
Robust Detection of Parkinson’s Disease Using Harvested Smartphone Voice Data:
A Telemedicine Approach

Sanjana Singh1 and Wenyao Xu, PhD2

1McLean High School, McLean, Virginia.
2Department of Computer Science and Engineering, State
University of New York at Buffalo, Buffalo, New York.

Abstract
Introduction: Parkinson’s disease affects over 10 million

people globally, and *20% of patients with Parkinson’s dis-

ease have not been diagnosed as such. The clinical diagnosis is

costly: there are no specific tests or biomarkers and it can take

days to diagnose as it relies on a holistic evaluation of the

individual’s symptoms. Existing research either predicts a

Unified Parkinson Disease Rating Scale rating, uses other key

Parkinsonian features such as tapping, gait, and tremor to

diagnose an individual, or focuses on different audio features.

Methods: In this article, we present a classification approach

implemented as an iOS App to detect whether an individual

has Parkinson’s using 10-s audio clips of the individual

saying ‘‘aaah’’ into a smartphone.

Results: The 1,000 voice samples analyzed were obtained from

the mPower (mobile Parkinson Disease) study, which collected

65,022 voice samples from 5,826 unique participants.

Conclusions: The experimental results comparing 12 differ-

ent methods indicate that our approach achieves 99.0% ac-

curacy in under a second, which significantly outperforms

both prior diagnosis methods in the accuracy achieved and the

efficiency of clinical diagnoses.

Keywords: telemedicine, m-Health, home health monitoring,

sensor technology, Parkinson’s disease

Introduction

P
arkinson’s disease affects over 10 million people

globally that progressively debilitates an individual.1

Approximately 20% of patients with Parkinson’s

have not been diagnosed as such.2 Early symptoms

often go unnoticed, but as the disease progresses, a tremor,

impaired balance, changes in writing, and changes in speech3

contribute to the high cost of Parkinson’s, which is over $25

billion each year in the United States alone.1 A diagnosis is

vital to improve symptoms. In recent years, researchers have

tried to improve the accuracy of predicting Parkinson’s, and

many have tried smartphone-based approaches.

There is currently no objective test to diagnose Parkinson’s

disease. Doctors perform a costly examination to rule out

other neurological conditions and to accurately diagnose the

patient. It can take a few hours to a few days for a diagnosis.

Early in the progression of the disease, pathological signs are

difficult to detect but become bilateral as the disease pro-

gresses. There is no ‘‘cure’’ for Parkinson’s, but there are ways

to slow the progression. Early detection of Parkinson’s disease

helps patients manage their symptoms and slow the degen-

eration. Studies have shown that the costs of managing Par-

kinson’s disease increase significantly with the disease

progression as the offsetting of complications from drugs

increases the costs. In the first stage of Parkinson’s disease,

indirect costs make up the bulk of the*12,000 Euros a year in

Germany the disease costs the afflicted individual, but as the

disease progresses, the cost of health insurance and care make

up the majority of the *47,000 Euros a year that the disease

costs.4 Slowing the progression of the disease would ulti-

mately reduce the financial burden a diagnosis would impose,

and early detection is the key to managing symptoms and

slowing the progression.

We present a method that is capable of efficiently running

on a smartphone that accurately predicts Parkinson’s from a

10-s nonspeech recording taken using a smartphone. This

method is far more cost-effective and efficient than traditional

clinical methods and could revolutionize the industry. Our

method utilizes Mel-Frequency Cepstral Coefficients (MFCCs)

feature extraction method, L1-based feature selection, and a

Support Vector Machine (SVM) classifier to classify record-

ings of an individual saying ‘‘aaah’’ for 10 s when sampled at a

uniform frequency. Previous research has shown that ‘‘aaah’’

can be used to assess vocal features.5 Lots of existing litera-

tures have also sought to predict Parkinson’s by detecting

other key features of the disease. Some researchers have also

used vocal features to monitor the progression of Parkinson’s

disease and estimate the Unified Parkinson Disease Rating

Scale (UPDRS) score with limited success.
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Related Work
There exists some research regarding the quantification of

Parkinson’s disease. Existing research either relies on different

key features to diagnose Parkinson’s to predict the severity of

the disease or uses a significantly smaller dataset to design a

method to diagnose Parkinson’s. Our work differs from ex-

isting work in many ways, as detailed below.

