Table 4.
Pattern Selection Method | Classifier | No. of Patterns | TP | FP | TN | FN | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|---|---|---|---|
RBF SVM support vectors |
RBF SVM | 1551 | 4724 | 33 | 486 | 221 | 0.9553 | 0.9364 | 0.9535 |
221 | 4611 | 121 | 398 | 334 | 0.9325 | 0.7669 | 0.9167 | ||
5 | 4586 | 126 | 393 | 359 | 0.9274 | 0.7572 | 0.9112 | ||
Random Forests | 1551 | 4674 | 35 | 484 | 271 | 0.9452 | 0.9326 | 0.9440 | |
221 | 4573 | 75 | 444 | 372 | 0.9248 | 0.8555 | 0.9182 | ||
5 | 4378 | 109 | 410 | 567 | 0.8853 | 0.7900 | 0.8763 | ||
GBM | 1551 | 4668 | 37 | 482 | 277 | 0.9440 | 0.9287 | 0.9425 | |
221 | 4547 | 82 | 437 | 398 | 0.9195 | 0.8420 | 0.9122 | ||
5 | 4497 | 116 | 403 | 448 | 0.9094 | 0.7765 | 0.8968 | ||
Linear SVM | 1551 | 4621 | 37 | 482 | 324 | 0.9345 | 0.9287 | 0.9339 | |
221 | 4449 | 52 | 467 | 496 | 0.8997 | 0.8998 | 0.8997 | ||
5 | 4425 | 115 | 404 | 520 | 0.8948 | 0.7784 | 0.8838 | ||
kNN () | 1551 | 4703 | 69 | 450 | 242 | 0.9511 | 0.8671 | 0.9431 | |
221 | 4563 | 68 | 41 | 382 | 0.9228 | 0.8690 | 0.9176 | ||
5 | 4330 | 105 | 414 | 615 | 0.8756 | 0.7977 | 0.8682 | ||
Naïve Bayes | 1551 | 4660 | 146 | 373 | 285 | 0.9424 | 0.7187 | 0.9211 | |
221 | 4607 | 132 | 387 | 338 | 0.9316 | 0.7457 | 0.9140 | ||
5 | 4541 | 123 | 396 | 404 | 0.9183 | 0.7630 | 0.9036 | ||
C5.0 | 1551 | 4400 | 56 | 463 | 545 | 0.8898 | 0.8921 | 0.8900 | |
221 | 4176 | 84 | 435 | 769 | 0.8445 | 0.8382 | 0.9439 | ||
5 | 4683 | 136 | 383 | 262 | 0.9470 | 0.7380 | 0.9272 | ||
PAM medoids | RBF SVM | 180 | 4651 | 47 | 472 | 294 | 0.9405 | 0.9094 | 0.9376 |
10 | 4555 | 81 | 438 | 390 | 0.9211 | 0.8439 | 0.9138 | ||
4 | 4623 | 104 | 415 | 322 | 0.9349 | 0.7996 | 0.9220 | ||
2 | 4323 | 149 | 370 | 622 | 0.8742 | 0.7129 | 0.8589 | ||
Random Forests | 180 | 4633 | 57 | 462 | 312 | 0.9369 | 0.8902 | 0.9325 | |
10 | 4513 | 77 | 442 | 432 | 0.9126 | 0.8516 | 0.9068 | ||
4 | 4410 | 91 | 428 | 535 | 0.8918 | 0.8247 | 0.8854 | ||
2 | 3973 | 126 | 393 | 972 | 0.8034 | 0.7572 | 0.7990 | ||
GBM | 180 | 4598 | 53 | 466 | 347 | 0.9298 | 0.8979 | 0.9268 | |
10 | 4468 | 70 | 449 | 447 | 0.9035 | 0.8651 | 0.8999 | ||
4 | 4500 | 94 | 425 | 445 | 0.9100 | 0.8189 | 0.9014 | ||
2 | 4229 | 120 | 399 | 716 | 0.8552 | 0.7688 | 0.8470 | ||
Linear SVM | 180 | 4511 | 38 | 481 | 434 | 0.9122 | 0.9268 | 0.9136 | |
10 | 4544 | 89 | 430 | 401 | 0.9189 | 0.8285 | 0.9103 | ||
4 | 4496 | 123 | 396 | 449 | 0.9092 | 0.7630 | 0.8953 | ||
2 | 4311 | 156 | 363 | 634 | 0.8718 | 0.6994 | 0.8554 | ||
kNN () | 180 | 4629 | 66 | 453 | 316 | 0.9361 | 0.8728 | 0.9301 | |
10 | 4572 | 97 | 422 | 373 | 0.9246 | 0.8131 | 0.9140 | ||
4 | 4434 | 92 | 425 | 445 | 0.9100 | 0.8189 | 0.9014 | ||
2 | 4117 | 120 | 399 | 828 | 0.8326 | 0.7688 | 0.8265 | ||
Naïve Bayes | 180 | 4526 | 113 | 406 | 419 | 0.9153 | 0.7823 | 0.9026 | |
