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Abstract

Background: Skin fibrosis is the clinical hallmark of systemic sclerosis (SSc), where collagen deposition and
remodeling of the dermis occur over time. The most widely used outcome measure in SSc clinical trials is the
modified Rodnan skin score (mRSS), which is a semi-quantitative assessment of skin stiffness at seventeen body
sites. However, the mRSS is confounded by obesity, edema, and high inter-rater variability. In order to develop a
new histopathological outcome measure for SSc, we applied a computer vision technology called a deep neural
network (DNN) to stained sections of SSc skin. We tested the hypotheses that DNN analysis could reliably assess
mRSS and discriminate SSc from normal skin.

Methods: We analyzed biopsies from two independent (primary and secondary) cohorts. One investigator
performed mRSS assessments and forearm biopsies, and trichrome-stained biopsy sections were
photomicrographed. We used the AlexNet DNN to generate a numerical signature of 4096 quantitative image
features (QIFs) for 100 randomly selected dermal image patches/biopsy. In the primary cohort, we used principal
components analysis (PCA) to summarize the QIFs into a Biopsy Score for comparison with mRSS. In the secondary
cohort, using QIF signatures as the input, we fit a logistic regression model to discriminate between SSc vs. control
biopsy, and a linear regression model to estimate mRSS, yielding Diagnostic Scores and Fibrosis Scores, respectively.
We determined the correlation between Fibrosis Scores and the published Scleroderma Skin Severity Score (4S) and
between Fibrosis Scores and longitudinal changes in mRSS on a per patient basis.

Results: In the primary cohort (n =6, 26 SSc biopsies), Biopsy Scores significantly correlated with mRSS (R =0.55,

p =0.01). In the secondary cohort (n =60 SSc and 16 controls, 164 biopsies; divided into 70% training and 30% test
sets), the Diagnostic Score was significantly associated with SSc-status (misclassification rate = 1.9% [training], 6.6%
[test]), and the Fibrosis Score significantly correlated with mRSS (R =0.70 [training], 0.55 [test]). The DNN-derived
Fibrosis Score significantly correlated with 4S (R=069, p =3 x 10" ).

Conclusions: DNN analysis of SSc biopsies is an unbiased, quantitative, and reproducible outcome that is
associated with validated SSc outcomes.
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Background

Skin fibrosis is the systemic sclerosis (SSc) clinical hall-
mark. The modified Rodnan skin score (mRSS) is a vali-
dated, semi-quantitative measure of skin fibrosis [1].
Although the most commonly used primary outcome in
SSc clinical studies, the mRSS is limited by the need for
specialized training to decrease intra- and inter-rater
variability [2], the coarseness of the measure, and con-
founding by obesity and edema. Much research has fo-
cused on direct or indirect methods for SSc
dermatopathology quantification, including plicometry
[3, 4], durometry [5], and high frequency ultrasound [6].
Histopathological assessment of fibrosis using dermal
thickness measurements [7] and quantification of «-
smooth muscle actin [8] have also been explored. Finally,
molecular surrogates of SSc skin disease, such as gene
expression and serum proteomic signatures, have also
been proposed [9, 10]. For example, a serum proteome
signature [10] and the Scleroderma Skin Severity Score
(4S) [11] are both associated with mRSS. The 4S is a
skin gene expression signature that was identified and
validated using publicly available heterogeneous tran-
scriptome data from seven independent cohorts of pa-
tients with SSc from six clinical centers. We
demonstrated that 4S is positively correlated with mRSS
in each of the seven cohorts and that 4S change in the
first year is associated with mRSS change in the second
year [11]. However, all of these approaches are limited
by the need to measure ‘omics’ data, which are expensive
and not readily available, or are labor-intensive assays re-
quiring human-expert review. To date, none of these ap-
proaches have supplanted the mRSS. The development
and validation of a quantitative, reproducible, and scal-
able method to predict SSc disease severity is a large,
unmet need.