DIAGNOSING PARKINSON’S DISEASE
FROM MIXED COHORT

Asgari and Shafran6 introduced a method to predict the

severity of Parkinson’s disease on the UPDRS scale using three

speech tasks solely from Parkinson’s patients. Similarly,

speech signal processing is used to estimate UPDRS scores

with 42 speech tasks divided into subsets of words, mono-

logue, and diadochokinetic tasks in work done by Galaz et al.7

Recent work by Zhan et al. utilized several features of voice,

finger tapping, gait, balance, and reaction time to calculate a

mobile Parkinson disease score (not a UPDRS score).8 Non-

invasive speech tests were utilized by Tsanas et al. to predict

the UPDRS score with a mean difference of 7.5 from the

clinical diagnosis.9 These works all differ from our research as

they quantify the severity of the disease of Parkinson’s pa-

tients, using data only from Parkinson’s patients, while we are

diagnosing Parkinson’s, using data from both Parkinson’s

disease and control individuals.

USING VOCAL DATA TO REDUCE MISDIAGNOSIS
Other distinct features of Parkinson’s such as gait, olfactory

senses, finger tapping, and hand tremor are used to diagnose

Parkinson’s disease. Existing literature on gait has been used to

detect and monitor Parkinson’s symptoms on smartphones.10–12

Challa et al. designed a novel approach to predicting Parkin-

son’s disease using Sleep Behavior Disorder, olfactory loss, and

nonmotor features with 97.2% accuracy.13 Hand tremors are a

key feature of Parkinson’s disease, and a smartphone-based

tool was created to quantify tremor symptoms and classify

individuals with Parkinson’s (82% accuracy).14 However, a

hand tremor is a common characteristic of several other dis-

eases and can be a source of misdiagnosis.

Another way to observe the movement hindrance inflicted

by Parkinson’s is through rapid finger tapping evaluations.

Khan et al. were able to distinguish healthy controls from

Parkinson’s disease patients with 95% accuracy, whereas

UPDRS-finger tapping (UPDRS-FT) levels were discriminated

with 88% accuracy.15 Using gait as the main feature from

which Parkinson’s is diagnosed makes it easy to employ in

daily use, but the nature of the data makes it noise prone and,

thus, less accurate. These works utilize different prominent

symptoms of Parkinson’s such as hindrances in movement

while we focus on auditory features. A recent study by To-

losa et al. found that only 74% of patients diagnosed with

Parkinson’s truly had the disease, placing the misdiagnosis

rate even higher than initially presumed.16 Nonetheless, the

misdiagnosis rate of Parkinson’s is incredibly high, and

tremor has been shown to be a common source of the mis-

diagnosis. Jain et al. studied the misdiagnosis of essential

tremor (ET) and found that only 11% of individuals diag-

nosed with ET truly had Parkinson’s disease.17 Meara et al.

found ET and Alzheimer’s disease to be the most common

causes of misdiagnosis, which reinforces the findings of Jain

et al.18 Thus, to avoid misdiagnosis from confounding fac-

tors, we focus on quantifying vocal data.

MUCH LARGER DATASET OF VOCAL DATA ANALYZED
Tsanas et al. created a tool to detect Parkinson’s in speech

patterns. Their dataset consisted of 263 phonations where they

sought to distinguish Parkinson’s patients from control sub-

jects. Their method used several dysphonia measures and ul-

timately achieved 98.6% accuracy.19 Unlike their method, we

implement a solution, which extracts MFCC features instead

of dysphonia features on a much larger dataset (1,000 samples

compared to the 263 phonations).

Much of the literature focuses on discovering symptoms

that are characteristic of this disease. A survey conducted by

Hartelius and Svensson found that 70% of Parkinson’s dis-

ease patients had speech impediments and 41% had chewing

or swallowing impairment.20 Gamboa et al. used 2 s sustained

‘‘aaah’’ audio, as well as a sentence to analyze voice qualities

of both control and Parkinson’s disease individuals. Ulti-

mately, they concluded that Parkinson’s disease patients had

voice arrests, struggle, and higher jitter that were unaffected

by Parkinson’s disease severity, measured by the UPDRS.21

Ramig et al. concluded that noninvasive acoustic analysis

could hold clinical value to diagnose and track the pro-

gression of neurological diseases, including Parkinson’s

disease.22 These research works affirm that Parkinson’s in-

dividuals have notable vocal impairment, and our work dis-

criminates individuals on vocal alone to avoid confounding

factors.

