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Abstract

Hybrid genome assembly has emerged as an important technique in bacterial genomics, but cost and labor
requirements limit large-scale application. We present Ultraplexing, a method to improve per-sample sequencing
cost and hands-on time of Nanopore sequencing for hybrid assembly by at least 50% compared to molecular
barcoding while maintaining high assembly quality. Ultraplexing requires the availability of Illumina data and uses
inter-sample genetic variability to assign reads to isolates, which obviates the need for molecular barcoding. Thus,
Ultraplexing can enable significant sequencing and labor cost reductions in large-scale bacterial genome projects.
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Background
Accurate characterization of large numbers of microbial
genomes is becoming increasingly important in micro-
biology. For example, bacterial genome-wide association
studies (bGWAS) rely on the sequencing of large
numbers of samples to correlate genetic variants to phe-
notypes such as antibiotic resistance or virulence [1–3].
Further examples are phylogenetic analyses and quality
assurance in industrial microbiology [4–7].
A variety of sequencing technologies with different

technological trade-offs have emerged for the sequen-
cing of microbial genomes. Short-read sequencing tech-
nologies (such as Illumina [8] have low error rates
(< 0.1%) but provide only limited resolution of complex
and repetitive genomic regions. Examples are the genes
encoding S. aureus protein A (spa) and fibronectin
binding-protein (fnbpA), which play key roles in the
pathogenesis of S. aureus [9] and which cannot be

reliably assembled from short-read data [10]. Long-read
sequencing technologies (Pacific Biosciences [11], Oxford
Nanopore [12]) generate sequencing reads of tens or even
hundreds of kilobases in length, enabling the correct
structural resolution of complex regions; their higher error
rates (5–15%), however, can negatively impact consensus
and small-variant genotyping accuracy [13–15].
Combining short- and long-read data has therefore

emerged as a standard approach for the resolution of bac-
terial genomes [16]. Long-read sequence information can
be used to deconvolute short-read-based assembly graphs
(hybrid de novo assembly [17–20]). Alternatively, de novo
assemblies from long reads [21] can be polished with
short-read data to improve consensus accuracy [22]. By ei-
ther approach, the coverage requirements to arrive at a
high-quality assembly of a microbial genome are typically
modest (50–100× for each data type [23, 24]).
Molecular barcoding approaches enable the cost-

effective sequencing of multiple samples in one run (“mul-
tiplexing”). Molecular barcoding involves the labeling of
each DNA sample with a unique barcode sequence, pool-
ing and joint sequencing of the samples, and determining
the source sample for each sequencing read, based on its
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barcode sequences. Highly efficient, automated implemen-
tations of molecular barcoding exist for the Illumina plat-
form, enabling the sequencing of hundreds of microbial
isolates to sufficient coverage with a single flow cell. Mo-
lecular barcoding approaches for long-read platforms,
however, are less effective. A maximum of 24 samples can
currently be multiplexed on an Oxford Nanopore Min-
ION flow cell using the manufacturer’s kits for “native”
(PCR-free) barcoding. In addition, the preparation of
multiplex libraries requires significant hands-on time
(> 12 h compared to 3 h for a non-multiplexed library)
and comes with significant losses of input material, and
presumably, the pipetting steps reduce attainable read
lengths by shearing. These factors make barcoded
long-read sequencing costly and labor-intensive, and the
availability of a more scalable approach to multiplexed
long-read sequencing would be highly desirable.
Here, we present Ultraplexing, a new method that al-

lows the pooling of multiple samples in long-read se-
quencing without relying on molecular barcodes.
Ultraplexing uses inter-sample genetic variability, as
measured by Illumina sequencing, to assign long reads
to individual isolates (Fig. 1). Specifically, each isolate
genome is represented by its de Bruijn graph, con-
structed from sample-specific short-read data, and each
long read is assigned to the sample de Bruijn graph it is
most compatible with (or randomly in cases of a draw).
A similar approach enables haplotype-aware assembly in
eukaryotic genomes [25].
The intuition behind Ultraplexing is that there will

