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Abstract: The detection of pig behavior helps detect abnormal conditions such as diseases and
dangerous movements in a timely and effective manner, which plays an important role in ensuring
the health and well-being of pigs. Monitoring pig behavior by staff is time consuming, subjective,
and impractical. Therefore, there is an urgent need to implement methods for identifying pig
behavior automatically. In recent years, deep learning has been gradually applied to the study of pig
behavior recognition. Existing studies judge the behavior of the pig only based on the posture of the
pig in a still image frame, without considering the motion information of the behavior. However,
optical flow can well reflect the motion information. Thus, this study took image frames and optical
flow from videos as two-stream input objects to fully extract the temporal and spatial behavioral
characteristics. Two-stream convolutional network models based on deep learning were proposed,
including inflated 3D convnet (I3D) and temporal segment networks (TSN) whose feature extraction
network is Residual Network (ResNet) or the Inception architecture (e.g., Inception with Batch
Normalization (BN-Inception), InceptionV3, InceptionV4, or InceptionResNetV2) to achieve pig
behavior recognition. A standard pig video behavior dataset that included 1000 videos of feeding,
lying, walking, scratching and mounting from five kinds of different behavioral actions of pigs under
natural conditions was created. The dataset was used to train and test the proposed models, and a
series of comparative experiments were conducted. The experimental results showed that the TSN
model whose feature extraction network was ResNet101 was able to recognize pig feeding, lying,
walking, scratching, and mounting behaviors with a higher average of 98.99%, and the average
recognition time of each video was 0.3163 s. The TSN model (ResNet101) is superior to the other
models in solving the task of pig behavior recognition.

Keywords: pig behavior; two-stream convolutional network; deep learning; inflated 3D convnet;
temporal segment networks

1. Introduction

Pig behavior reflects the animal’s welfare status, well-being conditions, and social interactions [1,2].
Appropriate feeding behavior can ensure the healthy growth of pigs and help determine their food
intake. Reduction in food intake means that pig health and welfare are compromised [3,4] and can be
considered as a signal for alarming suspected cases [1]. Walking and lying behaviors can reflect the
activity level of pigs. During illness, pigs generally reduce activity, posture in protective positions,
and increase lying duration [5,6]. Estrus can be estimated through pig mounting behavior [7], which
can cause bruises, lameness, stress, and leg fractures [8,9]. So, the timely detection and intervention
of mounting behavior can increase animal welfare and further ensure pig health [10]. Pig scratching
behavior is the grooming behavior whose function is mainly to reduce or eliminate external stimuli
such as parasites, flies, mosquitoes, and dirt. The infection of skin diseases can be evaluated by
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observing the pruritus index of pigs [11,12]. Pig health and welfare compromises can be detected
early through detecting pig behavior [13]. Therefore, monitoring the behavior of pigs and timely
intervention that could help to keep the pigs in normal conditions is especially important.

Monitoring pig behavior by staff is time consuming, subjective, and impractical [2,14]. The method
of monitoring pig behavior data through sensors also has certain disadvantages. Most sensors are
attached to the surface of pigs, which can easily cause pigs’ stress response [15] and alter the normal
behavior of pigs [2]. Staff also need to record sensor readings frequently, which is more troublesome.
So, contactless, low-cost, easy, and effective computer vision techniques [1] have been widely used
in animal monitoring processes and play an essential role in assessment of animal behavior [16].
Viazzi et al. [17] extracted the mean intensity of motion and the occupation index; then, they used
the Linear Discriminant Analysis (LDA) to classify two features to identify aggressive behavior with
an accuracy of 89%. Kashiha et al. [18] made the pig into an ellipse. Pig locomotion behavior was
calculated through ellipse displacement. Nasirahmadi et al. [8] also made the pig into an ellipse. If the
long axis of the ellipse was 1.3 to 2 times of the length of the normal ellipse long axis and the short axis
was 1.3 to 1.8 times of the length of the normal ellipse short axis, it was determined that mounting
behavior occurred. The accuracy of the method was 92.7%. Some studies in the literature [19,20]
detected behavior through the distance between a part of the pig body and the object such as drinking
nipple and feeder. Image contour analysis [19] was used to detect distances between pig head, ears,
and drinking nipple and the duration that a pig stayed at the drinking nipple was calculated, which
helped judge drinking behavior with an accuracy of 92%. Lao et al. [20] obtained the necessary feature
values for identification of the sow’s behaviors by depth image data. When the head of a pig was in
the feeder with up and down movement, feeding behavior could be determined. This method had a
97.4% accuracy rate for feeding and 92.7% accuracy rate for drinking. The above methods of behavioral
feature extraction rely on manual observation and design and high-precision image segmentation, so
these methods have higher requirements on the pigpen environment and shooting conditions. Deep
learning can solve these problems.