Other existing work relevant to our problem details the high

proportion of individuals afflicted with Parkinson’s who lack

a diagnosis. Schrag et al. estimated that 20% of afflicted pa-

tients lacked a professional diagnosis.2 This astounding pro-

portion can be attributed to the extremely costly process for a

clinical diagnosis, often costing thousands of dollars and

hours of time, so we designed a method, which has neither of

those caveats.
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Framework
In this section, we present our framework with details on the

feature extraction, feature selection, and classification.

FEATURE EXTRACTION
Using the MFCC transforms the data format, from a wave

file to a numpy array, which is portable to use in an SVM

classifier. We first divide the signal into 20 ms frames with a

frame step of 10 ms to allow for overlaps. Thus, for a 10 s

sample, there are 1,000 frames, on which the following pro-

cedure will be applied.

First, the Discrete Fourier Transform is applied where h nð Þ is
an analysis window and K is the length of the frame, 20 ms.

We then calculate the periodogram based power spectral es-

timate, Si kð Þ, for each speech frame, si nð Þ, as follows:

Si kð Þ= +N
n = 1si nð Þh nð Þe - 2pjkn

N 1 � k � K (1)

The Mel-Spaced filterbank, Pi kð Þ, is calculated using 40

filters by taking the summation of the product of each filter-

bank with a power spectrum23 as seen in Equation (2):

Pi kð Þ= 1

N
Si kð Þj j2 (2)

The data at this step are 40 energies per 1,000 frames per sample.

We then take the log of each filterbank energy calculated. The

Discrete Cosine Transform is applied to the 40 log energies, and

the first 13 coefficients are saved. Thus, each frame has 13

dimensions, outputting an array 1,000 by 13 per sample.

L1-BASED FEATURE SELECTION
The original MFCC dimensions are 1,000 by 13 per sample.

Reducing the dimensionality not only makes it more compact

and efficient to train a SVM on but may also improve accu-

racy. An L1-based selection model is a Linear Support Vector

Classification model penalized with L1-norm. This model

entails the parameter C, which controls the sparsity by trading

off variance and bias. With a larger C, more features are se-

lected, and a smaller C leads to fewer features selected. The

parameter C greatly influenced the accuracy, and ultimately, a

C of 1 was selected which reduced the individual dimension

per sample from 1,000 by 13 to a mere 995 by 1. Further

insight in the selection of C is detailed in the Comparison

Between Tree-Based, L1-Norm, and L2-Norm section.

SVM CLASSIFIER
The features selected in the aforementioned step are fed into

a SVM, a supervised learning method to classify the data into

Parkinson’s and Control groups. SVM classifiers use hyper-

planes to separate the data into distinct groups.24 Before the

SVM step, further preprocessing is applied using the Scikit

learn MinMaxScaler. This method translates the features from

minimum to maximum on a scale from 0 to 1, and the same

transformation is applied to the dataset to test upon.

Several different types of SVM Classifiers were run, of

which the Radial Basis Kernel SVMs achieved the highest

accuracy. Unlike a traditional support vector classification

(SVC), which has a linear kernel:

Æx, x¢æ, (3)

the radial basis function (RBF) Kernel,

exp( - c j x - x¢j jj2), (4)

includes a gamma parameter. The decision boundary for a

RBF-SVC is more circular and fluid than a linear SVC, which

has linear divisions separating the classes.

An RBF-SVM classifier must be fine-tuned using two pa-

rameters, C and gamma. The parameter C trades off variance

and bias, while gamma alters the influence each individual

sample has on the decision boundary. Changes, as small as

0.001, to either parameter can have significant ramifications

on the accuracy achieved by the classifier.

Figure 1 shows our method. The raw audio data were di-

vided into fixed length segments. These segments were then

randomly placed into training and testing sets. MFCCs were

extracted for each segment. The most important features were

selected in L1-based feature selection, which reduced the

feature dimension from 13,000 per sample to 995. An SVM

classifier was trained on the selected features, and the test

accuracy was noted. If the accuracy was unacceptable, the

MFCC feature extraction, L1-based feature selection, and SVM

parameters were altered.

