine-bound models, indicating highly mobile systems. The WT,
S108N, C59R_S108N, N51I_C59R_S108N, and N51I_C58R_S108N_I164L exhibit nearly similar patterns
of ensemble shifts, while N51I_S108N and C58R_S108N_I164L show reverse patterns (Figure S6).
Comparable to the wild type, all mutated systems except N51I_C59R_S108N visit multiple metastable
conformers: WT: four conformers, S108N: three conformers, N51I_S108N: five conformers, C59R_S108N:
four conformers, C58R_S108N_I164L: four conformers, and N51I_C59R_S108N_I164L: three conformers,
(Figure 5) suggesting that the systems possess inherent flexibility that is likely unrelated to generated
mutations. N51I_C59R_S108N exhibits a single-well folding route, indicating that the presence of
mutations confers structural rigidity to some degree.
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Collectively, all mutated pyrimethamine-free models recorded higher trace values relative to
the WT-PYR (Table S3), meaning that the presence of mutations enhances structural flexibility and
could accordingly modulate ligand-binding events. On the other hand, only the C59R_S108N-PYR,
N51I_C59R_S108N-PYR, and C58R_S108N_I164L-PYR models of pyrimethamine-bound simulations
recorded higher trace values compared to WT-PYR, suggesting mutation-specific influence on
structural mobility.

Next, we assessed the effects of pyrimethamine-binding on conformation redistribution by
cross-comparing pyrimethamine-free versus bound models. As stated earlier, the pyrimethamine-free
systems generally exhibit rugged energy landscapes characterised by multiple metastable states. Besides
S108N-PYR, pyrimethamine-bound systems generally construct narrow energy basins with deeper
funnels, showing that the presence of pyrimethamine reasonably dictates rigidity to the structures.
Relative to pyrimethamine-free models, the majority of pyrimethamine-bound models, including
S108N-PYR, N51I_S108N-PYR, C59R_S108N-PYR, and N51I_C59R_S108N_I164L-PYR, possess lower
trace values, implying improved structural rigidity.

It was increasingly clear that DM1 (N51_S108N), DM2 (C59R_S108N), and TM2 (C59R_ S108N_I164L)
enhance conformational heterogeneity while TM1 disfavours conformational plasticity. Altogether,
mutations moderately modulate pyrimethamine-bound DHFR conformations along with innate
structural flexibility and, as such, could affect pyrimethamine’s association constants.

2.2.5. Mutations Weakened the Binding Affinity of Pyrimethamine to DHFR

To investigate the influence of mutations on the solidity of protein–ligand interactions, binding
free-energy calculations were performed on pyrimethamine-bound complexes using the Molecular
Mechanics Poisson−Boltzmann Surface Area (MM/PBSA) method [26]. It was discovered that the total
binding free-energy values across all mutated systems were higher, meaning pyrimethamine binding
was more favored in the wild type than it was in mutated DHFR (Table 1). Relative to the wild type
(−127.20 ± 0.21 kJ mol−1), we observed a general increasing trend in total binding free-energy values
with increase in number of mutations, in agreement with findings of previous studies [15].

Table 1. Thermodynamic analysis: Comparisons of binding energy between wild type and mutated
DHFR–pyrimethamine complexes. Energy values in parenthesis represent the sd (standard deviation).
Key: van der Waals: ∆EvdW, Electrostatic: ∆Eelec, polar solvation: ∆Gpolar, nonpolar: ∆Gnonpolar.

Systems ∆EvdW ∆Eelec ∆Gpolar ∆Gnonpolar
∆G binding (kJ

mol−1)

WT −145.40 (0.20) −5.97 (0.06) 38.76 (0.10) −14.58 (0.02) −127.20 (0.21)

S108N −136.80 (0.19) −7.32 (0.06) 50.06 (0.15) −14.21 (0.02) −108.26 (0.21)

N51I_S108N −124.09 (0.19) −6.63 (0.06) 32.05 (0.11) −14.46 (0.02) −113.12 (0.20)

C59R_S108N −127.74 (0.21) −5.28 (0.07) 62.50 (0.16) −13.90 (0.02) −84.40 (0.23)

N51I_ C59R_S108N −130.53 (0.24) −4.29 (0.06) 47.76 (0.18) −13.82 (0.02) −100.87 (0.26)

C59R_S108N_I164L −105.48 (0.26) −2.59 (0.06) 28.69 (0.11) −13.40 (0.02) −92.77 (0.25)

N51I_C59R_S108N_I164L −116.49 (0.18) −6.98 (0.08) 53.07 (0.21) −14.49 (0.02) −84.90 (0.25)