typically be a high-quality alignment between a read and
the assembly graph of the source genome it emanates
from. Importantly, the assignment of reads completely
contained in genomic regions shared among multiple
samples (e.g., due to mobile genetic elements or inter-
sample genetic homology) may remain ambiguous. This,
however, will typically have no or only a small effect on
the accuracy of the hybrid assembly process, for the af-
fected reads will spell equally valid assembly graph tra-
versals in all compatible samples.
Ultraplexing requires the availability of Illumina data.

It is applicable to studies that either incorporate the gen-
eration of these from the beginning, or it can serve as a
cost-effective method to generate additional long-read
data for samples that have already been short-read se-
quenced. In the following, we demonstrate that Ultra-
plexing can match or even outperform classical
molecular long-read barcoding approaches in terms of
assembly quality while enabling significant reductions in
cost and hands-on time.

Results
We used simulated and real Nanopore and Illumina se-
quencing data to evaluate the performance of Ultraplexing

in the context of bacterial hybrid de novo assembly. In all
experiments, we relied on Unicycler as an established
method for hybrid assembly [17]. We primarily focused
on the quality of the generated assemblies, i.e., structural
accuracy (number of contigs, reference recall, assembly
precision) and consensus accuracy (single nucleotide poly-
morphisms; SNPs), measured against the utilized refer-
ence genomes (in simulations) or barcoding-based
assemblies (for real data). To distinguish between
Ultraplexing-mediated effects and intrinsic assembly com-
plexity for the selected isolates, we reported assembly ac-
curacy for random (in all experiments) and perfect (in
simulations) assignment of long reads. Additionally, we
assessed the proportion of correctly assigned reads. Of
note, all simulation experiments were based on conserva-
tive assumptions (e.g., 5 Gb throughput per long-read flow
cell; see the “Methods” section for further details), and no
mis-assemblies were identified through visual inspection
in any of the Ultraplexing-based sets.

Simulation experiment I: Multi-species Ultraplexing
In a first step, we evaluated Ultraplexing on a sample of
10 different clinically important bacterial species (Add-
itional file 1), covering a wide range of genome sizes
(2.0–6.3Mb), GC contents (32–60%), and between-
species mash [26] distances (0.02–0.20; Additional file 2).
The Ultraplexing algorithm assigned all but 2 of 477,890
simulated long reads to the correct bacterial isolate
(close to 100% classification accuracy, Additional file 12:
Figure S1). Ultraplexing-based assemblies were highly
concordant (Additional file 12: Figure S1 and Add-
itional file 3) with the underlying reference genomes,
achieving near-perfect structural agreement (average ref-
erence recall and assembly precision > 99.999%) and low
divergence (average number of SNPs against the refer-
ence genome, 57). Furthermore, assembly accuracy met-
rics for Ultraplexing and perfect read assignment were
virtually identical (for example, an average of 57 SNPs
for Ultraplexing compared to 56 SNPs for perfect assign-
ment; Additional file 12: Figure S2). To assess how the
performance of multi-species Ultraplexing was affected
when combining more than one strain per species, we
repeated the experiment for 5 clinically important spe-
cies, each represented by 2 strains (Additional file 2)
with mash distance < 0.01 (Additional file 2) [23].
Ultraplexing-based assemblies were virtually identical to
assemblies based on perfect read assignment (for ex-
ample, identical SNP count observed for 6/10 genomes)
and of generally very high quality (Additional file 12:
Figure S3 and Additional file 4), except for two E. coli
genomes; in these, large repeat structures (Add-
itional file 1) led two assembly fragmentation (> 100
contigs) for both Ultraplexing and perfect read
assignment.
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Simulation experiment II: Single-species Ultraplexing with
10–50 isolates
To assess Ultraplexing performance on closely related iso-
lates and with increasing sample numbers, we randomly
selected sets of 10, 20, 30, 40, and 50 genomes from 181

publicly available complete assemblies of the human
pathogen Staphylococcus aureus (Additional file 1). Of
note, as simulated long-read flow cell capacity was held
constant, sets with more genomes contained less long-
read data per isolate. Across experiments, the proportion