Deep learning, which is an excellent research method in computer vision techniques, would be
widely applied in the study of the animal behavior community [21]. Some methods detect pigs from
images through target detection network models to perform pig behavior recognition. Zheng et al. [2]
and Yang et al. [22] used Faster Region-Convolutional Neural Networks (Faster-RCNN), which can
detect pigs effectively to recognize pig postures and feeding behaviors. Sows were segmented from
all frames through the Fully Convolutional Network (FCN) model, which could help recognize
sows’ nursing behavior with an accuracy of 97.6% [23]. Nasirahmadi et al. [16] proposed three
detector methods including Faster R-CNN, single shot multibox detector (SSD), and region-based fully
convolutional network (R-FCN) to recognize the standing, lying on side, and lying on belly postures
of pigs with a mean average precision (mAP) of over 0.93. Real-time sow drinking, urination, and
mounting behavior recognition has been achieved by using an optimized target detection method
based on the SSD and the MobileNet [24]. Real-time recognition speed could reach 7 frames per second,
and the mAP was 93.4%. Mask Region-Convolutional Neural Networks (Mask R-CNN) was also used
as a pig segmentation network [10]. Then, the eigenvectors, which included the region of interest (RoI)
parameters and mask coordinates, could be extracted. Kernel extreme learning machine (KELM) was
applied to a classifier for eigenvectors to output the results regarding whether mounting behavior had
occurred. The method was able to identify mounting behavior effectively with an accuracy of 91.47%.

Existing deep learning methods recognize pig behavior based on still image frames that only
contain spatial information, which cannot effectively obtain the coherent temporal information of the
behavior. The temporal information of the behaviors between consecutive frames is also important
for behavior recognition. The two-stream convolutional network [25] is a classical framework in
the field of deep learning behavior recognition, and it is composed of a spatial stream network
and a temporal stream network that can extract the spatial and temporal information of the videos,
respectively. Therefore, in this paper, a standard pig video behavior dataset was created and two-stream
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convolutional network models, including inflated 3D convnet (I3D) [26] and temporal segment networks
(TSN) [27], were proposed to extract the spatial and temporal information from videos instead of still
images to achieve pig five kinds of different behavior recognition.

2. Materials and Methods

2.1. Establishment of Pig Video Dataset

2.1.1. Data Acquisition

The experiment was conducted at the Zhuozhou Breeding Base of China Agricultural University.
It took 80 days from 23 March 2018 to 13 June 2018 to collect videos of different daily behaviors of
pigs. The size of the pigpen was 2 m × 2 m. There were two or three fragrance pigs in each pigpen.
Four pigpens were selected for collecting pig behavior videos. Each pigpen was equipped with a fixed
Sony infrared camera SSC-CB565R for shooting videos. The height of the camera from the ground
was 1 m, and four cameras shot videos of pigs in four pigpens at the same time. The videos were
captured in a 1280 × 1024 pixel spatial resolution at 25 fps and transferred to the Hikvision Digital
Video Recorder (DVR) DS-8104HF-ST. With the increase of time, the age and body size of pigs were
also increasing. The lighting conditions of the pigpens were also different at different times. Different
pigpen environments from four pigpens, pig ages, pig body sizes, and lighting conditions can well test
the robustness of the proposed model. Sample frames from the video sequence are shown in Figure 1.
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Figure 1. Sample frames from a video sequence that contains the daily behaviors of pigs.

