Table 3.
AUC, accuracy, sensitivity and specificity related to the bright-lesion detection on E-OPHTHA exudates database for each classification method using a decision threshold .
| Accuracy | Sensitivity | Specificity | AUC | |
|---|---|---|---|---|
| Random Forests | 0.9508 ± 0.0084 | 0.4785 ± 0.1015 | 0.9921 ± 0.0043 | 0.9256 ± 0.0173 |
| Linear-SVM | 0.8533 ± 0.0245 | 0.7721 ± 0.0857 | 0.8651 ± 0.0399 | 0.8948 ± 0.0351 |
| RBF-SVM | 0.8796 ± 0.0229 | 0.8118 ± 0.0618 | 0.8851 ± 0.0296 | 0.9240 ± 0.0161 |
| Gaussian Processes | 0.8762 ± 0.0206 | 0.8348 ± 0.0650 | 0.8795 ± 0.0266 | 0.9353 ± 0.0174 |