Fig. 1 Overview of the Ultraplexing approach. Long reads are generated in simple pooled sequencing runs. The Ultraplexing algorithm
determines the most likely source genome for each long read by carrying out a comparison between the read and the de Bruijn graphs of the
sequenced sample genomes, inferred from short-read data. Hybrid assembly of sample-specific long and short reads enables the recovery of
complete bacterial genomes
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of correctly assigned reads decreased as sample numbers
increased and varied between 35 and 95% (Fig. 2a). To test
whether reduced read assignment accuracies were due to
inter-sample sequence homologies, we computed the
metric Δedit distance for random samples of mis-assigned
reads and found an average Δedit distance of 0.3%, with
more than 50% of mis-assigned reads exhibiting a Δedit
distance of 0 (Fig. 2b). At the read alignment level, the ge-
nomes that the mis-assigned reads were assigned to are
thus indistinguishable or very similar to the true source
genomes. Consistent with this, the generated
Ultraplexing-based assemblies were highly concordant
with the utilized reference genomes (average reference re-
call ≥ 99.96% and assembly precision ≥ 99.99% across sets;
average number of SNPs 46; Fig. 2c–f). Furthermore, as-
sembly accuracy metrics for Ultraplexing and perfect read
assignment were comparable even with increasing number
of bacterial isolates; for example, the average number of
SNPs per genome in the run with 50 bacterial isolates was
59 for Ultraplexing (QV 47) and 32 for perfect read as-
signment (QV 49). Complete results for this experiment
are presented in Additional file 5 and visualized in Fig. 2.
Finally, to evaluate to which extent assembly accuracy was
influenced by genome complexity [23, 27], we repeated
the experiment for 30 S. aureus isolates of class I com-
plexity and for 30 S. aureus isolates of class III genome
complexity (Additional file 1). Individual outliers in the
set of class III genomes notwithstanding (Additional file 12:
Figure S4), overall assembly quality remained high even
for class III genomes (average reference recall, 99.98% for
class compared to 99.86% for class III; average assembly
precision, 100.00% for class I and III; average number of
SNPs, 34 for class I and 77 for class III; Additional file 4).
What is more, the quality of Ultraplexing-based assem-
blies remained comparable to that of assemblies based on
perfect read assignment for class III genomes (for ex-
ample, 77 SNPs on average for Ultraplexing, correspond-
ing to QV 46, compared to 52 SNPs on average for perfect
read assignment, corresponding to QV 47).

Simulation experiment III: Impact of plasmids
In addition to the chromosomal genome, many bacterial
cells harbor plasmids. Plasmids are extrachromosomal
circular strings of DNA that are generally much smaller
than the chromosomal DNA. Plasmids can vary in copy
number within each cell, and they often exhibit complex
and repetitive sequence structures. Since plasmid se-
quences could reduce the performance of the Ultraplex-
ing algorithm, we repeated the previous simulation
experiments with sets of 10–50 S. aureus genomes that
all harbored plasmids (Additional file 1; Additional file 12:
Figure S5). We found that the accuracy of chromosomal
genome assemblies was not affected by the presence of
plasmids. Additionally, the plasmid recovery rate was