Computer vision holds the promise to radically aug-
ment our current pathology practices using scalable and
objective algorithms to assess tissue properties that cur-
rently require a highly trained human expert. A recent
advance in computer vision is the development of deep
neural networks (DNNs), which are algorithms for image
quantification and classification. DNNs have revolution-
ized computer vision, achieving human-level perform-
ance at image recognition while reducing analytic times
and standardizing interpretation. In dermatological con-
ditions including psoriasis and skin cancer, DNNs have
recently shown expert-level pattern recognition from
macroscopic and microscopic images of affected skin
[12-14]. However, one major barrier to developing
DNNs is the large number, typically millions, of training
examples required to train the network, which itself has
millions of parameters [15]. For problems with many
fewer training examples, including rare diseases like SSc,
training a DNN de novo is not feasible [16]. To
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overcome this limitation, the machine learning commu-
nity has developed a procedure called transfer learning
whereby researchers use a pre-trained DNN algorithm
as a pre-processing pipeline before applying a machine
learning strategy that robustly classifies variables on
smaller sample sizes. In this study, we used the publicly
available AlexNet DNN to pre-process SSc skin biopsy
images before applying multivariate statistical analyses
to establish that histological features from stained der-
mal biopsy sections from patients with SSc and healthy
control participants can precisely quantify SSc dermal
histological variation.

A DNN image analysis produces a high-dimensional
numerical signature of Quantitative Image Features
(QIFs) that quantify image properties, from simple prop-
erties, such as high contrast edges between stained re-
gions, to complex properties, such as extended textural
patterns (Fig. 1). These QIFs, while abstract mathemat-
ical properties of an image, are a powerful tool for ana-
lyzing natural and biomedical images [12, 13, 15]. For
example, DNNs perform on par with dermatopathologist
review of stained skin lesion sections for diagnosis of
nodular basal cell carcinomas, dermal nevi, and sebor-
rheic keratoses [14]. In this study, we applied DNN algo-
rithms to stained sections of skin biopsies from patients
with SSc and from healthy participants [17, 18]. Our
goal was to test the hypothesis that DNN algorithms are
sensitive to histological variation in skin biopsies and to
assess the association with markers of SSc disease sever-
ity including the mRSS and two SSc gene expression
biomarkers: the SSc four-gene biomarker [9] and the 4S
gene expression biomarker [11]. The results herein dem-
onstrate that computer vision applied to stained SSc bi-
opsy sections may be a novel, quantitative, robust, and
scalable SSc outcome.

Patients and methods

Participant recruitment and inclusion criteria

Research partners provided written informed consent in
accordance with the Declaration of Helsinki Protocols
and Northwestern University Institutional Review Board
guidelines (STU00004428). Patients fulfilled the 2013
American College of Rheumatology SSc criteria [19].
Medical histories, physical exams, and biopsies were
completed at clinical visits. SSc disease duration was de-
fined as the interval between the first non-Raynaud
symptom attributed to SSc and the time of the baseline
skin biopsy. Early SSc was defined as <24-month SSc
disease duration. Serum anti-topoisomerase I, anti-
centromere, and anti-RNA polymerase III antibody titers
were measured by indirect immunofluorescence at Spe-
cialty Laboratories, Valencia, CA. Healthy control partic-
ipants were recruited from the Northwestern University
clinical and research communities to match the age
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Fig. 1 Deep neural network (DNN) processing of trichrome-stained skin sections. A) Trichrome-stained skin biopsy sections from patients with SSc
and healthy controls were photomicrographed at 40x resolution. To sample variability in tissue structure, we randomly selected 100 image
patches from the dermis (red box) corresponding to ~0.16 mmZ. B) Each image patch was used as input to the AlexNet DNN. AlexNet maps the
raw pixel values of the input image to a series of more complex image features. The final output is a 4096-dimensional signature of abstract
Quantitative Image Features that were used for subsequent multivariate statistical analyses. C) Principal components analysis and multivariate
analyses using QIF as the predictor variables were conducted in order to develop, D) a Biopsy Score, E) a Diagnostic Score, F) a Fibrosis Score that

was compared to mRSS and skin gene expression biomarkers

(within 10 years), race and sex of an SSc patient as previ-
ously described [11, 17, 18].