Mutated complexes N51I_C59R_S108N_I164L (−84.90 ± 0.25 kJ mol−1) and C59R_S108N (−84.40
± 0.23 kJ mol−1) yielded the highest total binding energies. The van der Waals energy term (∆EvdW)
contributed the most to the total binding free energy. Also, comparing the wild type with mutated
systems, ∆EvdW was majorly responsible for increase in binding free energy in mutants. Per residue,
decomposition calculations revealed that residues ASP54 (8.32 kJ mol−1), LEU46 (−5.82 kJ mol−1),
PHE58 (−12.33 kJ mol−1), and ILE164 (−5.35 kJ mol−1) contributed substantially to the total binding
free energy in the wild type model (Figure S7 and Table S6). The above residues are distributed within
the pyrimethamine binding region; hence, they play an important role in the affinity and stability
of protein–ligand interactions. In comparison to the wild type, residues 164, 54, 55, 15, 112, and
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116 predominantly displayed considerable variations in total binding free energy across all mutated
systems (Table S6). Accordingly, these residues could play a vital role in shifting protein–ligand
dynamics after mutation.

Assessment of intermolecular hydrogen bond numbers between DHFR and pyrimethamine
showed that both wild type and mutated systems possess at least a single hydrogen bond during
simulation. Besides N51I_S108N, C59R_S108N, and C58R_S108N_I164L which registered inconsistent
numbers, all models consistently recorded 2–4 hydrogen bond numbers (Figure S8).

Various experimental reports suggest that antifolates, including pyrimethamine, adopt wild
type/mutant-specific association states with DHFR. For instance, Cocco and coworkers [27]
demonstrated that pyrimethamine, trimethoprim, and methotrexate preferably bind WT DHFR
with a protonated N1 position of the pyrimidine ring under physiological conditions. Abdizadeh et
al. [28] showed that trimethoprim preferably associates with the Escherichia coli DHFR mutant D27N
in its neutral state whereas both its neutral and protonated states equally bind the D27S mutant. It
should be pointed out that the results discussed here illustrate the binding behavior of pyrimethamine
in its neutral state to both wild type and mutated models. While the effects of pyrimethamine’s
protonation state on its binding affinity are likewise important, these conditions were not incorporated
in the objectives of this study. Moreover, the binding states of the drug to mutated Pf DHFR systems
examined here are yet to be established.

2.3. Differences in Intra-Protein Communication Patterns due to Mutations and Ligand Binding were Observed

2.3.1. Dynamic Residue Network Analysis

Residue interaction network (RIN) analysis of a protein backbone is useful in identifying key
residues involved in intra-protein communication. This can be used to explore differences in information
flow between wild type and mutant as well as ligand-bound and ligand-free systems [29,30]. Two
fundamental network properties, average shortest path (L) and betweenness centrality (BC), have proven
useful in RIN analysis [31,32]. L denotes the reachability of a residue by all other residues in a
communication network, while BC highlights how frequent a residue participates in the shortest paths
between all residue pairs. Both metrics accentuate residue importance in protein communication. The
L and BC measures become even more robust when computed as running averages across an MD
trajectory, in what is known as dynamic residue network (DRN) analysis [23,24,30,32]. We present
per residue reachability as plots of average L in (Figure 6). Troughs in average L plots represent
residues with low average L values and hence higher reachability regions. Generally, the distribution
of average L troughs across all models (both pyrimethamine bound and unbound) was similar; the
profiles registered pairwise correlation values of 0.90 and above. Markedly, residues within or close to
pyrimethamine/substrate-binding sites (grey shaded in Figure 6) recorded low average L values. This
observation corroborates findings of our previous study associating regions possessing low average L
values with residue communities located within the active site (substrate binding site) [30]. Generally,
residues 12–16, 18, 59, 63, 101–105, 123, 161–166, 170–171, 174–175, 180, 181, and 183–185 registered
significant low average L values across all systems. In regard to pyrimethamine-free models, Pro198
identified across all mutated systems was conspicuously absent in the WT model. On the contrary,
Cys17 and Gly41 were uniquely identified in the WT model. It is likely that local adjustments of
residue accessibility involving the above molecular fingerprints determine the functional separation
between a native (WT) and nonnative (mutated) system. On the other hand, pyrimethamine-bound
models displayed insignificant variability in residue accessibility following pyrimethamine binding.
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Figure 6. Dynamic residue network analysis: Average shortest path (L) results. Color key: black: WT
holo, green: WT complexed with pyrimethamine, magenta: mutant holo, blue: mutant complexed
with pyrimethamine. Shaded areas are zones of protein–ligand interactions. Lower threshold values
are indicated by respective color-coded, dotted lines. Shaded areas are regions of ligand interaction
within the active site.

To further understand the influence of mutations and pyrimethamine binding on intra-protein
communication, average BC indices were calculated (Figure 7). Peaks of average BC plots depict
residues with high BC values and hence high communication centers. Since BC values were more
centered around the mean, we set a threshold value at plus two standard deviations to identify residues
with high BC indices (substantial peaks). Overall, regions showing significantly high BC values were
located within or close to substrate/ligand-binding sites (shaded grey in Figure 7). These results
recapitulate previous findings reporting that active sites of proteins possess high and low average BC
and average L values, respectively [23,30,33].