comparable to assemblies based on reads assigned to
their true source; complete recovery was achieved in 135
of 150 total isolate genomes with Ultraplexing, and in
137 with perfect read assignments. Identified reasons for
incompletely recovered plasmids included high sequence
homology to other plasmids or the genomic DNA (Add-
itional file 6). Complete results for this experiment are
presented in Additional file 7 and visualized in Add-
itional file 12: Figure S6 (chromosomal genome) and
Additional file 12: Figure S7 (plasmids). Finally, we fur-
ther explored the impact of repeats between the
chromosomal and plasmid genomes on a set of 10 com-
plex (class III) Pseudomonas isolates, 9 of which harbor
chromosome-plasmid repeats ranging from 669 bp to 69
kb in size (Additional file 1; Additional file 12: Figure S8).
Assembly accuracy remained high at slightly reduced
levels (reference recall > 97% and assembly precision >
99% for all 10 genomes), and Ultraplexing- and truth-
based assemblies are almost identical in terms of accur-
acy metrics (identical reference recall for 10/10 isolates
and identical assembly precision for 9/10 at very similar
SNP levels; Additional file 4).

Real-data experiment I: Nanopore-based Ultraplexing of
10 S. aureus clinical samples
To assess the performance of Ultraplexing on real data,
we randomly selected ten bacterial isolates of the species
Staphylococcus aureus from our collection of clinical iso-
lates. To generate a reference genome for each isolate,
we sequenced each sample on an Illumina system, per-
formed barcoded Oxford Nanopore sequencing with the
12-sample barcoding kit (~ 214× coverage per isolate;
mean read length 8.3 kb), and carried out hybrid de novo
assembly. The generated reference genomes consist of
1–3 circular contigs per isolate, representing the
chromosomal genome (~ 2.8Mb in length) and plasmids
(2.3–34.9 kb in length, all circular; BLAST [28] classifica-
tion results are shown in Additional file 8).
To test Ultraplexing on these isolates, we demulti-

plexed the barcoded Nanopore sequencing data with the
Ultraplexing algorithm and carried out hybrid de novo
assembly. The Ultraplexing-based assemblies showed a
high degree of concordance (Fig. 3) with the generated
reference genomes in terms of contig number, assembly
length, genome structure (average reference recall and
assembly precision > 99.9%), and consensus accuracy (4
SNPs per isolate on average and 6 of 10 isolates with no
detected SNPs). In contrast, assemblies based on random
read assignment yielded lower-quality assemblies across
all considered metrics (for example, 136 SNPs per gen-
ome; Fig. 3d). Complete results for all genomes are pre-
sented in Additional file 9 and visualized in Fig. 3.
Summary statistics of the Illumina and Nanopore se-
quencing runs can be found in Additional file 10.
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Fig. 2 (See legend on next page.)
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Read-data experiment II: Nanopore-based Ultraplexing of
48 clinical isolates
To assess the feasibility of applying Ultraplexing to a lar-
ger number of samples, we repeated the previous experi-
ment with 48 samples. As in the previous experiment,
barcoded Nanopore (~ 446× coverage per isolate; aver-
age read length 10.4 kb) and Illumina (~ 44× coverage
per isolate; 2 × 250 bp reads with MiSeq v2 chemistry)
sequencing was carried out to generate reference ge-
nomes for the 48 samples.
For Ultraplexing, long-read sequencing data (~ 87×

coverage per isolate; average read length 11.7 kb) was
generated in a single MinION run by pooling DNA from
the 48 isolates. Reads were demultiplexed with the Ultra-
plexing algorithm, and hybrid de novo assembly was car-
ried out.
The generated assemblies exhibited a plausible profile in

terms of assembly length, and for 29/48 assemblies, the
Ultraplexing-based assembly had the same number of
contigs as the generated reference genomes (Fig. 4). Fur-
ther investigation showed a high degree of concordance
between the Ultraplexing-based assemblies and the refer-
ence genomes both in terms of genome structure (average
reference recall and assembly precision > 99.8%) and the
number of SNPs per genome (126 on average, equivalent
to QV 43). Complete results for the comparison of the 48
Ultraplexing-based assemblies against the reference ge-
nomes are presented in Additional file 9 and visualized in
Fig. 4. Read length and coverage statistics for all sequen-
cing runs can be found in Additional file 10; the read
length distribution of all generated Nanopore sequencing
runs is visualized in Additional file 12: Figure S9.