Clinical assessment, dermal punch biopsies and
histopathological analysis

One rheumatologist performed mRSS assessments and
paired 4mm dermal, punch biopsies of the non-
dominant dorsal forearm. Biopsies were repeated at 6-,
12-, 24-, and 36-months proximal to preceding biopsies.
One biopsy was fixed and embedded in paraffin, and a
4-pum section was stained with Masson’s trichrome and
photomicrographed using a Leica SCN400 slide scanner
(Wetzlar, Germany) at 40x magnification. Masson’s Tri-
chrome was used because it is a standard connective tis-
sue stain that highlights collagen structure. The other

paired biopsy was placed in RNAlater and used for skin
gene expression analyses as previously described [17].

Deep neural network feature extraction

Leica™ SCN format images of stained sections were con-
verted into PNG files and transformed into QIFs using
AlexNet in the Matlab Neural Network Toolbox [15]
(Fig. 1a, b). DNNSs are a sequence of mathematical trans-
formations organized in layers; the outputs of each layer
are the inputs of the subsequent layer (Fig. 1b and Sup-
plementary Methods). The lowest layers capture primi-
tive image properties, such as intensity and color
contrasts, while progressively higher levels capture more
complex properties such as patterns and textures. Be-
cause AlexNet was originally trained to classify “natural”
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images (e.g., animals and humanmade objects), the high-
est layers are specialized to those classes. However, the
intermediate layers contain QIFs that are not highly spe-
cialized, and therefore can be used for other computer
vision tasks in a process called transfer learning [16].
QIFs were extracted from the intermediate ‘fully con-
nected layer 6’ from AlexNet, which outputs 4096 QIFs.
We recently showed that these 4096 features work well
for transfer learning in histopathological studies of kid-
ney disease [20]. AlexNet has a fixed input size of 227 x
227 pixels (~0.16 mm?), thus randomly sampled 227 x
227-pixel image patches from the dermis of each section
were transformed into QIFs. Each QIF in the dataset
was normalized to have a mean of zero and a standard
deviation of one.

Principal component analysis for dimension reduction in
primary cohort

Because of the high dimensionality of QIF signatures,
principal components analysis (PCA) was used to reduce
the 4096 QIFs into a single summary score, termed Image
Patch Score, in arbitrary units (AU) (Table 1) [21]. The
Image Patch Score is a weighted combination of all 4096
QIFs that captures the most variation across the 2600
image patches [21]. Image patches with more distant
scores are more dislike each other across all QIFs, and
therefore more dislike each other histologically. One-way
analysis of variance was used to assess the variance of
Image Patch Scores using Matlab. In order to generate one
summary score for each biopsy, we calculated the mean of
the 100 Image Patch Scores, termed the Biopsy Score (AU)
(Table 1). We assessed the Spearman correlation, cor-
rected for repeated measures, between the biopsy score
and the mRSS using the R package “rmcorr”.

Table 1 Description of Analyses and Terms
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Logistic regression model to classify SSc vs. normal
biopsies

In order to determine whether DNN analyses can “see” SSc
skin disease, we built and validated an SSc diagnostic
model. Using QIFs as predictor variables, we trained a logis-
tic regression model to distinguish between SSc and healthy
skin. We divided a secondary cohort into training (70% pa-
tients) and test (30% patients) sets and stratified by disease
status and high (> 20) and low (<20) mRSS to ensure that:
1) neither set had a disproportionate number of low mRSS
cases that could be difficult to distinguish from normal, and
2) the regression model for mRSS (next section) had both
high and low mRSS cases for training. In order to eliminate
within-subject bias, all biopsies from one patient went into
either the training or test set. Because of the large QIF
number, we fit the logistic regression model using ridge re-
gression, which is a standard method for preventing model
over-fitting by penalizing overly complex models [22]. Ridge
regression required setting a hyperparameter, lambda, that
mediates the strength of the penalty (i.e. how strongly the
penalty trades off between fitting the training data and
keeping the model coefficients small). We set lambda
through ten-fold cross-validation (10-FCV) on the training
data set. Briefly, 10-FCV splits the training data into ten
equal parts and fits the model ten times, each time holding
out one part for testing. The generalization performance of
the model is measured by its ability to predict the correct
class labels for the held-out 10% of the data. To eliminate
within-subject and within-class bias, the 10-FCV parts were
stratified by subject and disease status. Because there were
many more SSc subjects than healthy controls, we weighted
the data points so that each class had equal weight, which is
standard for unequal group sizes [23]. We selected lambda
from a grid of 16 values logarithmically spaced between
107> (weak penalty) and 10® (strong penalty). For every