Using WT holoenzyme as reference, twenty-four key communication residues were identified:
10, 13, 15, 16, 18, 21, 41, 55, 59, 63, 101, 103, 105, 109, 159, 162, 163, 165, 167, 170, 180, 181, 185, and
196. Besides residues 41 and 196, all the above can be grouped into five different communication
hubs: α: 10–21, β: 55–63, γ: 101–109, δ: 159–170, and ε: 180–185. Interestingly, these hubs are located
in distinct secondary structures spanning the active site region (Figure S9). Residues 41 and 196 are
situated in loops outside the active site. Some residues within the identified hubs, Asp10, Tyr12,
Ile14, Cys15, Ala16, Met55, Lys181, and Thr185, correspond to residues previously identified to be
important in DHFR activity [34], including involvement in either interdomain contacts or interactions
with dihydrofolate, antifolate inhibitors, or the NADPH cofactor. Among these residues, Ala16, which
is highly conserved and involved in important interactions with NADPH [34], showed the highest BC
value in all systems except in TM2; Ile163 (situated hub δ and of which the functional information
is unknown) was rather the most important residue for communication. This is likely reflective of
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global shifts in residue communication patterns within the TM2 mutant and might be responsible
for its highly impaired catalytic efficiency compared to other mutants as has been demonstrated in
in vitro studies [15]. Other residues, including Cys15, Met55, and Ile164, contribute substantially to
total binding free energy of pyrimethamine in the wild type enzyme. Intriguingly, some of the residues
possessing high BC values, 10–14, 57–63, 159–162, and 180–184, form part of the positively charged
groove at the back of the active site responsible for critical interactions (with the negatively charged
junction region helix 285–294) necessary for Pf DHFR-TS protein folding and function [21,34,35]. These
findings are in agreement with previous studies which found high centrality residues around active
site and linker interphases of protein domains [23,30,33].
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pyrimethamine. Lower threshold values are indicated by respective color-coded, doted lines. Grey
shaded areas are regions of ligand interaction within the active site.

While deleterious mutations, such as cancer-causing mutations, mainly target residues with high
centrality [36], the only resistance-related residue possessing high BC values in the WT Pf DHFR
was Cys59. Cys59 is mutated to arginine in DM2, TM1, TM2, and QM. The above mutants have
previously demonstrated poor catalytic properties in vivo [15]. It is thought that the mutation at Cys59
is compelled to occur in the context of other mutations to help improve substrate binding affinity by
binding the glutamyl moiety of the Pf DHFR substrate dihydrofolate [35].

Finally, pairwise Pearson’s correlation of the raw average BC values revealed strong positive
correlations (r = 0.83–0.92) among all pyrimethamine-free systems. This indicates that there were
only subtle differences in average BC values across the systems [37], which can be expected since
drug-resistance mutations evolve in a conservative fashion such that protein fitness is not overly
jeopardized. To further elucidate mutation- and pyrimethamine-induced differences on protein
communication, we calculated the changes in BC (∆BC) values as differences between WT and mutants
and as differences between ligand-free and corresponding ligand-bound systems, as demonstrated in
previous studies [22,30].
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2.3.2. Mutation-Induced Changes in Pf DHFR Intra-Protein Communication did not Directly Relate to
Pyrimethamine Resistance

In order to assess mutation-induced effects on protein communication, ∆BC values were obtained
by subtracting the mutant average BC values from WT as follows: pyrimethamine-free (WT-free
less mutant-free) (Figure 8 and Figure S10) and pyrimethamine-bound (WT-pyrimethamine less
mutant-pyrimethamine) (Figures S11 and S12). Table 2 shows the residues with significant changes in
BC, obtained by applying a cutoff value of +/−2 SD for each mutant system, while Figure 8 and Figure
S12 present the residues with significant ∆BC values mapped to the Pf DHFR structure. Residues with
positive ∆BC values are colored in red while those with negative ∆BC values are colored blue. Positive
∆BC values denote a decrease in connectivity of the residue as a result of mutation, while negative
∆BC values denote increased connectivity.
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Figure 8. Effects of mutations on intra-protein communication: Structural mapping of residues showing
significant changes in average betweenness centrality (BC). Changes in residue centrality (∆BC) values
were obtained by calculating WT-free less mutant-free average BC values. Residues with significant
changes were obtained by using a cutoff value of +/−2 SD of ∆BC values for each system. Red spheres
represent residues with positive ∆BC values, while blue spheres are residues with negative ∆BC values.
Also shown in spheres are pyrimethamine-resistant point mutations studied here: Color key: magenta:
N51I, orange: C59R, yellow: S108N, and green: I164L.
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Table 2. Changes in betweenness centrality (BC): Table of residues showing significant changes in average
BC (∆BC) due to mutation (pyrimethamine-free: WT-free less mutant-free; pyrimethamine-bound:
WT-PYR less mutant-PYR) and pyrimethamine binding (PYR-free less PYR-bound). In bold are residues
showing changes in BC at sites with high centrality, while ↑ and ↓ signify residues with significant
positive and negative ∆BC values, respectively, obtained by using a threshold value of +/−2 SD of the
∆BC values for each system. Positive ∆BC signify decrease in residue connectivity while negative ∆BC
stands for increased residue connectivity and hence increased residue participation in communication.