2.1.2. Dataset Construction and Pre-Processing

All the collected videos were transferred to the computer through a mobile hard disk, and the
daily behaviors of the pigs were observed. The five kinds of behaviors of feeding, lying, walking,
scratching, and mounting were chosen to identify. The five kinds of behaviors occurred in the natural
pigpen environment without intervention. The collected videos were filtered to remove the blurred
videos caused by poor light and the videos containing invalid pictures. The software video editing king
was used to cut and edit the videos, and representative video clips containing five kinds of behaviors
of pigs were selected. In order to make the trained network more robust, we tried to select video clips
from different shooting periods with different poses for the same behavior and avoided the unity of
different samples of the same behavior. Each edited clip contained one behavior. The length of the clips
was 6.276 s on average. Videos that are too long may be mixed with too much invalid information,
which will affect the recognition results, while too short videos may miss key information in the entire
set of behavior. The total duration of the clips was 104.6 min. The videos were exported to a sequence
of video frames with 320 × 240 pixels and frame rate of 25 fps after editing. Videos were categorized by
actions and uniformly named by “action name + number”. There were 200 videos for each behavior
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and a total of 1000 Audio Video Interleaved (AVI) videos, which had five pig behavior categories. The
specific video parameters of the dataset and the scale of the dataset are shown in Table 1. Sample
image frames of five kinds of behaviors in the dataset are shown in Figure 2. The video samples of
the dataset included scale changes and lighting changes, and the background was diverse. The poses
of the pigs in the video samples of the same behavior were not consistent, which reflected the real
situation in the pigpen scene.

Table 1. The specific parameters of pig video behavior dataset. AVI: Audio Video Interleaved.

Item Parameter

Behavior class 5
Behavior name feeding, lying, walking, scratching, and mounting

Number 1000
Video average duration 6.276 s

Total duration 104.6 min
Resolution 320 × 240
Frame rate 25 fps

Storage format AVI
Naming pattern action name + number
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Figure 2. Sample image frames of 5 kinds of behaviors in the dataset.

The motion information in the videos is very important for behavior recognition, and the optical
flow diagram can well reflect the motion information such as the direction and speed of the moving
target. The RGB color mode (RGB) images in the dataset were used as the input of the spatial
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convolution network to extract the appearance information, and the corresponding optical flow
diagram was used as the input of the temporal convolution network to extract the motion information.
The results of the two streams were fused to obtain the video behavior classification results. The TVL1
optical flow algorithm [28] implemented by OpenCV was used to obtain the optical flow values in
the horizontal × direction and the vertical y direction. Then, the optical flow fields were discretized
into the interval from 0 to 255 by a linear transformation. Two consecutive video frames and the
corresponding optical flow diagram (x, y direction) are shown in Figure 3.
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2.2. Two-Stream Convolutional Network Models

In this study, two two-stream convolutional network models were developed for pig multi-behavior
recognition, including temporal segment networks model and an inflated 3D convnet model. For the
temporal segment networks model, we chose the Inception architecture and the ResNet architecture as
backbone networks to study and compare the performance of the models.

2.2.1. Temporal Segment Networks Model

Two-stream convolutional networks proposed by [25] randomly sample a single frame (the spatial
network) or a single stack of frames (the temporal network) from the video to be input, which will
lead to the inability to convey the information of the entire video effectively. The TSN model, which is
also a two-stream convolutional network framework, was proposed by Wang et al. in 2016 to obtain
more video context information. TSN has a sparse temporal sampling strategy and firstly divides
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the video that will be predicted into multiple non-overlapping segments of the same length. Then, a
short snippet is randomly selected from each segment. Each snippet is input into the networks for
feature extraction and generates its own preliminary prediction for the behavior category. The behavior
categorical scores of several snippets will be fused by a segmental consensus function, which achieves
segmental consensus. Finally, the prediction results of the two channels are mixed to obtain the final
video-level prediction. The TSN network structure is shown in Figure 4.
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As the figure above shows, the video V that will be classified is divided into K segments
{S1, S2, . . . , SK} according to the number of video frames. {T1, T2, . . . , TK} is randomly sampled from
corresponding segments; {S1, S2, . . . , SK} represents a set of K snippets. The TSN model that models
{T1, T2, . . . , TK} is as follows:

TSN(T1, T2, . . . , TK) = H(G(F(T1; W), F(T2; W), . . . , F(TK; W))) (1)

F(TK; W) represents that the convolutional neural network with parameters W extracts the feature
vectors of TK and generates categorical scores. The spatial convolutional network shares a set of
network parameters W over K snippets, as does the temporal convolutional network. G is the segmental
consensus function, which fuses the outputs of the K networks in a certain way and outputs the
consensus of the category scores. The Softmax function that is adopted as the function H obtains the
probability of each type of behavior that the input video sample is classified into.