Term Analysis tool

Purpose

Image Patch Score

Principal Component Analysis
was applied to the 4096

To quantitatively summarize
the variance in SSc biopsy histology

Quantitative Image Features
(QIF) generated by the deep

neural network (DNN)

algorithm for each of the
100 image patches/biopsy

Biopsy Score

section

Diagnostic Score Logistic regression

Fibrosis Score Linear regression

The mean of the 100 Image
Patch Scores for each biopsy

Used as a discovery tool to assess

the utility of applying DNN algorithms
to stained SSc biopsies. Defining the
Biopsy score as the mean of the 100
Image Patch Scores enabled generation
of one quantitative histologic score for
each biopsy section

To identify QIF that are associated with
SSc versus health control biopsy

To identify QIF that are associated
with mRSS
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choice of lambda and every image patch, the logistic regres-
sion model generates a linear score that is mapped to a
probability that the image patch comes from a patient with
SSc as follows:

4096

Y =pB,+ Zﬁin
1

Prob (SSC) = 1_’_7),,
e

where X; is the it QIF, B is the regression coefficient,
and Y is mapped to probability by the logistic function.
In order to integrate from image patches to the full
biopsy, we averaged the linear scores over all image
patches within a biopsy before mapping with the lo-
gistic function to obtain a lambda-dependent Diagnos-
tic Score (Table 1). We selected lambda based on the
value whose Diagnostic Scores generalized the best at
discriminating between SSc patients and healthy con-
trols most strongly by a two-sample t-statistic. Any
sample with Diagnostic Score > 0.5, i.e. more probably
SSc than control, was classified as SSc by the model.
All Diagnostic Scores were calculated using a cross-
validation model that did not contain that sample (i.e.
using out-of-bag data). To test the diagnostic model,
the coefficients of the logistic regression models for
the optimal lambda were averaged over all ten folds
of the training data (model averaging) and used to
generate Diagnostic Scores for the 30% held-out test
set. Misclassification rates were defined as the num-
ber of incorrect predictions divided by the total num-
ber of predictions. Receiver operating characteristic
(ROC) curves were computed to determine the qual-
ity of the binary classification model. Briefly, ROC
curves compute the true positive rate (TPR) and false
positive rate (FPR) as a function of changing the clas-
sification threshold from Diagnostic Score =1, where
the model is 100% confident the biopsy is from a pa-
tient with SSc, to Diagnostic Score =0, where the
model is 0% confident the biopsy is not SSc (i.e.,
100% confident the biopsy is from a healthy individ-
ual). The area under the ROC curve (AUC) is a
measure of how well separated the groups are, where
AUC =1 means that at some Diagnostic Score thresh-
old the classes are perfectly separated, while AUC =
0.5 means that the model is no better than random
guessing. Note that it is possible to have AUC = 1, but
also non-zero misclassification rate at a fixed thresh-
old; For example, it is possible that the classes are
separated perfectly at a Diagnostic Score of 0.6, but
not at a fixed a priori Diagnostic Score of 0.5. All
model fitting and ROC analysis were performed using
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custom scripts and the Matlab functions ‘fitclinear’
and ‘perfcurve’.