Effect of Mutation (pyrimethamine-free: WT-free less mutant-free)

Protein ∆BC Residues

S108N
↑ Ala13, Ala16, Cys18, Gly41, Tyr158, Tyr159, Gly165, Ser167, Thr185

↓ Ile14, Tyr35, Thr36, Ile143, Lys160, Val168, Gln171, Pro198, Asn201

N51I_S108N
↑ Gly41, Gly165, Ser167, Thr185

↓ Lys23, Asp91, Asn157, Gln171, Pro198

C59R_S108N
↑ Lys49, Cys78, Lys79, Gly165, Thr185, Phe196

↓
Thr36, Asn51, Asp81, Arg106, Lys132, Asn157, Val168,

Gln171, Ile200

N51I_C59R_S108N
↑ Ala16, Cys18, Glu21, Gly41, Val103, Gly165, Ser167

↓ Phe32, Asn33, Tyr35, Lys96, Val168, Gln171, Pro198

C59R_S108N_I164L
↑ Ala13, Cys15, Gly41, Tyr158, Gly166, Thr185, Phe196

↓ Ser22, Glu71, Lys72, Lys160, Gln171, Lys181, Pro198

N51I_C59R_S108N_I164L
↑ Ile11, Gly41, Lys79, Tyr158, Gly165, Ser167, Thr185, Phe196

↓ Ser22, Ser95, Ile112, Asn124, Val168, Gln171, Pro198

Effect of Mutation (pyrimethamine-bound: WT-PYR less mutant-PYR)

S108N
↑ Cys17, Gly26, Leu46, Cys78, Gly105, Trp109, Gly165, Gly166

↓ Lys97, Val101, Ser167, Val168, Tyr170, Gln171

N51I_S108N
↑ Cys17, Leu46, Pro47, Met55, Gly105, Gly166, Leu174

↓ Glu21, Gly41, Tyr158, Tyr159, Ser167, Tyr170, Gln171

C59R_S108N
↑ Ile11, Cys17, Val20, Leu46, Pro47, Gly105, Trp109, Gly165

↓ Asn24, Phe32, Thr36, Lys97, Ser167, Val168, Tyr170, Gln171

N51I_C59R_S108N
↑ Cys17, Leu46, Pro47, Gly105, Trp109

↓ Cys15, Tyr35, Gly41, Ser167, Val168, Lys180, Asn201

C59R_S108N_I164L
↑

Ala16, Cys17, Leu46, Pro47, Met55, Arg59, Gly105, Trp109,
Gly165, Lys181

↓ Ser22, Ser167, Val168, Tyr170, Gln171, Pro198, Thr220

N51I_C59R_S108N_I164L
↑ Cys17, Val20, Leu46, Pro47, Gly105, Trp109, Gly165

↓
Glu21, Gly41, Asn90, Ser167, Val168, Tyr170,

Gln171, Lys180, Pro198

Effect of Pyrimethamine (PYR-free less PYR-bound)

WT
↑

Glu21, Gly41, Tyr158, Ser167, Tyr170, Glu175, Lys180,
Asp194, Phe196

↓ Cys17, Leu46, Pro47, Gly105, Pro198

S108N
↑ Asn24, Tyr35, Glu71, Cys78, Lys79, Lys160, Val168, Phe196, AS201

↓ Lys23, Val89, Asn157, Tyr158, Tyr159, Gln171

N51I_S108N
↑ Lys23, Met55, Asp91, Ser95, Val103, Asn157, Gly166, Pro198

↓ Gly41, Val45, Pro93, Leu98, Met104, Ser167

C59R_S108N
↑ Gly41, Asp81, Met81, Lys132, Ser167

↓
Asn24, Val31, Phe32, Val45, Lys49, Ser81, Lys81, Lys97,

Gln171, Pro198

N51I_C59R_S108N
↑ Asn33, Lys96, Asn157, Tyr159, Tyr170, Gln171, Pro198

↓ Asp10, Cys15, Ser22, Lys23, Gly41, Ile163, Val168, Asn201

C59R_S108N_I164L
↑

Ile11, Ala16, Cys18, Lys23, Ser52, Arg59, Glu71, Lys72, Lys160,
Gly165, Lys181

↓ Asn34, Asn157, Ile163, Val168, Gln171, Ile182

N51I_C59R_S108N_I164L
↑ Ser22, Lys23, Lys27, Ser95, Lys96, Asn100, Lys155, Gly166, Tyr191