Discussion
We have presented Ultraplexing, a method that resolves
pooled long-read sequencing data in the context of hy-
brid de novo assembly without the use of barcoding.
Ultraplexing leverages inter-sample genetic variation to
assign pooled long reads to individual isolates and bene-
fits from the fact that Illumina sequencing enables the
reliable characterization of the k-mer spectra of individ-
ual genomes.
Using simulated sequencing data, we demonstrated that

Ultraplexing enables the generation of highly accurate hy-
brid assemblies and reliably detects plasmids, even in data-
sets that contain multiple isolates of the same bacterial
species, complex plasmid-chromosome repeat structures,

or genomes of high complexity. We have also validated the
method on two real Nanopore sequencing datasets and
shown that Ultraplexing-based assemblies are virtually
identical to barcoding-based assemblies when comparing
multiplexed runs with the same number of isolates;
remaining errors in the assemblies based on both Ultra-
plexing and perfect read assignment may represent residual
errors introduced by the hybrid assembly approach. When
using Ultraplexing to increase the number of samples over
the current maximum of PCR-free molecular barcoding
approaches on the Nanopore platform, Ultraplexing-based
assemblies generally maintain high accuracy.
A key advantage of Ultraplexing in comparison to mo-

lecular barcoding is decreased cost and hands-on time.
The number of samples sequenced per flow cell can at
least be doubled, and barcoding reagents are not neces-
sary. Hands-on time was reduced eightfold in our 48-
sample experiment (~ 5 h per flow cell with 10 barcoded
samples compared to 3 h for one Ultraplexing run with
48 samples). Taking into account potential differences in
sample handling operator performance, we conserva-
tively estimate that the hands-on time benefit conferred
by Ultraplexing is at least 50%.
On the other hand, Ultraplexing has a number of limi-

tations. First, Ultraplexing can consume significant com-
putational resources (70 CPU hours and 175 Gb of
memory for the demultiplexing step in the experiment
with 48 samples). Improvements in hands-on time do
therefore not necessarily translate into decreased time-
to-result. Second, Ultraplexing relies on Illumina data
for read assignment and hybrid assembly; systematic
biases in Illumina sequencing, as observed for certain
bacterial genomes with high or low GC content [29],
may affect the accuracy of Ultraplexing. Third, the appli-
cation of Ultraplexing requires high molecular weight
DNA, the extraction of which may be challenging for
certain bacterial species. Fourth, while we have shown
that Ultraplexing is generally robust against the presence
of complex repeat structures, assembly accuracy was
slightly reduced for class III genomes. For these reasons,
the method is best suited to applications in which large
numbers of genomes need to be resolved to very high,
but not perfect, accuracy, and in which turnaround
times on the order of 3–5 days are acceptable. Examples
of this include bacterial genome-wide association studies
and retrospective outbreak sequencing. For other appli-
cations, such as the generation of a small number of

(See figure on previous page.)
Fig. 2 Simulated Ultraplexing runs with 10–50 S. aureus genomes, in comparison to perfect (True) and random (Random) assignment of long
reads. a The proportion of correctly assigned long reads. b The Δedit distance for random samples of falsely classified long reads. c The
distribution of contigs per assembly. d The distribution of assembly lengths. e The distribution of SNPs per assembly. f The distribution of
reference recall. SNPs and reference recall were calculated relative to the utilized reference genomes, and all metrics within the same set of
genomes are based on the same simulated short-read data
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reference-grade assemblies or time-critical diagnostic ap-
plications, conventional barcoding approaches may re-
main preferable.