Linear regression model and association with mRSS and
local skin score

To build and validate a regression model to predict fi-
brosis, we proceeded identically as above, except that we
used a linear vs. logistic regression model. Briefly, we
used the same training, test, and cross-validation parti-
tions, data weights, and lambda values as above with
ridge-penalized linear regression to predict mRSS using
image patch-level QIFs. For each image patch and value
of lambda, the linear model predicts a value for mRSS as
a linear combination of the QIF levels plus an intercept
that captures the mean mRSS of the study cohort. To in-
tegrate from image patches to biopsies, we averaged the
predicted scores for every image patch within a biopsy
to obtain a final Fibrosis Score (Table 1). Because of the
averaging and the ridge penalty, the predicted range
mRSS was compressed relative to the measured values,
which is well known to occur with ridge regression.
However, because we ultimately seek an independent
score for fibrosis, the total scale is arbitrary. Thus, we se-
lected lambda as the value within the training set that
achieved the highest Pearson correlation between the
predicted Fibrosis Scores and the true mRSS. All Fibrosis
Scores were calculated using a cross-validation model
that did not contain that sample (i.e. using out-of-bag
data). To test the fibrosis model on completely inde-
pendent data, the coefficients of the linear regression
models for the optimal lambda were averaged over all
ten folds of the training data and used to generate Fibro-
sis Scores for the 30% held out test set. The Pearson cor-
relation between the test Fibrosis Scores and mRSS was
calculated to assess the generalization performance of
the model. Because the mRSS scores were not normally
distributed, we also computed the Spearman correlations
between Fibrosis Scores and mRSS as a secondary meas-
ure of association. We also tested the correlation be-
tween Fibrosis Scores and the local skin score at the site
of the biopsy. To avoid circularity, we computed this
correlation using the 30% held out test data set, which
was not used to train the Fibrosis score. All model fitting
was performed in Matlab using custom scripts and the
Matlab function ‘fitrlinear’.

Association with gene expression correlates of skin
disease severity

We compared Fibrosis Score to two gene expression sig-
natures that have been shown to correlate well with the
mRSS in previous studies: the Scleroderma Skin Severity
Score (4S) [11] and the SSc four gene biomarker [9]. To
compute 4S for a skin biopsy, we mapped microarray
probe intensities to genes. Sample probe intensities were
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quantile normalized. Genes with multiple probe map-
pings were then assigned the intensity of the mean of
their respective probe intensities. The mean of underex-
pressed 4S-signature genes was subtracted from the
mean of overexpressed 4S-signature genes to generate
4S for each biopsy [11]. The final set of raw scores for
each biopsy were scaled to a mean of zero and standard
deviation of one. The correlation between 4S and the Fi-
brosis Score for each biopsy was determined. As de-
scribed, all Fibrosis Scores were either the out-of-bag
scores from cross-validation (training biopsies) or the
score from the final averaged model (test biopsies).

To compare Fibrosis Scores to the four SSc biomarker
genes [9], we extracted all microarray probes that matched
the genes COMP, THBS1, IFI44, and SIGLECI. Four probes
for COMP, THBSI, and IFI44 were included in our expres-
sion data set. We then computed the Pearson correlation
between Fibrosis Scores and the expression of these probes.

Longitudinal analyses of skin biopsies

In order to explore whether the Fibrosis Score was sensi-
tive to change within a patient, we fit a linear mixed ef-
fects (LME) model predicting mRSS as a function of
Fibrosis Score. This analysis accounted for between-
subject differences in average Fibrosis Score (modeled as a
random intercept), so a significant association of Fibrosis
score to mRSS in this model indicates that within-subject
variation in mRSS is correlated with within-subject
changes in Fibrosis Score. To avoid circularity, we fit this
model only on the 30% held-out testing data, which were
not used to develop the Fibrosis Score. Model fitting was
performed in Matlab using the function ‘fitlme’.

Results
We applied DNN analyses to two cohorts. The primary
cohort consisted of 26 biopsies from six SSc patients

Table 2 Clinical characteristics of patients with systemic sclerosis
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while the secondary cohort consisted of 148 biopsies
from 60 patients and 16 biopsies from 16 healthy partici-
pants (Table 2). Patients, the majority with early dcSSc,
and healthy controls tended to be Caucasian, middle-
aged women.