H(Gi) =
eGi∑C

a=1 eGa
, i = 1, 2, . . . , C (2)

According to standard categorical cross-entropy loss function, the final loss function for the
segmental consensus G = G(F(T1; W), F(T2; W), . . . , F(TK; W)) is defined as

L(y, G) = −
C∑

i=1

yi(Gi − log
C∑

j=1

eG j) (3)

Gi = g(Fi(T1), Fi(T2), . . . , Fi(TK)), i = 1, 2, . . . , C (4)

where C is the number of behavior categories, yi is the groundtruth label of behavior category i, and
the aggregation function g is evenly averaging. During the back-propagation, the gradient of W with
respect to L is calculated as

∂L(y, G)

∂W
=
∂L
∂G

∑K

k=1

∂G
∂F(Tk)

∂F(Tk)

∂W
. (5)
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We use the stochastic gradient descent (SGD) optimization method. The video-level prediction
loss value L is back-propagated to update the model parameters W after multiple iterations.

Based on the temporal segment network framework mentioned above, we compared the
performance of several deep learning network models as backbone networks (e.g., BN-Inception [29],
ResNet [30], InceptionV3 [31], InceptionV4 [32], or InceptionResNetV2 [32]). Szegedy et al. [33]
proposed a convolutional network structure for inception. The inception model runs filters with
multiple sizes (e.g., 1 × 1, 3 × 3 or 5 × 5) on the same level and performs multiple convolution or
pooling operations on the input images in parallel, which causes the network to become slightly wider,
not deeper. Processing these operations in parallel and combining all the results will get different
scale features of the images. For BN-Inception, BN is Batch Normalization, which addresses the
problem of internal covariate shift [29]. Applying batch normalization to the inception model, it
can reduce the training steps’ times, reduce the use of dropout, and obtain a good balance between
accuracy and efficiency [27]. In addition, BN-Inception replaces the 5 × 5 convolution layers in the
inception module with two 3 × 3 convolution layers [29], reducing the amount of parameters and
speeding up the calculation speed. InceptionV3 is proposed to improve the inception structure for
better performance. It factorizes the convolution kernel size, uses auxiliary classifiers, and adopts
efficient grid size reduction [31]. InceptionV4 is an extension of InceptionV3, which is deeper and
wider and has more Inception modules than InceptionV3 [32]. The InceptionResNetV2 model is a
combination of the Inception architecture and residual connections, which can significantly accelerate
the training of Inception networks [32].

Three architectures of the ResNet model (e.g., ResNet18, ResNet50, and ResNet101) were also
implemented as feature extractors of the pig video behavior frames. ResNet has a deep residual
learning framework that was introduced by [30] to solve the degradation problem that occurs when
deeper networks are able to start converging. The core idea of ResNet is to introduce identity shortcut
connections that skip one or more layers directly. The entire network only needs to learn the difference
between input and output, simplifying the learning difficulty. There are two types of residual modules
in ResNet. One is to concatenate two 3 × 3 convolution layers together as a residual module. The other
is that three convolutional layers of 1 × 1, 3 × 3, and 1 × 1 are concatenated together as a residual
module. ResNet18, ResNet50, and ResNet101 are all formed by stacking the residual modules. The
specific network structure of ResNet is shown in Table 2.

Table 2. The specific network structure of Residual Network (ResNet).