Optimization and Evaluation
In this section, we describe details on the optimization of the

method, comparisons of various feature extraction methods,

and comparison with eight other methods implemented.

DATASET
The data are from mPower: Mobile Parkinson Disease

Study, which is directed by Sage Bionetworks.25 The data were

collected from the Parkinson mPower study app, using Re-

search Kit, and the dataset consists of 65,022 ten-second voice

samples of 5,826 unique participants. The app was made

available on the Apple App store to users with iPhone 4S’s and

above with at least software of iOS 8. The ease of submitting

data to this study, from the comfort of one’s own smartphone,

contributed to the unprecedented scale of this study. Each

participant involved in the study first downloaded the app,
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filled out the informed consent forms, and performed Par-

kinson’s disease activities. Individuals could selectively par-

ticipate in the following five main studies: demographics, gait,

memory, finger tapping, and voice. The smartphone is the

most ubiquitous mobile device, and its ability to handle am-

bient noise makes it a very good recording device for such a

large study. To ensure quality recordings, the user must first

record background noise before they are approved to record

them saying ‘‘aaah,’’ as seen in Figure 2. All data were sampled

at a wavelength of 44.1 kHz to maintain uniformity. We ran-

domly chose 1,000 samples from mPower. These 1,000 samples

were randomly split into a training set consisting of 800 samples

and a test set of 200 samples. Fourteen percent of the partici-

pants in the overall study were professionally diagnosed with

Parkinson’s, whereas the remaining 86% consisted of control

individuals.25 Age is the largest risk to developing Parkinson’s

disease as advancing age reduces neurons and may cause this

disease.26 The prevalence in the U.S. population is estimated at

0.3%, but increases to 4% to 5% for individuals over 85 years

old.27 However, the ages of participants were overwhelmingly

slanted toward younger individuals, as individuals in the age

range of 18 to 34 made up 57% of participants, whereas only

18% were at least 55 years old.25 To the best of our knowledge,

this is the largest dataset of Parkinson’s audio data.

CLASSIFICATION OF PERFORMANCE EVALUATION
AND FURTHER STEPS

This subsection evaluates the performance of the frame-

work. Previous studies have sought to detect Parkinson’s

disease, citing the high misdiagnosis rates. Our work ulti-

mately yields a Parkinson’s diagnosis rate of 99.00%, which is

notably higher than prior work, which attained an accuracy

rate of 98.6%.19 Further evaluation is in action to investigate

other possible confounding factors such as gender, smoking,

and other diseases (Alzheimer’s, ET) in the diagnosis. Beyond

speech data, tapping, gait, and memory data are available in

the mPower dataset and can be used to synthesize a com-

prehensive diagnostic method, which can attain even lower

misdiagnosis rates. Furthermore, a more powerful super-

computer would be capable of processing the methods on the

full dataset in a timely manner to tune the parameters of each

method and determine the most accurate method. Analyzing

Fig. 1. Flowchart of our method. First, we downloaded data from the Synapse portal. These audio signals were divided into frames, and
features were extracted utilizing MFCC feature extraction. The most predictive MFCC features were selected utilizing L1-based feature
selection, and these selected features were classified into Parkinson’s and control groups using an RBF-Kernel SVM classifier to output a
diagnosis. MFCC, mel-frequency cepstral coefficient; RBF, radial basis function; SVM, support vector machine.

Fig. 2. Flowchart detailing the data collection process. The individual must first download the mPower app and fill out consent forms and
questionnaires. For the vocal task, the individual first had to record background noise to determine whether they had a sufficiently low
level of background noise. If it was deemed acceptable, the individual was able to record an audio clip saying ‘‘ahhh’’ for 10 s.
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whether smartphone type (iPhone 4s and upward) affects the

accuracy attained by the methods, as well as whether biological

information included in the mPower dataset (gender, other

conditions) affects the accuracy, would be extremely valuable

in determining how to further improve the diagnostic accuracy.

COMPARISON BETWEEN FEATURE
EXTRACTION METHODS

Several feature extraction methods were implemented, with

significantly lower accuracy in discriminating between Par-

kinson’s and control subjects.