Although our primary focus was on assembly accuracy,
we also evaluated the accuracy of individual read assign-
ments in the simulation experiments. One important

Fig. 3 Ultraplexing and classical molecular barcoding on a set of ten S. aureus isolates. For different read assignment methods applied to the
same set of Nanopore reads, the distribution of contigs per assembly (a), the distribution of assembly lengths (b), the distribution of SNPs per
assembly (c), and the distribution of reference recall (d) are shown. SNPs and reference recall were calculated relative to assemblies based on
molecular barcoding, and the same Illumina sequencing data were used throughout. Barcoded, reads assigned according to molecular barcodes;
Ultraplexing, reads assigned by the Ultraplexing algorithm; Random, reads assigned randomly
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Fig. 4 Ultraplexing and classical molecular barcoding on a set of 48 S. aureus isolates. a The distribution of contigs per assembly. b The
distribution of assembly lengths. c The distribution of SNPs per assembly. d The distribution of reference recall. SNPs and reference recall are
calculated relative to assemblies based on molecular barcoding, and the same Illumina sequencing data were used throughout. Barcoded,
molecularly barcoded Nanopore data, 5 flow cells with ≤ 10 samples each; Ultraplexing, reads assigned by the Ultraplexing algorithm, 1 flow cell
with 48 samples; Random, reads from the Ultraplexing run, assigned randomly
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factor driving read assignment accuracy was the extent
of genetic variability between the pooled samples. Con-
sistent with this, Ultraplexing achieved near-perfect read
assignment in the first multi-species experiment but
reduced assignment accuracy when species were repre-
sented by more than one strain. We hypothesized that
mis-assignments driven by inter-sample sequence hom-
ology would have a negligible effect on assembly accur-
acy. Consistent with this, assembly accuracy was
relatively insensitive to increasing numbers of mis-
assigned reads in the single-species experiment, and we
could confirm that inter-sample sequence homology
accounts for the majority of mis-assigned reads using
edit distance metrics. Furthermore, assembly accuracy
was significantly reduced for random read assignment,
reflecting higher proportions of falsely assigned reads in
the absence of underlying sequence homologies. In
addition, Ultraplexing may be less well suited for appli-
cations that depend on accurate assignments of individ-
ual reads, such as read-based methylation calling.
Our study has a number of limitations. First, we have

only validated Ultraplexing on a single long-read tech-
nology, Oxford Nanopore. However, based on prior
work demonstrating successful k-mer-based classifica-
tion of eukaryotic PacBio reads [30, 31], we expect that
Ultraplexing could also be applied to PacBio data,
though the shorter subread distribution of the technol-
ogy may negatively impact accuracy [32]. Second, al-
though Ultraplexing was validated on a number of
clinically important bacterial species covering a wide
array of genome sizes and genome complexities, we
cannot exclude the possibility that performance may de-
grade for genome or repeat configurations not included
in the test set. Third, we have not rigorously tested the
technical limits of Ultraplexing, including the maximum
number of isolates and the necessary properties of the
short-read sequencing data. Given that flow cell output
has been increasing steadily, extraction of high molecu-
lar weight DNA for long-read sequencing may plausibly
become the most significant limiting factor. Fourth, in
terms of bioinformatics methods development, Ultra-
plexing relies on simple k-mer statistics instead of
proper graph alignment [33–35], and we have not ex-
plored methods for the optimization of intra-batch gen-
etic diversity in large sequencing projects. These points
could be addressed in future work.

Conclusion
Ultraplexing is a new method for multiplexed long-read
sequencing in the context of hybrid de novo assembly.
Ultraplexing-based assemblies are highly accurate in
terms of genome structure and consensus accuracy and
exhibit quality characteristics comparable to assemblies
based on molecular barcoding. Through increasing the

number of samples per flow cell and simplified library
preparation, Ultraplexing enables significant reductions
of long-read sequencing costs and hands-on time. Thus,
Ultraplexing enables the cost-effective complete reso-
lution of large numbers of bacterial genomes.