Layer Name Output Size 18-Layer 50-Layer 101-Layer

Conv1 112 × 112 7 × 7, 64, stride 2

Conv2_x 56 × 56
3 × 3 max pool, stride 2[

3× 3, 64
3× 3, 64

]
× 2

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

Conv3_x 28 × 28
[

3× 3, 128
3× 3, 128

]
× 2

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

Conv4_x 14 × 14
[

3× 3, 256
3× 3, 256

]
× 2

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

×23

Conv5_x 7 × 7
[

3× 3, 512
3× 3, 512

]
× 2

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1 × 1 Average pool, 1000-d fc, softmax
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2.2.2. Inflated 3D ConvNet Model

The I3D network is a new type of two-stream 3D convolutional neural network proposed by [26].
The 3D convolutional neural network was originally proposed by [34]. The process of 2D convolution is
to convolve the image and the 2D convolution kernel to extract the spatial features of the image, while
the process of 3D convolution is to convolve the cube formed by stacking multiple consecutive video
frames and the 3D convolution kernel to extract video features in spatio-temporal dimension. The
comparison figure of the two is shown in Figure 5. For 3D convolution, the value of a certain location
in a feature map is obtained by convolving with the local receptive fields at the same position in three
consecutive frames of the previous layer. The feature maps are connected to multiple consecutive
frames of the previous layer, so they can capture video motion information. Each 3D convolution
kernel can extract one type of feature. If we choose different 3D convolution kernels to convolve with
three consecutive frames, we can extract multiple spatial and temporal features of the video. The
original input are continuous video frames, and feature maps are generated after 3D convolution; then,
these feature maps in the previous layer are convolved to generate new feature maps in the next layer.
The value of the unit with coordinates (x, y, z) in the feature map is given by the following formula:

vxyz
i j = f (bi j +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
i jmv(x+p)(y+q)(z+r)

(i−1)m
) (6)

where wpqr
i jm represents the (p, q, r)th weight of the 3D convolution kernel connected with the mth feature

map in the previous layer, bi j is the offset, and the 3D convolution kernel size is Pi × Qi × Ri. Function
f is the activation function.
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Figure 5. The comparison Figure of 2D convolution and 3D convolution. (a) 2D convolution diagram:
the 2D convolution kernel convolves with a single image to obtain a 2D feature map. (b) 3D convolution
diagram: the input is a 3D cube composed of multiple consecutive video frames that can be expanded
into multiple 2D images in temporal series. The size of the 3D convolution kernel in the temporal
dimension is 3. The 3D convolution kernel convolves with multiple consecutive video frames to obtain
multiple feature maps. The connecting lines of shared weights are in the same color. Two different 3D
convolution kernels can extract two types of features and generate two sets of different feature maps on
the right.
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The I3D model is inflated from a 2D convolutional neural network InceptionV1 [33]. For the
InceptionV1 model, all N × N 2D filters and pooling kernels add a time dimension into N × N × N
3D convolution kernels. Network parameter initialization can be performed by using pre-trained
parameters on ImageNet [35], which repeats the weights of the 2D convolution kernels N times along
the time dimension and normalizes them by dividing by N. It may not be appropriate to inflate all N
×N 2D kernels to N ×N ×N 3D kernels, and the influence of factors such as frame rate and image
size must also be considered. If the size of the time dimension is too large, the edge characteristics of
the object may be destroyed. If the size is too small, dynamic information may not be captured well.
Therefore, the kernels of the initial two max-pooling layers of the network are 1 × 3 × 3, and the strides
are 1 in the time dimension to maintain the features extracted by the shallow network. The kernel
of the final average-pooling layer is 2 × 7 × 7 with the stride of 2 in the time dimension. The overall
structure of I3D and the Inflated InceptionV1 (Inception Module) structure are shown in Figure 6.
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In addition, a Rectified Linear Unit (ReLU) function that is used as a non-linear activation function
and a Batch Normalization (BN) [29] layer that is used to renormalize the activation values of the
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previous layer to accelerate network convergence are followed after each convolution layer except for
the last convolutional layer.

RGB video frames and stacked optical flow are input into two I3D convolutional neural networks
to extract the temporal and spatial information of the video respectively, and then the classification
results of the two networks are fused to get final results. The network architecture of Two-Stream
Inflated 3D ConvNets is shown in Figure 7.Sensors 2020, 20, 1085 10 of 17 
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3. Experiment and Discussion

3.1. Experiment Implementation Details

3.1.1. Experimental Environment

The model comparison experiments conducted in this article were all performed on the server
DELL R730. The processor was Xeon E5-2667, the main frequency was 3.2 GHz, and the memory
was 128 GB. The hard disk had one 1 T solid-state disk and two 2 T mechanical hard disks, and the
Graphic Processing Unit (GPU) was GTX 1080 of 8G video memory. The core software resources
included an Ubuntu 16.04 operating system, version 9.0.176 of CUDA, and version 7.0.5 of cuDNN.
TensorFlow1.10.0 and pytorch 1.2.0 deep learning framework were also used to accomplish these
experiments. OpenCV was used for video processing.