One method implemented extracted the parameters of each

file, which amounted to be *445,000 per file. Using the wave

package, the number of channels, sample width, frame rate,

and number of frames were extracted. These parameters were

read and transposed into a numpy array. This method attained

a 55% test set accuracy, which pales in comparison to the

99.0% test accuracy achieved by the MFCC feature extraction.

Another method to extract features from the original wave

file was to graph the waveform images, mapping the ampli-

tude against time. The axes were standardized, and the images

were transformed into grayscale images to add uniformity.

This method of feature extraction, at best, predicted 81% of

the test set accurately. Greater detail on the methods used

following this feature extraction can be found below.

Ultimately, the MFCC feature extraction outperformed both

the aforementioned feature extraction methods by over 15%

each; hence, the use of the MFCC feature extraction in this

method.

COMPARISON BETWEEN TREE-BASED,
L1-NORM, AND L2-NORM

Several methods were tried with the ultimate goal of im-

proving the SVM accuracy. Without dimensionality reduction,

the SVM achieved a test set accuracy of 0.93. Tree-based feature

selection computes importance of features using decision trees

as outlined by Hall.28 This method of feature selection actually

dropped the test set accuracy to 0.86. L2-based feature selection

was then implemented in place of the tree-based feature se-

lection. The penalization with the L2-norm achieved a test

accuracy of 0.96. Finally, L1-based feature was implemented,

which is regularization penalized with an L1-norm. This

regularization method, the penalization with the L1-norm,

achieved a test set accuracy of 0.99.

Unlike L2-based feature selection, the L1-based boundaries

are more rigidly linear, as seen in Figure 3, which suits the data

Fig. 3. Comparison between (A) L1 regularization and (B) L2 reg-
ularization.29

Table 1. The Effect of Frame Length and Frame
Stride on Accuracy

DIMENSIONS
FRAME
LENGTH

FRAME
STRIDE

TEST SET
ACCURACY

1,000 · 13 0.01 0.01 0.98

500 · 13 0.01 0.02 0.95

334 · 13 0.01 0.03 0.98

1,000 · 13 0.02 0.01 0.99

500 · 13 0.02 0.02 0.98

334 · 13 0.02 0.03 0.95

1,000 · 13 0.03 0.01 0.98

500 · 13 0.03 0.02 0.97

334 · 13 0.03 0.03 0.95

The bold values are the values that attained the highest test set accuracy and

the ones we selected for our model.

Table 2. The Effect of Feature Selection on Accuracy

METHOD
PARAMETER

VALUE
NUMBER OF
FEATURES

TEST SET
ACCURACY

None — 13,000 0.93

Tree based — 1,378 0.86

L1-based 0.01 252 0.90

L1-based 0.1 578 0.98

L1-based 1 995 0.99

L1-based 5 1,638 0.98

L1-based 10 2,219 0.97

L2-based 0.05 5,264 0.96

L2-based 5 5,265 0.96

The bold values are the values that attained the highest test set accuracy and

the ones we selected for our model.
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more, as seen by the significant increase in accuracy. The

figure illustrates the effect that the penalization method af-

fects the features selected.

SELECTING OPTIMAL PARAMETERS
The MFCC feature extraction is the basis upon which the rest

of the steps follow. Thus, it is essential to tailor the frame stride

and frame length in the MFCC

extraction precisely. The frame

length is the width of each frame,

each frame is studied individu-

ally, and 13 cepstral coefficients

are extracted per frame. The frame

stride is the distance between each

frame, and short strides can allow

for overlaps while longer strides

can reduce the dimensions. As

observed in Table 1, the optimal

frame length and frame stride are

0.02 and 0.01, respectively. Par-

kinson’s patients have distinct

vocal features, including voice

arrests.21 This combination allows

for enough overlap to pick up on

the distinct vocal features ex-

hibited by Parkinson’s patients.

The parameter C in L1-based

feature selection has a signifi-

cant effect on accuracy attained. As aforementioned, the pa-

rameter C controls sparsity: a smaller C results in fewer

features selected. Table 2 indicates that a value of 1 for the

parameter of C reduces the dimension to 995 while achieving a

remarkable test set accuracy of 0.99. Clearly, a higher accu-

racy is preferred so we selected the value of C as 1.