10 | 4346 | 79 | 440 | 599 | 0.8789 | 0.8478 | 0.8759 | ||
4 | 4395 | 85 | 434 | 550 | 0.8888 | 0.8362 | 0.8838 | ||
2 | 4172 | 156 | 363 | 773 | 0.8437 | 0.6994 | 0.8300 | ||
C5.0 | 180 | 4362 | 76 | 443 | 583 | 0.8821 | 0.8536 | 0.8794 | |
10 | 4293 | 77 | 442 | 652 | 0.8681 | 0.8516 | 0.8666 | ||
4 | 4593 | 109 | 410 | 352 | 0.9288 | 0.7900 | 0.9156 | ||
2 | 4200 | 144 | 375 | 745 | 0.8493 | 0.7225 | 0.8373 | ||
Exhaustive search | RBF SVM | 2 | 4492 | 93 | 426 | 453 | 0.9084 | 0.8208 | 0.9001 |
Random Forests | 2 | 4179 | 89 | 430 | 766 | 0.8451 | 0.8285 | 0.8435 | |
GBM | 2 | 4306 | 78 | 441 | 639 | 0.8708 | 0.8497 | 0.8688 | |
Linear SVM | 2 | 4360 | 85 | 434 | 585 | 0.8817 | 0.8362 | 0.8774 | |
kNN () | 2 | 4293 | 91 | 428 | 625 | 0.8681 | 0.8247 | 0.8640 | |
Naïve Bayes | 2 | 4135 | 91 | 428 | 810 | 0.8362 | 0.8247 | 0.8351 | |
C5.0 | 2 | 4587 | 120 | 399 | 358 | 0.9276 | 0.7688 | 0.9125 | |
Informed search: Breadth-first search |
RBF SVM | 4 | 4526 | 68 | 451 | 419 | 0.9153 | 0.8690 | 0.9109 |
10 | 4504 | 63 | 456 | 441 | 0.9108 | 0.8786 | 0.9078 | ||
Random Forests | 4 | 4441 | 68 | 451 | 504 | 0.8981 | 0.8690 | 0.8953 | |
10 | 4494 | 60 | 459 | 451 | 0.9088 | 0.8844 | 0.9065 | ||
GBM | 4 | 4411 | 62 | 457 | 534 | 0.8920 | 0.8805 | 0.8909 | |
10 | 4465 | 64 | 455 | 480 | 0.9029 | 0.8767 | 0.9004 | ||
Linear SVM | 4 | 4376 | 66 | 453 | 569 | 0.8849 | 0.8728 | 0.8838 | |
10 | 4443 | 69 | 450 | 502 | 0.8985 | 0.8671 | 0.8955 | ||
kNN () | 4 | 4434 | 75 | 444 | 511 | 0.8967 | 0.8555 | 0.8928 | |
10 | 4430 | 74 | 445 | 515 | 0.8959 | 0.8574 | 0.8922 | ||
Naïve Bayes | 4 | 4623 | 130 | 389 | 322 | 0.9349 | 0.7495 | 0.9173 | |
10 | 4645 | 110 | 409 | 300 | 0.9393 | 0.7881 | 0.9250 | ||
C5.0 | 4 | 4404 | 86 | 433 | 541 | 0.8906 | 0.8343 | 0.8852 | |
10 | 4382 | 64 | 455 | 563 | 0.8861 | 0.8767 | 0.8852 | ||
Informed search: Simulated Annealing |
RBF SVM | 4 | 4656 | 121 | 398 | 289 | 0.9416 | 0.7669 | 0.9250 |
10 | 4532 | 92 | 427 | 413 | 0.9165 | 0.8227 | 0.9076 | ||
Random Forests | 4 | 4414 | 95 | 424 | 531 | 0.8926 | 0.8170 | 0.8854 | |
10 | 4496 | 72 | 447 | 449 | 0.9092 | 0.8613 | 0.9046 | ||
GBM | 4 | 4524 | 110 | 409 | 421 | 0.9128 | 0.7881 | 0.9028 | |
10 | 4441 | 83 | 436 | 504 | 0.8981 | 0.8401 | 0.8926 | ||
Linear SVM | 4 | 4553 | 124 | 395 | 392 | 0.9207 | 0.7611 | 0.9056 | |
10 | 4384 | 85 | 434 | 561 | 0.8866 | 0.8362 | 0.8818 | ||
kNN () | 4 | 4443 | 114 | 405 | 502 | 0.8985 | 0.7803 | 0.8873 | |
10 | 4471 | 98 | 421 | 747 | 0.9041 | 0.8112 | 0.8953 | ||
Naïve Bayes | 4 | 4546 | 142 | 377 | 399 | 0.9193 | 0.7264 | 0.9010 | |
10 | 4595 | 135 | 384 | 350 | 0.9292 | 0.7399 | 0.9112 | ||
C5.0 | 4 | 4413 | 101 | 418 | 535 | 0.8924 | 0.8054 | 0.8842 | |
10 | 4134 | 71 | 448 | 811 | 0.8360 | 0.8632 | 0.8386 |