3.1.2. Experimental Parameter Setting

For the TSN model, the spatial network weights were initialized with pre-trained models from
ImageNet [35]. For the temporal network, cross modality pre-training, which copies the average of the
weights on the RGB channels according to the number of input channels of the temporal network, was
adopted. The optimization method was a stochastic gradient descent algorithm. The batch size was set
as 8, the momentum was 0.9, and the initial learning rate was 0.001. For the spatial stream convnets,
the dropout ratio was 0.8 and the epochs were 80. For the temporal stream convnets of the TSN model,
the dropout ratio was 0.7 and the epochs were 340. The input size of the video frames and the optical
flow diagrams was 224 × 224. During training, the number of snippets K was 3. We sampled 25 RGB
frames or optical flow stacks from the action video for testing.

For the I3D model, the weights of the I3D network were initialized with pre-trained models from
ImageNet and Kinetics. The optimization method was also a stochastic gradient descent algorithm.
The batch size was set as 6, the momentum was 0.9, and the initial learning rate was 0.0001. During
training and testing, input images were randomly cropped to 224 × 224, and we set the number of
input frames, which was 16. Too many frames will cause excessive memory usage during training,
and too few frames will cause insufficient information extraction. The maximum number of iterations
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was 10,000 for the spatial stream convnets, and the maximum number of iterations was 20,000 for the
temporal stream convnets.

3.2. Results and Discussion of the Experiments

The dataset was divided into a training set and test set in a 4:1 ratio randomly in a non-overlapping
manner. The training set contained 773 videos and the test set contained 227 videos. The stochastic
selected 227 test samples were input into the I3D and TSN networks, which were trained by the training
set, and then we obtained the accuracy of each category of the videos.

For the TSN model, if K is 1, the networks will degenerate into normal two-stream networks.
Table 3 shows the behavior recognition accuracy of TSN models with different backbone networks
under different numbers of video segments. It can be seen from Table 3 that the behavior recognition
performance is better when the video is divided into three segments. The video information can be
fully extracted, and actions can be modeled from the whole video. The experimental results reflect the
superiority of the sparse temporal sampling strategy.

Table 3. Comparison of recognition accuracy under different numbers of video segment K. BN: Batch
Normalization, ResNet: Residual Network.

Architectures Pre-Training K = 1 K = 3

BN-Inception ImageNet 95.61% 98.42%
InceptionV3 ImageNet 96.31% 97.39%
InceptionV4 ImageNet 96.81% 97.72%

InceptionResNetV2 ImageNet 96.25% 96.32%
ResNet18 ImageNet 96.11% 98.12%
ResNet50 ImageNet 97.55% 98.55%

ResNet101 ImageNet 98.12% 98.99%

Table 4 shows the performance of different network architectures of two-stream convolutional
networks. It can be seen from Table 4 that the behavior recognition performance is best when
the backbone network is ResNet101 in both spatial and temporal networks, which shows that the
recognition accuracy can be improved by increasing the depth of the network. Residual network
solves the problem of network degradation caused by an overly deep network. It also reflects the
superiority of the combination of two-stream networks and deep networks. At the same time, it can
be concluded that the accuracy of the temporal networks is higher than the accuracy of the spatial
networks. From this, we can see the importance of optical flow, which has motion characteristics and
apparent invariance [36] for recognition. The introduction of optical flow has significantly improved
the fused accuracy, which proves that the two-stream networks have certain complementarity. Table 5
shows the confusion matrix of the TSN model whose feature extraction network is ResNet101. It can
be seen from the table that the recognition accuracy of feeding, mounting, and lying reaches 100%,
while the recognition accuracies of scratching and walking are 97.82% and 97.14%, respectively. The
average recognition accuracy is 98.99% and the model works well in pig behavior recognition.
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Table 4. Comparison of recognition accuracy with different network architectures.

