Table 2.
AUC, accuracy, sensitivity and specificity related to the exudate detection for E-OPHTHA exudates database taking into account different input vectors to the SVM classifier. In particular, they are composed by texture and shape descriptors.
Accuracy | Sensitivity | Specificity | AUC | |
---|---|---|---|---|
LBPV | 0.8205 ± 0.0320 | 0.7389 ± 0.1034 | 0.8331 ± 0.0534 | 0.8684 ± 0.0435 |
LBPV- | 0.8369 ± 0.0336 | 0.7603 ± 0.0897 | 0.8481 ± 0.0519 | 0.8834 ± 0.0397 |
LBPV- | 0.8445 ± 0.0276 | 0.7657 ± 0.0894 | 0.8561 ± 0.0449 | 0.8872 ± 0.0384 |
LBPV- | 0.8447 ± 0.0228 | 0.7496 ± 0.1079 | 0.8591 ± 0.0432 | 0.8803 ± 0.0409 |
LBPV- | 0.8533 ± 0.0245 | 0.7721 ± 0.0857 | 0.8651 ± 0.0399 | 0.8948 ± 0.0351 |