Methods
The Ultraplexing read assignment algorithm
Let n denote the number of sequenced bacterial samples.
We assume the availability of high-coverage Illumina se-
quencing data for each of the n individual isolates and
that a pool of high molecular weight DNA, representing
a mixture of the genomes of the n isolates, has been se-
quenced with a long-read sequencing technology like
Oxford Nanopore or Pacific Biosciences. For each sam-
ple, a de Bruijn graph (k = 19) is constructed from the
sample-specific Illumina short-read data and the graph
is cleaned (removal of low-coverage supernodes) with
Cortex [16]. Each long read from the pooled run is
assigned to the sample for which the number of read k-
mers present in the cleaned sample de Bruijn graph is
maximal (or randomly in cases of a draw). We note that
our approach can be understood as a heuristic approach
to read-to-graph alignment. After the long-read assign-
ment process is complete (i.e., after each long read has
been assigned to one of the n isolates), the Cortex graph
is discarded for the subsequent assembly steps. Of note,
the choice of a k is a trade-off between the number of
isolate-specific k-mers at a given k and the expected k-
mer survival rate in the long-read data, calculated as (1
− e)^k, where e is the long-read sequencing error rate.
k = 19 was chosen based on published work [25] on k-
mer-based binning of long reads and based on prelimin-
ary simulation experiments.

Hybrid assembly and assembly evaluation criteria
Unicycler (version 0.4.4) [17] was used for all hybrid as-
sembly experiments in this publication. Unicycler re-
ceives, for each sample, (I) the sample-specific Illumina
reads and (II) the long reads assigned to the sample.
Long reads are assigned according to the Ultraplexing
long-read assignment algorithm, the molecular barcodes,
or the underlying ground truth, depending on the evalu-
ation scenario.
The performance of Ultraplexing was assessed (I) by

assessing the proportion of reads assigned to the correct
sample (in simulations), (II) by comparing the generated
Ultraplexing-based hybrid de novo assemblies to refer-
ence genomes (downloaded from RefSeq for simulations
and based on barcoding-based hybrid assembly for real
data, see below), and (III) by comparing the accuracy of
Ultraplexing-based assemblies to that of assemblies
based on random (all experiments) or perfect (in simula-
tions) assignment of long reads.
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To assess the accuracy of an assembly, we compared
the assembly to the corresponding reference genome. As
baseline characteristics, we considered the total number
of contigs and the combined assembly length. Further-
more, nucmer v3.1 [36] was used to generate an align-
ment between the assembly and the reference genome,
globally filtering identified diagonals with “delta-filter
-1.” We used the filtered diagonals to compute three
quality metrics: “SNPs,” measuring consensus accur-
acy; “reference recall,” the fraction of the reference
covered by the assembly; and “assembly precision,”
the fraction of the assembly covered by the
reference. When reported, QV scores are calculated

as roundð−10� log10ðaverage # SNPs per genome
average reference genome sizeÞÞ (Phred scale).

Of note, assembly precision was close to 100% in all experi-
ments, and we do not separately report on this metric.
For the simulation experiment with plasmids, we sep-

arately evaluated the sets of chromosomal and plasmid
contigs for each assembly. We relied on RefSeq annota-
tions for determining the status (chromosomal or plas-
mid) of each contig in the reference and assigned the
status of each assembly contig according to the status of
its highest-scoring nucmer hit in the reference.

Read assignment accuracy and edit distance
In simulated datasets, we calculated the proportion of
correctly assigned long reads. A read was counted as
correctly assigned if, and only if, it was assigned to the
genome it was simulated from. For mis-assigned reads,
we additionally defined a metric referred to as “Δedit
distance,” using edlib (version 1.2.6) [37]. Let d1 be the
ends-free edit distance between a read and the genome
it was simulated from, and let d2 be the edit distance be-
tween a read and the genome it was assigned to. Δedit
distance is defined as d1–d2, divided by the length of the
read. A negative value indicates a better alignment to
the source genome than to the predicted genome. To as-
sess the distributional properties of Δedit distance, the
metric was calculated for random samples of 100 mis-
assigned reads per method.