Architectures Pre-Training Spatial ConvNets Temporal ConvNets Two-Stream

BN-Inception ImageNet 91.85% 95.05% 95.61%
BN-Inception + TSN ImageNet 94.74% 97.65% 98.42%

InceptionV3 ImageNet 94.44% 95.07% 96.31%
InceptionV3 + TSN ImageNet 95.52% 97.22% 97.39%

InceptionV4 ImageNet 94.74% 96.02% 96.81%
InceptionV4 + TSN ImageNet 96.02% 97.72% 97.72%
InceptionResNetV2 ImageNet 94.61% 96.02% 96.25%

InceptionResNetV2 + TSN ImageNet 94.38% 95.38% 96.32%
ResNet18 ImageNet 94.17% 95.99% 96.11%

ResNet18 + TSN ImageNet 94.38% 97.22% 98.12%
ResNet50 ImageNet 94.88% 97.22% 97.55%

ResNet50 + TSN ImageNet 96.09% 98.20% 98.55%
ResNet101 ImageNet 96.46% 97.79% 98.12%

ResNet101 + TSN ImageNet 96.32% 98.56% 98.99%

Table 5. The confusion matrix of the TSN model whose feature extraction network is ResNet101.

Predicted Class

Feeding Scratching Mounting Lying Walking

Actual Class

feeding 42 − − − −

scratching − 45 1 − −

mounting − − 49 − −

lying − − − 55 −

walking − − 1 − 34

For the I3D model, we compared two ways of initializing the feature extraction network parameters.
One was to expand the 2D convolution kernel parameters from Imagenet to 3D convolution kernel
parameters, and then we further used the I3D network parameters from the Kinetics dataset to
fine-tune the network with the pig video behavior dataset. The other one was to set the parameters
of the feature extraction network through completely random initialization and then directly train
the network with the pig video behavior dataset. The change curves of the loss function values of
two-stream convolutional networks are shown in Figure 8, and the change curve of the accuracy rate
of two-stream convolutional networks during training are shown in Figure 9. For comparing the
parameter initialization methods, the curves of the networks with two different parameter initialization
methods are all drawn in the same graph.
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It can be seen from Figure 8 that, whether the networks are the temporal convnets or the spatial
convnets, the networks with randomly initialized parameters may have large fluctuations in the loss
value during the initial training phase. However, as the number of training iterations increases, the
model will eventually reach a convergence state. However, the convergence speed of the networks
with randomly initialized parameters is slower than the convergence speed of the networks with
pre-training. According to Figure 9 the networks with pre-training have higher recognition accuracy
and faster convergence speed. Through the analysis above, the way that the pre-trained models
are applied and then the parameters are fine-tuned according to the new pig dataset accelerates the
convergence speed and achieves a high accuracy. The I3D networks were tested with the test dataset,
and the result is shown in Table 6. It can also be concluded that the accuracy of the temporal networks
is higher than the accuracy of the spatial networks. The model is more sensitive to optical flow
information. Compared with the single stream network, the two-stream network still shows better
performance. Table 7 shows the confusion matrix of the I3D model with pre-training. One scratching
behavior was misidentified as walking behavior, and one walking behavior was misidentified as
feeding. The average recognition accuracy is also 98.99%.

Table 6. Comparison of recognition accuracy with different network parameter initialization methods.
I3D: inflated 3D convnet.

Methods Pre-Training Spatial ConvNets Temporal ConvNets Two-Stream

I3D − 93.30% 94.68% 95.45%
I3D ImageNet + Kinetics 97.89% 98.28% 98.99%

Table 7. The confusion matrix of the I3D model with pre-training.