↓ Thr36, Gly39, Asn90, Leu164, Pro198
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Despite the underlying differences in the combinations of drug-resistance mutations, an interesting
balance was noticed between the total number of residues with enhanced connectivity and those
with diminished connectivity due to mutation in each system (Figure 8 and Figure S12). All systems
had nearly equal number of residues with enhanced and diminished connectivity (Table 2). This
might be reflective of a strict compensatory mechanism to global shifts in residue interaction
networks, resulting from drug-resistance mutations. Such compensation could be required to salvage
possible impairments in enzymatic fitness, imposed by mutations. Although native state (WT-free)
high-centrality residues as well as drug-resistance mutation residues are mainly localized within the
active site region, changes in residue connectivity due to drug-resistance mutations are both within and
outside the active site (Figure 8 and Figure S12). This points to distant effects on residue connectivity
induced by drug-resistance mutations. Similar long-range effects due to mutations have been reported
in previous studies [22].

To check for any linear relationships among models with respect to ∆BC, an all versus all
pairwise Pearson’s correlation was performed. As opposed to average BC values, pairwise correlation
calculations of ∆BC values suggested more visible differences due to mutation in pyrimethamine-free
(r = 0.44–0.73) and pyrimethamine-bound (r = 0.60–0.78) systems (Figure S13A,B,D). TM2 was revealed
to be the most different (r = 0.44 – 0.60) in both the pyrimethamine-free and pyrimethamine-bound
systems (r = 0.6–0.73). TM1 yielded similar correlation values with TM2 in the pyrimethamine-bound
system. As mentioned earlier, in vitro experiments have shown that TM2 possesses the highest level of
impaired catalytic efficiency followed by TM1 [15]. These findings suggest that apparent differences in
residue communication due to drug-resistance mutations might form the basis for the experimentally
observed differences in enzyme activity. Gln171 largely yielded negative substantial ∆BC values across
all pyrimethamine-free mutants, suggesting mutation-specific enhancement of its connectivity.

A further look at pyrimethamine-bound ∆BC calculations revealed enhanced network connectivity
for Ser167, Val168, and Tyr170. These residues together with Gln171 form part of the alpha helix
responsible for stabilizing NADPH [34]. Considering NADPH’s proximity to pyrimethamine,
chances are that derangement of information flow network involving the above residues could
have cascading effects, destabilizing both ligands and equally impacting catalytic and thermodynamic
efficiencies, respectively. In that light, residues associated with this helix could serve as molecular
signatures for underlying drug-resistance mutations in Pf DHFR. Altogether, despite pairwise Pearson’s
correlation of ∆BC (Figure S13) failing to group the different mutants based on respective degrees of
resistance to pyrimethamine as discussed before [15] (WT: sensitive; SM: low resistant; DM1, DM2:
moderately resistant; TM1, TM2: high resistant; and QM: highly resistant), these calculations provided
useful clues related to catalytic efficiency. This is expected since DRN analysis highlights differences in
intra-protein communication (which relates to protein function) when applied in comparative analysis
between WT and mutant [22,37]. These findings further suggest that the pyrimethamine resistance
mechanism is based on localized adjustments due to mutations within the Pf DHFR active site and
may not correlate to its catalytic activity.

2.3.3. Pyrimethamine Binding Confers Unique Residue Communication Changes Across
Different Mutants

In order to gain insights into pyrimethamine-induced effects on protein communication,
we calculated ∆BC values for each system as follows (pyrimethamine-free less pyrimethamine-bound)
(Figure S14). Table 2 shows the residues with significant changes in average BC, obtained by applying
a cutoff value of +/−2 SD of the BC changes for each mutant system. Figure 9 presents the residues
with significant ∆BC values mapped to Pf DHFR structure. Positive ∆BC values denote a decrease
in residue connectivity due to pyrimethamine binding, while negative ∆BC values denote increased
importance of associated residues. Unlike mutation effects (Section 2.3.2) where there was a balance in
the number of enhanced and diminished residue connectivity, an imbalance was observed following
pyrimethamine binding. This was mainly seen as the number of residues with diminished connectivity
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doubled over the number with enhanced connectivity (Table 2, Figure 9, and Figure S14). Similar
distant effects as noticed with mutations were also seen following pyrimethamine binding within the
active site (Figure 9). Pairwise correlation of ∆BC values in this case revealed that each system responds
to pyrimethamine binding in a rather unique manner as no two systems were seen to correlate with
each other (r = −0.04–0.23) (Figure S14C,D). QM was shown to be the most unique compared to the rest
of the mutants (r = 0.003–0.1), and its highest difference (r = 0.003) was with WT. This wide difference
might relate to their sensitivity to pyrimethamine binding, given that WT is the most sensitive while
QM is the most resistant mutant. Accordingly, detailed analysis of residue BC changes in WT and QM
revealed that WT uniquely yielded enhanced BC values for Cys17, Leu46, Pro47, and Gly105, while
Glu21, Gly41, Tyr158, Ser167, Glu175, Lys180, and Asp194 registered a decrease. On the other hand,
QM yielded enhanced BC values for Thr36, Gly39, Asn90, and Leu164, while decreased values were
registered in Ser22, Lys27, Ser95, Asn100, Lys155, and Tyr191. Despite a lack of functional information,
it is likely that changes in residue BC involving these distinct residues might serve as molecular
identifiers that ultimately determine associated levels for pyrimethamine sensitivity/resistance in
Pf DHFR.
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Figure 9. Effects of pyrimethamine binding on intra-protein communication: Structural mapping of
residues showing significant changes in average BC. Changes in residue centrality (∆BC) values were
obtained by calculating pyrimethamine-free less pyrimethamine-bound average BC values. Residues
with significant changes in BC were obtained by using a cutoff value of +/−2 SD of ∆BC values for each
system. Red spheres represent residues with positive ∆BC values, while blue spheres are residues with
negative ∆BC values. Also shown in spheres are pyrimethamine-resistant point mutations investigated
in this study: Figure 8 coloring scheme was implemented here as well.
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3. Materials and Methods