C and gamma parameters in the RBF-Kernel SVM affect the

way the SVM creates a decision boundary to discriminate

samples into Control and Parkinson’s classes. As previously

stated, gamma controls the effect each individual sample has

on the decision boundary. Tuning the gamma parameter is

vital to ensure that outliers don’t skew the boundary. Figure 4

illustrates the extensive effect of changing these parameters.

We selected a C of 15 and a gamma value of 0.05, which yielded

a test set accuracy of 0.99.

OTHER METHODS IMPLEMENTED
Several other methods were implemented, including deep

learning methods, with a wide range of accuracies as listed in

Table 3. Three feature extraction methods were tried, namely,

graphing the waveform, utilizing parameters of the wave,

convolutional autoencoders, and MFCC extraction. Following

the different feature extraction methods, several distinct meth-

ods were used.

For the waveform images, deep learning methods were de-

ployed. Following the creation of the standardized images, five

different methods were implemented. First, a convolutional

autoencoder was fine-tuned to compress the high dimensional

Fig. 4. The Effect of C and gamma parameters of the SVM on the test set accuracy. All other
parameters were held constant to ensure uniformity. We selected a C of 15 and a gamma
of 0.005 due to the improvement in test set accuracy.

Table 3. Test Set Accuracies for all 12 Methods Developed

DESCRIPTION HIGHEST TEST SET ACCURACY

MFCC, L1, RBF-SVM 0.99

MFCC, L2, RBF-SVM 0.96

MFCC, RBF-SVM 0.93

MFCC, tree-based, RBF-SVM 0.86

Autoencoder, linear-SVM 0.81

MFCC, linear-SVM 0.74

Autoencoder, RBF-SVM 0.73

Grayscale images, RBF-SVM 0.73

nFrames, L1, RBF-SVM 0.55

Grayscale images, linear-SVM 0.52

Grayscale images, logistic regression 0.46

Convolutional neural network 0.46

MFCC, mel-frequency cepstral coefficient; RBF, radial basis function; SVM,

support vector machine.
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images with dimensions of 592 by 192 to 194 by 91 by 4.

Convolutional autoencoders traditionally outperform regular

autoencoders for image processing. An autoencoder seeks to

recreate the input from a compact feature representation it en-

codes. Through convolutions and pooling, the input is com-

pacted and encoded and it is recreated by applying the reverse

transformations through steps. The loss is defined as the dif-

ference between the recreated output and the initial input image.

We extract the middle layer, which is significantly smaller than

the original input. A randomly selected control compressed

image and a randomly selected Parkinson’s compressed image

are seen in Figure 5.

Keras framework using the TensorFlow backend was used,

and a detailed depiction of the steps deployed by the auto-

encoder is shown in Figure 6. The convolutional autoencoder

had a 3 · 3 kernel with 1 · 1 strides to allow for overlap. To

compact the image, the convolutional autoencoder used Max

Pooling with a 2 · 2 kernel. Figure 6 illustrates the entire

method in further detail.

Different depths of convolutional autoencoders were tried

for reducing the loss, which was minimized to 0.14 after 35

epochs when seven total convolutional layers were used.

Following the convolutional autoencoder, several different

classification methods were implemented to classify the com-

pressed feature representation as Parkinson’s or control. A

SVC method using a linear kernel attained a test set accuracy

of 0.81, while a SVC with an RBF-Kernel accurately predicted

73% of the test set. While these are impressive results, they

pale in comparison to the 99% achieved by our method ex-

plained in the Framework Section, which was minimized to

0.14 after 35 epochs when seven total convolutional layers

were used.

Due to the high loss from the autoencoder, we also ran

several methods on the grayscale standardized images

without compressing the images. A logistic regression

model was trained, which achieved a dismal test set accu-

racy of 0.46. A linear SVC accurately predicted only 52% of

the test set. We also tried a convolutional

neural network, which uses convolutions to

analyze an image in larger frames of reference

instead of a single pixel-by-pixel analysis.

With 32 filters, a 3 by 3 convolution, and a 2 by

2 pooling size, the accuracy on the training set

is 0.455.

Another method of feature extraction im-

plemented was to extract the wave parameters,

as previously mentioned. A Linear SVM and a

RBF Kernel SVM were both independently run

on these data and at best attained 55% training

set accuracy. The computation time was also

over 30 times greater than the method we pro-

posed in the Framework Section. Accounting for

the higher computational cost and the lower

accuracy, we selected the MFCC model.