Exploratory analysis shows association between DNN-
derived QIFs and mRSS

In an exploratory study, we assessed the association be-
tween QIFs and SSc skin fibrosis using PCA to reduce
data complexity. To visualize the extremes of the fibrosis
distribution, we plotted histograms of the Image Patch
Scores from the patients with the highest and lowest
mRSS values. We observed segregation indicating that fi-
brosis differences can be detected as differences in the
Image Patch Score distributions (Fig. 2b). We performed
one-way ANOVA across all 2600 image patches grouped
by biopsy, and biopsy accounted for 30% of the total
variance in the Image Patch Scores (p <107 '%, one-way
ANOVA). Thus, while there was significant variation in
Image Patch Scores within a biopsy, there were signifi-
cant differences between biopsies in the mean value of
their biopsy scores. Next, we assessed the correlation be-
tween the DNN-derived Biopsy Score (mean of the 100
Image Patch Scores per biopsy) and mRSS (Fig. 2c,
Spearman’s rho =0.55, p =0.010, repeated measures
test). This result demonstrated that DNN-derived QIF
can “see” clinical differences in skin disease extent from
a single punch biopsy.

DNN features contain diagnostic and skin fibrosis severity
information

To extend these results, we studied an independent sec-
ondary cohort of biopsies from 60 patients and 16 healthy
participants (164 biopsies total). Because data-driven Bi-
opsy Scores significantly correlated with mRSS in the

Clinical Characteristic Primary Cohort

Secondary Cohort

Mean + Standard
Deviation or as indicated

SSc patients (n=6)

Age 54+6
Women (n, %) 5 (83%)
Race, Caucasian (n, %) 5 (83%)
SSc disease duration 11+3
(months)*
dcSSc (n, %) 6 (100%)
mRSS (median, IQR) 15 (8)
Serum autoantibodies (n, %)
Anticentromere 0
Anti-RNA polymerase I 3 (50%)
Anti-topoisomerase | (Scl-70) 2 (33%)

SSc patients (n = 60) Healthy controls (n = 16)

5011
52 (87%)
45 (75%)
38+51

42+12
13 (81%)
12 (75%)

42 (70%)
15 (8)

4 (7%)
15 (25%)
19 (31%)

*Months between date of onset of first non-Raynaud systemic sclerosis (SSc) symptom and date of skin biopsy. dcSSc Diffuse cutaneous SSc
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primary cohort, we hypothesized that, in a sufficiently
powered data set, it would be possible to distinguish SSc
from healthy control biopsies and to explicitly predict
mRSS. Because PCA is an exploratory technique rather
than a predictive modeling technique, we adopted a
regression-based approach in the secondary cohort.

To generate and test regression models, we divided the
secondary cohort into a training set (103 biopsies, 70% of
subjects) and a test set (61 biopsies, 30% of subjects). The

training and test sets were stratified by subject (i.e. all bi-
opsies from a single patient were either in the training or
test set). To test whether the DNN could distinguish pa-
tients from controls, we fit a logistic regression model
using the 4096 QIFs from the training set as the independ-
ent variables and the Diagnostic Score (SSc vs. healthy) as
the outcome variable. Using 10-fold cross-validation
within the training set, the model had a misclassification
rate of 1.9% at a Diagnostic Score of 0.5. The model was
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then validated in the test set achieving a misclassification
rate of 6.6% at a Diagnostic Score = 0.5. In both the train-
ing and testing sets, the healthy biopsies had low Diagnos-
tic Scores compared to SSc biopsies demonstrating the
face validity of our model (Fig. 3a). Moreover, ROC curves
for the training and test sets show that the Diagnostic
Scores robustly discriminates between patient and control
biopsies (AUC =1.00 [training], 0.99 [testing]; Fig. 3b).
Note that the perfect AUC but non-zero misclassification
rates in the training set is due to the fact that all Diagnos-
tic Scores for normal skin are below the lowest SSc score,
but some Diagnostic Scores for normal skin are higher
than the fixed 0.5 cutoff (see also Patients and Methods).
These data establish proof-of-principle that SSc skin can
be discriminated from normal skin using DNN QIFs.