Predicted Class

Feeding Scratching Mounting Lying Walking

Actual class

feeding 42 − − − −

scratching − 45 − − 1

mounting − − 49 −

lying − − − 55 −

walking 1 − − 34

Through the experiments above, we can find that the TSN model whose feature extraction network
is ResNet101 and the I3D model with pre-training all have achieved high accuracy rate which is
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98.99% in pig video behavior recognition. In order to compare two models more comprehensively, we
compared the average recognition time of each video. The result is shown in Figure 10.
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It can be known from the results that the average recognition time of each video in the TSN
network (ResNet101) is 0.8565 s less than that of the I3D network with pre-training when the accuracy
of the two models is the same. Therefore, the TSN model (ResNet101) has good recognition efficiency
and recognition effect for multi-behavior recognition of pigs and has good robustness for different
pigpen environments, pig ages, pig body sizes, and lighting conditions.

They are lots of publications in the pig behavior recognition field.
The literatures [17–20] are all pig behavior recognition studies based on computer vision techniques,

and the methods of behavior feature extraction relied on human observation and design. In this paper,
the deep learning method was adopted, so there is no need to manually design feature extraction
methods, and features can be learned from the data automatically. The learned features are more
suitable and effective for behavior recognition. Viazzi et al. [17] divided the manual feature extraction
and subsequent action classification into two separate processes. The work based on deep learning
in this paper is end-to-end; pig videos were inputted and then behavior categories were outputted,
which achieved a seamless connection of feature extraction and classification. Kashiha et al. [18] and
Nasirahmadi et al. [8] all made the pig into an ellipse to perform image analysis and calculating, which
depended on high-precision image segmentation and was susceptible to light, contrast between the pig
and background, and complex backgrounds. Kashiha et al. [19] and Lao et al. [20] detected behavior
through the distance between a part of the pig body and the object such as the drinking nipple and
feeder, which depended on the image processing and shooting conditions. The work in this paper is
not affected by light, the contrast between pig and background, and complex background, and it does
not need to perform image processing on video frames.

The pig images were segmented by using a deep learning-based method in the following literatures.
Zheng et al. [2] and Yang et al. [22] used Faster-RCNN to recognize pig postures and feeding behaviors.
Nasirahmadi et al. [16] proposed three detector methods including Faster R-CNN, SSD, and R-FCN to
recognize postures of pigs. Real-time sow drinking, urination, and mounting behavior recognition has
been achieved by using an optimized target detection method based on the SSD and the MobileNet [24].
Li et al. [10] proposed Mask R-CNN to segment pigs from images and then extracted the eigenvectors for
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mounting recognition. These methods extracted spatial features from still images without considering
the temporal features of behavior. Compared with still image classification, the temporal component
in video provides an additional and important clue for recognition and behavior can be more reliably
identified based on temporal information. In this paper, the spatial stream networks process image
frames to get the spatial information, and the temporal stream networks process optical flow to get the
motion information, so two-stream convolutional networks can extract the spatio-temporal information
of the video to achieve behavior recognition. According to the experimental results of this article, the
accuracy of the temporal networks is higher than the accuracy of the spatial networks. From this, we
can see the importance of temporal features for recognition. Sows were segmented from all frames
through the FCN model to extract spatial features; then, the temporal features were designed and
extracted, and the classifier was used to classify nursing behavior finally [23]. The method of this
paper can extract spatial and temporal features directly through training and is end-to-end. Another
advantage of this method is that it can simultaneously identify five kinds of different behaviors that
can reflect the health and welfare of pigs.

4. Conclusions

In this study, we established a standard pig video behavior dataset that included 1000 videos of
feeding, lying, walking, scratching, and mounting from five kinds of different behavioral actions of pigs.
Then, we proposed two two-stream convolutional network models including inflated 3D convnet and
temporal segment networks with different network architectures for pig behavior recognition, which
can get more spatio-temporal feature information of the videos. A total of 773 videos of the dataset were
used to train these models, and 227 videos of the dataset were used to test these models. According to
the experimental results, the average recognition accuracy of the TSN model (ResNet101) can reach
98.99%, and the average recognition time of each video is 0.3163 s. This shows that the model can
extract the behavior spatio-temporal characteristics of pigs and perform classification recognition more
efficiently. Pig videos are inputted and then behavior categories are outputted, realizing end-to-end.
The behavior recognition method does not depend on specific pigpen distribution and has good
robustness for different pig ages, pig body sizes, and lighting conditions. In the future, we will collect
videos containing a larger number of pigs to study how to recognize videos containing multiple pigs,
and this article lays the foundation for this future work.
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