Fig. 5. Compressed images. The waveform images were run
through the autoencoder framework and created these com-
pressed images, which were then fed into the SVC classifier.
One control (left) and one Parkinson’s example (right) were
randomly selected. SVC, support vector classification.

Fig. 6. The architecture of the Convolutional Autoencoder. It contains seven con-
volutional layers. The input is of dimensions 592 · 192 and through the convolu-
tional and max pooling layers is transformed into a 74 · 24 · 8 array. From this
74 · 24 · 8 array, the input is recreated through convolutions and up sampling.
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Conclusion
In this article, we proposed a method to predict Parkinson’s

disease from a 10-s audio clip of an individual saying ‘‘aaah’’

into a smartphone. Our method entails MFCC feature extrac-

tion, L1-based feature selection, and an RBF-kernel SVC and

can run in real time on a smartphone. Experiments with 1,000

voice samples from the mPower dataset illustrate that our

method achieves a 99% diagnostic accuracy. We also devel-

oped 11 other methods, including several deep learning

methods and compared our method with them. Our method

significantly outperformed all other state-of-the-art methods

and is significantly faster than clinical diagnoses.
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21. Gamboa J, Jiménez-Jiménez FJ, Nieto A, Montojo J, Ortı́-Pareja M, Molina JA,
Garcı́a-Albea E, Cobeta I. Acoustic voice analysis in patients with Parkinson’s
disease treated with dopaminergic drugs. J Voice 1997;11:314–320.

22. Ramig LA, Titze IR, Scherer RC, Ringel SP. Acoustic analysis of voices of
patients with neurologic disease: Rationale and preliminary data. Ann Otol
Rhinol Laryngol 1988;97:164–172.

23. ‘‘Mel Frequency Cepstral Coefficient (MFCC) tutorial.’’ Practical Cryptography.
[Online]. Available at http://practicalcryptography.com/miscellaneous/machine-
learning/guide-mel-frequency-cepstral-coefficients-mfccs/#eqn1 (last accessed
August 3, 2018).

24. ‘‘1.4. Support Vector Machines.’’ Scikit Learn. [Online]. Available at: http://scikit-
learn.org/stable/modules/svm.html (last accessed August 3, 2018).

25. mPower: Mobile Parkinson disease study. [Online]. Available at http://
parkinsonmpower.org/ (last Accessed August 3, 2018).

26. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: Why is
advancing age the biggest risk factor? Ageing Res Rev 2014;14:19–30.

27. ‘‘Parkinson’s Disease: Diagnosis and Treatment.’’ Family Health UT Health San Antonio.
[Online]. Available at http://familymed.uthscsa.edu/geriatrics/readingresources/
virtual_library/Parkinsons/Parkinsons06.pdf (last accessed August 2, 2018).

28. Hall MA. Correlation-based feature selection of discrete and numeric class
machine learning. (Working paper 00/08). Hamilton, New Zealand: University
of Waikato, Department of Computer Science, 2000.

29. Shi JY, Wielaard J, Smith RT, Sajda P. Perceptual decision making ‘‘through the
eyes’’ of a large-scale neural model of V1. Front Psychol 2013;4:161.

Address correspondence to:

Wenyao Xu, PhD

Department of Computer Science and Engineering

State University of New York at Buffalo

338 Davis Hall

Buffalo, NY 14260-1660

E-mail: wenyaoxu@buffalo.edu

Received: October 12, 2018

Revised: February 12, 2018

Accepted: February 12, 2018

Online Publication Date: April 26, 2019

SINGH AND XU

334 TELEMEDICINE and e-HEALTH MARCH 2020 ª MARY ANN LIE BERT, INC.

http://parkinson.org/Understanding-Parkinsons/Causes-and-Statistics/Statistics
http://parkinson.org/Understanding-Parkinsons/Causes-and-Statistics/Statistics
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/#eqn1
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/#eqn1
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://parkinsonmpower.org/
http://parkinsonmpower.org/
http://familymed.uthscsa.edu/geriatrics/readingresources/virtual_library/Parkinsons/Parkinsons06.pdf
http://familymed.uthscsa.edu/geriatrics/readingresources/virtual_library/Parkinsons/Parkinsons06.pdf

