Skip to main content
. 2020 Feb 21;20(4):1189. doi: 10.3390/s20041189

Table 4.

Summary of results using the shape-based proposal with different classifiers.

Pattern Selection Method Classifier No. of Patterns TP FP TN FN Sensitivity Specificity Accuracy
RBF SVM
support vectors
RBF SVM 1551 4724 33 486 221 0.9553 0.9364 0.9535
221 4611 121 398 334 0.9325 0.7669 0.9167
5 4586 126 393 359 0.9274 0.7572 0.9112
Random Forests 1551 4674 35 484 271 0.9452 0.9326 0.9440
221 4573 75 444 372 0.9248 0.8555 0.9182
5 4378 109 410 567 0.8853 0.7900 0.8763
GBM 1551 4668 37 482 277 0.9440 0.9287 0.9425
221 4547 82 437 398 0.9195 0.8420 0.9122
5 4497 116 403 448 0.9094 0.7765 0.8968
Linear SVM 1551 4621 37 482 324 0.9345 0.9287 0.9339
221 4449 52 467 496 0.8997 0.8998 0.8997
5 4425 115 404 520 0.8948 0.7784 0.8838
kNN (k=7) 1551 4703 69 450 242 0.9511 0.8671 0.9431
221 4563 68 41 382 0.9228 0.8690 0.9176
5 4330 105 414 615 0.8756 0.7977 0.8682
Naïve Bayes 1551 4660 146 373 285 0.9424 0.7187 0.9211
221 4607 132 387 338 0.9316 0.7457 0.9140
5 4541 123 396 404 0.9183 0.7630 0.9036
C5.0 1551 4400 56 463 545 0.8898 0.8921 0.8900
221 4176 84 435 769 0.8445 0.8382 0.9439
5 4683 136 383 262 0.9470 0.7380 0.9272
PAM medoids RBF SVM 180 4651 47 472 294 0.9405 0.9094 0.9376
10 4555 81 438 390 0.9211 0.8439 0.9138
4 4623 104 415 322 0.9349 0.7996 0.9220
2 4323 149 370 622 0.8742 0.7129 0.8589
Random Forests 180 4633 57 462 312 0.9369 0.8902 0.9325
10 4513 77 442 432 0.9126 0.8516 0.9068
4 4410 91 428 535 0.8918 0.8247 0.8854
2 3973 126 393 972 0.8034 0.7572 0.7990
GBM 180 4598 53 466 347 0.9298 0.8979 0.9268
10 4468 70 449 447 0.9035 0.8651 0.8999
4 4500 94 425 445 0.9100 0.8189 0.9014
2 4229 120 399 716 0.8552 0.7688 0.8470
Linear SVM 180 4511 38 481 434 0.9122 0.9268 0.9136
10 4544 89 430 401 0.9189 0.8285 0.9103
4 4496 123 396 449 0.9092 0.7630 0.8953
2 4311 156 363 634 0.8718 0.6994 0.8554
kNN (k=7) 180 4629 66 453 316 0.9361 0.8728 0.9301
10 4572 97 422 373 0.9246 0.8131 0.9140
4 4434 92 425 445 0.9100 0.8189 0.9014
2 4117 120 399 828 0.8326 0.7688 0.8265
Naïve Bayes 180 4526 113 406 419 0.9153 0.7823 0.9026
10 4346 79 440 599 0.8789 0.8478 0.8759
4 4395 85 434 550 0.8888 0.8362 0.8838
2 4172 156 363 773 0.8437 0.6994 0.8300
C5.0 180 4362 76 443 583 0.8821 0.8536 0.8794
10 4293 77 442 652 0.8681 0.8516 0.8666
4 4593 109 410 352 0.9288 0.7900 0.9156
2 4200 144 375 745 0.8493 0.7225 0.8373
Exhaustive search RBF SVM 2 4492 93 426 453 0.9084 0.8208 0.9001
Random Forests 2 4179 89 430 766 0.8451 0.8285 0.8435
GBM 2 4306 78 441 639 0.8708 0.8497 0.8688
Linear SVM 2 4360 85 434 585 0.8817 0.8362 0.8774
kNN (k=7) 2 4293 91 428 625 0.8681 0.8247 0.8640
Naïve Bayes 2 4135 91 428 810 0.8362 0.8247 0.8351
C5.0 2 4587 120 399 358 0.9276 0.7688 0.9125
Informed search:
Breadth-first search
RBF SVM 4 4526 68 451 419 0.9153 0.8690 0.9109
10 4504 63 456 441 0.9108 0.8786 0.9078
Random Forests 4 4441 68 451 504 0.8981 0.8690 0.8953
10 4494 60 459 451 0.9088 0.8844 0.9065
GBM 4 4411 62 457 534 0.8920 0.8805 0.8909
10 4465 64 455 480 0.9029 0.8767 0.9004
Linear SVM 4 4376 66 453 569 0.8849 0.8728 0.8838
10 4443 69 450 502 0.8985 0.8671 0.8955
kNN (k=7) 4 4434 75 444 511 0.8967 0.8555 0.8928
10 4430 74 445 515 0.8959 0.8574 0.8922
Naïve Bayes 4 4623 130 389 322 0.9349 0.7495 0.9173
10 4645 110 409 300 0.9393 0.7881 0.9250
C5.0 4 4404 86 433 541 0.8906 0.8343 0.8852
10 4382 64 455 563 0.8861 0.8767 0.8852
Informed search:
Simulated Annealing
RBF SVM 4 4656 121 398 289 0.9416 0.7669 0.9250
10 4532 92 427 413 0.9165 0.8227 0.9076
Random Forests 4 4414 95 424 531 0.8926 0.8170 0.8854
10 4496 72 447 449 0.9092 0.8613 0.9046
GBM 4 4524 110 409 421 0.9128 0.7881 0.9028
10 4441 83 436 504 0.8981 0.8401 0.8926
Linear SVM 4 4553 124 395 392 0.9207 0.7611 0.9056
10 4384 85 434 561 0.8866 0.8362 0.8818
kNN (k=7) 4 4443 114 405 502 0.8985 0.7803 0.8873
10 4471 98 421 747 0.9041 0.8112 0.8953
Naïve Bayes 4 4546 142 377 399 0.9193 0.7264 0.9010
10 4595 135 384 350 0.9292 0.7399 0.9112
C5.0 4 4413 101 418 535 0.8924 0.8054 0.8842
10 4134 71 448 811 0.8360 0.8632 0.8386