3.1. Homology Modeling

Homology modeling is an important computational technique that is useful in determining the
3D structure of proteins with unknown structural information by using available similar protein
structures with high resolution as templates. Despite availability of 3D information for WT, DM1, and
QM proteins in the Protein Data Bank (PDB), the structures possess missing residues (Val86–Ser95
(chain A) and Asn82–Lys96 (chain B)) in the DHFR domain and the junction region (Lys232–Asp282).
For this reason, these proteins were subjected to homology modeling. Using MODELLER version
9.15 [38], the following structures were built and validated: WT, SM, DM1, DM2, TM1, TM2, and
QM. Initially, the template structure PDB ID: 3QGT was identified as the best template using PRIMO
web server [39]. Multiple sequence alignment was performed using PROMALS3D [40]. For mutated
systems, mutations were manually introduced prior to modeling. One hundred models were calculated
for each system, generating a total of 700 structures. Normalized Discrete Optimized Protein Energy
(z-DOPE) score was used for global assessments and initial ranking of the generated models, and
further quality evaluations were done using RAMPAGE [41], VERIFY3D [42], and ProSA [43] web
servers. Briefly, the DOPE score is an atomic distance-dependent statistical potential derived from
selected native structures which accounts for the finite and spherical shape of native structures and is
normalized (Z-DOPE) by the number of all possible pairs of heavy atoms in the protein [38]. On the
other hand, RAMPAGE provides φ and ψ angle plots, which encapsulate quite concise and intuitive
protein backbone conformational information, while VERIFY3D provides a score of the compatibility
of the modeled 3D structure with its amino acid sequence and, finally, ProSA performs a statistical
comparison of the modeled structure against all available protein structures and highlights poorly
modeled areas. The best model was chosen based on a consensus from these evaluations. Structure
visualization and editing was done in Discovery studio visualizer version 4.1 [44] and PyMOL [45].

3.2. Molecular Docking

Prior to the docking experiment, the 3D structure of pyrimethamine was obtained from PubChem
web server [46]. Pubchem is a chemical information resource at the U.S. National Center for
Biotechnology Information (NCBI) and contains millions of unique chemical structures. Protein
and ligand preparations were done using AutoDock4 tools [47]. Briefly, ligand preparation was done
using prepare_ligand4.py, while proteins were prepared using prepare_receptor4.py tools. Molecular
docking simulations were performed using AutoDock Vina [48]. A blind docking protocol was
implemented whereby the entire surface of DHFR was screened. Initially, docking validation was
achieved by redocking pyrimethamine into the active site of the modeled WT Pf DHFR structure and by
comparing its binding orientation and interactions to that of the WT crystal structure (PDB ID: 3QGT).
Parameters used here were adopted for all docking experiments. These included a grid box search
space of 60 Å × 60 Å × 60 Å; box center of x = 26.17, y = −32.25, and z = 13.91; and an exhaustiveness
search value of 360. Each docking experiment generated ten pyrimethamine–DHFR complexes which
were ranked using Vina scores. Complexes yielding the lowest scores were considered for proceeding
experiments (MD simulations). Protein–ligand interactions were visualized, and figures were generated
using LIGPLOT+ [49].