Next, using the training set, we fit a linear regression
model using the 4096 QIFs as independent variables to
predict mRSS (see Methods). Using 10-fold cross-
validation within the training set, we found that the Fi-
brosis Score strongly correlated to mRSS (R=0.70;
Spearman’s rho = 0.65), and this generalized to the test
set (R=0.55, p =5.3x10"% Spearman’s rho =0.64, p =
2.9 x 10" % Fig. 4a). The comparable correlations with
mRSS between training and testing sets indicate that the
fibrosis model is also well calibrated and not overfitted.
The Fibrosis Score also significantly correlated with the
local skin score at the site of the biopsy in the test data
set (R=0.56, p =6.1 x 10™°). These data establish proof-
of-principle that the extent of skin fibrosis can be
assessed using DNN QIFs.

To investigate the utility of the DNN-derived Fibrosis
Score for SSc skin disease quantification, we correlated
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the Fibrosis Score with 4S, a validated skin gene expres-
sion signature of skin disease severity. For 115 biopsies,
we had calculated a 4S score from a previous study [11].
The Fibrosis Score was strongly correlated with 4S (R =
0.69, p=2.9x10""; Fig. 4b), demonstrating that histo-
logical information potentially overlaps underlying mo-
lecular pathological information. The Fibrosis Score was
also significantly correlated with the expression of
COMP (R=0.39,0.22; p=9.2x 10" %), THBSI (R=0.61;
p=25x10""), and IFI44 (R=028; p=0.005), three
genes reported as biomarkers of skin disease severity
(Supp. Fig. 1).

Finally, to investigate whether changes in Fibrosis
Score correlated with changes in mRSS with a patient,
we fit a linear mixed effects model with subject as a ran-
dom effect to account for between-subject variability in
mRSS (Supp. Table 1). Fibrosis Score was significantly
associated with mRSS in this model (p =0.0005), dem-
onstrating that changes in Fibrosis Score correlated with
changes in mRSS within subject.

Discussion

The lack of a robust, reproducible and quantitative
method to accurately assess skin disease severity in pa-
tients with SSc plagues clinical studies. An ideal out-
come should be sensitive to the underlying pathogenic
mechanisms, scalable, and robust, i.e. free of inter-rater
variability and confounding. Herein, we applied estab-
lished DNN computer vision algorithms to a single,
stained dermal biopsy section from patients with SSc
and healthy participants to test the hypothesis that DNN
analysis can precisely quantify SSc dermal histological
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variance. In an exploratory analysis, we generated QIFs
that we used to develop two SSc skin disease metrics,
termed the Image Patch Score (i.e. the first PC for the
DNN-derived 4096 QIFs for each image patch), and the
Biopsy Score (i.e. the mean of the 100 Image Patch
Scores per biopsy). We observed strong correlation be-
tween the Biopsy Score and mRSS suggesting that our
approach had validity and that extension studies were
warranted. Next, in a large independent cohort of pa-
tient and control biopsies, we tested the ability of DNN-
derived scores to identify (Diagnostic Score) and quan-
tify (Fibrosis Score) SSc skin disease, and we correlated
Fibrosis Score with 4S, a validated SSc skin gene expres-
sion biomarker, in order to further test the validity of
our DNN approach. Together, our results demonstrate
that DNN-derived SSc skin disease metrics are a feasible,
quantitative, reproducible and scalable SSc outcome.
One of the key advantages of the computer vision
framework used in this study is the reproducibility and
scalability of automated analysis. In the community set-
ting, mRSS is not routinely measured. In the research
setting, the mRSS continues to be an imprecise measure
with high inter-rater variability even among rheumatolo-
gists [2, 24, 25]. Similar limitations render manual histo-
pathological scoring of SSc dermal fibrosis suboptimal
[5]. With robust scoring using DNNs, the problem of
assessing SSc skin disease can be moved to a fully auto-
mated pipeline that will generate exactly reproducible
results for every image. Moreover, because the pipeline
is purely computational, the analysis is scalable. This lat-
ter point could allow for much wider catchment for SSc
clinical trials. Using a well-validated computer vision
system for scoring SSc skin disease as a primary out-
come measure would allow many more medical centers
to participate in clinical trials. Investigators could per-
form a simple skin punch biopsy and fix biopsies in for-
malin. In particular, it would eliminate the need for
specially trained mRSS scorers at the point-of-care. In-
stead, paraffin-embedded, formalin-fixed tissue could be
pooled from multiple centers for staining and assess-
ment at a single center. In the near term, such a strategy
could be used as a secondary outcome measure in order
to validate the DNN-based approach in clinical trials.
The conclusions that can be drawn from our study are
limited because our study population is enriched for pa-
tients with early dcSSc and therefore does not represent
the full spectrum of SSc (lcSSc vs. dcSSc, early vs. late dis-
ease) or healthy control (differing sex, age and race/ethni-
city) skin. Thus, our diagnostic and fibrosis prediction
models must be interpreted as proof-of-concept that
DNNs can extract clinically relevant information from
histological images. The development and deployment of
a classification or histological scoring model in a clinical
setting will require external independent validation data
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sets to account for differences in patient demographics
and skin biopsy collection, processing, and staining
methods that exist at different sites, as these could influ-
ence DNN-derived QIFs. While we were unable to evalu-
ate the effects of these potential confounders in the
present study, this single-site study provides evidence that
these technical issues can be surmounted with sufficient
pooling of data from multiple sites, for example as an ad-
junct analysis for large clinical trials. A second limitation
is that, although our study cohort includes longitudinal bi-
opsies from the same patient, and we stratified by subject
in the training and testing sets to avoid within-subject
bias, we were not powered to fit a longitudinal model. In
fact, we only averaged 3.3 biopsies per SSc research par-
ticipant at the time of this analysis due to staggered re-
cruitment, patient deaths, loss to follow-up and patient
refusal for additional biopsies. However, we do find that
our Fibrosis Score, which was trained in a cross-sectional
model, was associated with mRSS after accounting for
between-subject variability in mean mRSS. This result
provides confidence that a DNN-derived biopsy scores
can be clinically meaningful, although more studies are re-
quires to systematically optimize the prediction model. To
this end, it is important to recognize the sources of vari-
ability between our Fibrosis Scores and mRSS, which, in
principle, include biological variation in the Fibrosis Score
that is not captured by mRSS, technical artifacts in the Fi-
brosis Score that are not biological, within-subject vari-
ation in tissue structure as a function of biopsy site, and
the inherent variability of the mRSS. Addressing these
sources of variation will require a detailed understanding
of the histological features that underlie QIF signatures.
Future studies should predict tissue-level endpoints, such
as the number of myofibroblasts, dermal thickness, biopsy
weight, or infiltrating immune cell numbers in addition to
mRSS, in order to establish a mechanistic understanding
of DNN-dervied QIFs. While beyond the scope of this
proof-of-concept study, work is ongoing to address these
questions.

Despite the above limitations, we stress that our results
show that the pattern of collagen structure in a single punch
biopsy can be used to reliably predict the extent of fibrosis
over the whole body. This suggests that there is subtle vari-
ation at a single site that is predictive of fibrosis at distant
sites. The DNN captures this variation in an unbiased QIF
signature. Thus, our results demonstrate that DNN read-
outs are a useful high-throughput data source, akin to
‘omics’ data, for SSc histopathology. It is increasingly appre-
ciated that there is a need to integrate data from SSc pa-
tients, from molecular measures to clinical outcomes, in
order to more fully capture and quantify SSc disease hetero-
geneity [26, 27]. With DNN analysis of stained biopsy sec-
tions, quantitative histology can be readily incorporated into
system biological analysis of SSc, where it can be integrated
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with ‘omic’ readouts, physiological measures, and laboratory
tests [26, 27]. The results of this study are an important step
towards the development of new SSc skin disease outcome
measures and provide a scalable path to integrating hist-
ology into the systems biological study of SSc.

Conclusions

Unlike the mRSS, computer vision applied to stained
skin biopsy sections from patients with SSc is an un-
biased, quantitative and reproducible SSc outcome for
skin disease assessment.
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