3.3. Molecular Dynamics

Molecular dynamics simulations were performed on the wild type pyrimethamine complex
(WT-PYR), the six mutant pyrimethamine complexes (MTs-PYR), and the pyrimethamine-free wild
type. All systems were complexed with endogenous NADPH. Simulations were performed using
GROMACS v.2016 package [50] at the Center for High Performance Computing, Cape town. Systems
were embedded in explicit TIP3P water molecules and enclosed by a cubic simulation box with at
least 2 Å buffer from the edge of the protein. AMBER03 forcefield [51] parameters were employed for
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topology generation. Ligand parameters were determined using the ACPYPE tool [52]. Total system
charges were neutralized using 0.15 M Na+ and Cl− counterions. The systems were energy minimized
using the steepest descent algorithm up to a maximum force threshold value of ≤1000 kJ/mol/nm.
Short-range non-bonded contacts were defined at a 1.4-nm cutoff while long-range interactions were
treated using the Particle Mesh-Ewald (PME) method. Coupled with time constants of 0.1 ps, systems
were temperature equilibrated at 300 K to a modified Berendsen thermostat, succeeded by pressure
equilibration at 2-ps time constant and a reference 1 bar pressure to Parrinello−Rahman barostat;
100,000 steps were applied in each case. Covalent bonds were constrained using Lincs algorithm. With
periodic boundary conditions set, 100-ns production runs at 2-fs timesteps were performed.

3.3.1. Trajectory Analysis

Initially, trajectories were corrected for periodic boundary conditions using trjconv gromacs tool.
Besides total pressure and temperature, systemic energies, including potential and kinetic, were checked
to assess simulation quality. The root mean square deviation (RMSD), root mean square fluctuation (RMSF),
radius of gyration (Rg), and hydrogen bond numbers were calculated using standard Gromacs tools. To
analyze prolonged protein–ligand interactions, ligand RMSDs of the last 15 ns were clustered using the gmx
cluster tool while implementing geometric clustering method described by Daura et al. [53].

3.3.2. Thermodynamic Assessment

Through the g_mmpbsa module [54], binding free energies between proteins (wild type and
mutants) and pyrimethamine were computed using the Molecular Mechanics Poisson−Boltzmann
Surface Area (MM-PBSA) method [26] on trajectory snapshots spanning equilibrated 15-ns periods
indicated in Table S7. Frames were sampled at 50 ps time intervals. In total, calculations were
performed on 750 frames. Fundamentally, bound (complex) and unbound (receptor and ligand) end
states are considered in these calculations. Binding free energy between protein–ligand complexes can
be estimated using the following equations:

∆Gbind = ∆Gcomplex −
(
∆Greceptor − ∆Gligand

)
(1)

∆Gx = Emm− (TS + Gsolv) (2)

where ∆Gcomplex, ∆Greceptor, and ∆Gligand represent free energy values of the complex, receptor, and
ligand, respectively. The Gibbs free energy (∆Gx) for each component is determined by calculations of
solvation free energy (Gsolv), molecular mechanics energy (Emm), and entropic potential (T:temperature,
S:Entropy). In practice, ∆Gx is computed from estimates of Emm (van der Waals and electrostatic
interactions) and Gsolv (polar and nonpolar solvation free energy) energy terms using the g_mmpbsa
tool [54]. To quantify the contribution of specific residues to binding, free energy was decomposed on
per residue basis.

3.3.3. Essential Dynamics

To comprehensively assess the effects of mutations on conformational redistributions,
principal component analysis (PCA) was performed on trajectories of the pyrimethamine-free and
pyrimethamine-bound systems. Based on positional fluctuation of protein backbone atoms, a covariance
matrix was built using the gmx_covar tool. Considering a trajectory of m observations associated with a
protein of N backbone atoms, the covariance (C) is a 3NXN matrix in which an element Ci j is given by
the following:

Ci j =
(
Xi −Xi

)(
X j −X j

)
(3)

where i and j specify each of the 3N Cartesian coordinates. Xi and X j represent the respective ensemble
average accrued from m observations. Eigenvalue decomposition of C was performed using the
gmx_anaeg tool to obtain eigenvectors ordered based on descending eigenvalue indices. Often, the
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first two eigenvectors (PC1 and PC2) explain data with the highest variance and hence functionally
relevant motions. To illustrate the differences in protein folding or unfolding events during simulation,
free-energy landscapes (FEL) were constructed in the space of the top two PC’s (PC1 and PC2) using
the gmx_sham tool.

3.3.4. Dynamic Residue Network Analysis

Dynamic residue network (DRN) analysis was performed on trajectories to identify residues
important for communication in the WT as well as to reveal local changes in residue interaction
network signatures because of initiated mutations and pyrimethamine binding. Two fundamental
network properties were computed: average L and average BC. We describe the system in a set of
nodes and edges, where an edge (link) between two nodes (residues) was defined to have formed if the
Cβ (Cα for Glycine) atoms approach a distance of ≤6.7 Å. An existing link is assigned a scalar 1, while
no link equals 0. Residue interaction network (RIN) graphs were constructed using the NetworkX
package of the MD-TASK tool [37]. Considering a protein having total residues j, the average shortest
path index of a residue i can be determined by calculating the mean pairwise distances (D) to each
residue within the protein network. Each one of the pairwise distances (Dij) describes the path bearing
the least number of links from all possible paths between i and j. Average shortest path (L) denotes
how far down a residue is in terms of reachability from all other residues for communication. BC
index highlights how frequent a residue participates in the shortest paths between all residue pairs.
DRN reports the moving average of RIN graphs and hence average L and average BC. In this case,
RIN graphs were aggregated over the last 15 ns periods (Table S7) at timestep intervals of 10 ps.

4. Conclusions

To date, numerous computational approaches have been applied towards understanding
drug-resistance-related mechanisms. Here, we utilized molecular modeling and dynamic residue
network (DRN) analysis concepts to elucidate mechanisms of action of pyrimethamine-resistant
mutations in Pf DHFR. Assessment of global effects of mutations on Pf DHFR revealed subtle but
considerable impacts of mutations on conformation selection. Generally, mutations destabilized
Pf DHFR, generating more mobile (flexible) systems. Specifically, DM1 (N51_S108N), DM2
(C59R_S108N), and TM2 (C59R_S108N_I164L) enhanced conformational plasticity while TM1 favored
conformational rigidity in both pyrimethamine-free and pyrimethamine-bound systems. Since
mutations were located within the ligand binding site, ligand RMSDs were computed to assess
their impact on pyrimethamine’s binding pose. Interestingly, pyrimethamine occupied multiple
conformations across all systems during simulation. For the WT, two dominant conformations were
adopted as a result of conformational isomerism of the 4-chlorophenyl group of pyrimethamine. The
QM (N51I+C59R+S108N+I164L) displayed the largest conformation heterogeneity depicting a weakly
bound ligand. Also, binding free-energy calculations generally depicted diminished protein–ligand
binding affinity with increased number of mutations. These findings agreed with previous in vivo and
in vitro studies proposing QM as the most resistant form. DRN analysis identified highly connected
residues, including Asp10, Tyr12, Ile14, Cys15, Ala16, Met55, Lys181, and Thr185, previously implicated
in substrate and cofactor interactions. Residues Cys17, Gly41, and Pro198 based on residue accessibility
(average L) results and residues Ser167, Val168, Tyr170, and Gln171 based on residue connectivity
(average BC) were conspicuously identified in all mutants. It is likely that the above residues formulate
useful molecular fingerprints that ultimately determine the functional separation between WT and
mutated systems. It was evident that the WT system is extremely different from QM following
changes in average BC due to pyrimethamine binding. Among the four pyrimethamine-resistant
point mutations in Pf DHFR, Cys59 was identified as the only residue with high average BC value in
the WT. Mutations involving Cys59 (DM2, TM1, TM2, and QM) have demonstrated poor catalytic
properties in in vivo studies. This suggests that drug-resistance mutations targeting residues with
high connectivity could have a detrimental effect on parasite fitness. Although DRN analysis failed
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to group the different mutants based on respective degrees of resistance to pyrimethamine (sensitive
WT, low resistance SM, moderately resistant DM1, DM2, high resistance TM1 and TM2, and highly
resistant QM), it provided useful clues relating to their catalytic efficiency. These findings suggest that
the pyrimethamine-resistance mechanism is based on localized changes due to mutations within the
Pf DHFR active site and may not be related to its catalytic activity.

Supplementary Materials: The following are available online. Table S1: Validation of homology modeled
structures, Table S2: Docking scores of pyrimethamine in wild type and mutants, Figure S1: Molecular docking
poses and interactions visualized using LigPlot+, Figure S2: RMSD evolution of protein backbone atoms during
100-ns simulation, Table S3: Calculated average protein RMSD values, Figure S3: Ligand RMSDs, Figure S4:
Radius of gyration (Rg) plots depicting structural compactness over time, Figure S5: Histograms of the radius of
gyration (Rg). Table S4: Principal component analysis, Figure S6: Principal component analysis results of both
WT and mutated pyrimethamine-bound and pyrimethamine-free Pf DHFR, Table S5: Computed trace values
(sum of 2079 eigenvalues) of diagonalized covariance matrices for each model, Figure S7: Total binding free
energy decomposed on per residue basis, Table S6: Molecular Mechanics Poisson−Boltzmann Surface Area
(MM-PBSA) analysis, Figure S8: Hydrogen bond numbers yielded during 100-ns simulation, Figure S9: DHFR
structure with mapped communication hubs (high BC centres), Figure S10. Effect of mutation on residue centrality
(WT-free less mutant-free), Figure S11. Effect of mutation on residue centrality (WT-bound less mutant-bound),
Figure S12: Structural mapping of residues that yielded large changes in average BC values (WT-PYR less
mutant-PYR) for pyrimethamine-bound Pf DHFR models, Figure S13: Pairwise Pearson’s correlation heatmap of
average BC differences (∆BC), Figure S14: Effects of ligand binding on residue centrality (pyrimethamine-free less
pyrimethamine-bound), Table S7: Summary of equilibrated trajectory regions sampled for analyses of binding
free energy and dynamic residue interaction network (DRN).
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