Simulation experiments
For the multi-species simulation experiments, chromo-
somal sequences of 10 clinically important species were
downloaded from RefSeq [38]. For the single-species ex-
periments without plasmids, chromosomal sequences of
181 complete S. aureus genomes were downloaded from
RefSeq [38]. For the single-species simulation experi-
ment with plasmids, 169 complete genomes were down-
loaded that contained between 2 and 11 annotated
plasmids. The accessions of all downloaded genomes are
listed in Additional file 1, and the selected genome

subsets are listed in the corresponding results tables
(Additional files 4 and 5).
For each genome, 300Mb of short-read data was sim-

ulated with wgsim (version 0.3.1-r13) [39], using the pa-
rameters base error rate (-e 0.005), length of first read
(-1 150), length of second read (-2 150), outer distance
between the read ends (-d 278), standard deviation (-s
128), mutation rate (-r 0), and fraction of indels (-R 0).
Long-read data were simulated with pbsim (version 1.0.3
)[40], using the parameters prefix of the output (--prefix
[prefix]), coverage (--depth 200), mean read length
(--length-mean 8370), standard deviation of the
read length (--length-sd 6389), maximum read length
(--length-max 61011), minimum read length (--length-
min 230), mean sequencing accuracy (--accuracy-mean
0.88), and model of quality code (--model_qc model_qc_
clr). Mean read length was adjusted to match that of our
first Nanopore sequencing run, and maximum read
length was set to approximately 85% of that observed on
the first run (Additional file 10). For all experiments, we
assumed a constant long-read flow cell capacity of 5 Gb,
and per-isolate coverage was adjusted accordingly (i.e.,
5 Gb total output divided by the number of simulated
isolates). Simulated long-read data were pooled and
demultiplexed with the Ultraplexing algorithm. Hybrid
de novo assembly was carried out, and the generated
assemblies were benchmarked against the utilized refer-
ence genomes.

DNA extraction and long-read sequencing
DNA was extracted from overnight bacterial cultures in
3 ml LB broth. For short-read sequencing, the “DNeasy
UltraClean Microbial” Kit was used according to the
manufacturer’s instruction. One nanogram of DNA per
isolate was used for the library preparation with the
TruePrep DNA Library Prep Kit. Short-read sequencing
was conducted on a MiSeq instrument (Illumina) using
250 bp paired end sequencing using v2 chemistry. DNA
extraction for long-read sequencing was performed with
the MagAttract HMW DNA Kit (QIAGEN). Wide bore
pipette tips were used to avoid shearing. Long-read
sequencing was carried out on a MinION device with
FLO-MIN106 flow cells and the SQK-LSK108 ligation
sequencing kit (real-data experiment I) and SQK-
LSK109 ligation sequencing kit (real-data experiment II).
Of note, SQK-LSK109 involves reduced pipetting, pos-
sibly decreasing shearing. For barcoded long-read se-
quencing, samples were labeled with barcodes using the
Oxford Nanopore ligation sequencing kit (EXP-NBD103
kit for 12 samples per run), and reads were demulti-
plexed with Albacore (version 2.1.3). For Ultraplexing,
DNA from individual samples was pooled based on
equal weight to yield a total of 700 ng of DNA, and
demultiplexing was carried out with the Ultraplexing
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algorithm. Summary statistics of all sequencing runs are
presented in Additional file 10.

Real-data validation experiments
For all experiments with real data, we used hybrid as-
sembly with Unicycler [17] to generate high-quality ref-
erence genomes for all isolates, combining molecularly
barcoded short- and long-read data.
Molecular long-read barcoding was carried out using

the 12-sample barcoding kit (EXP-NBD103) for the first
real-data experiment (1 flow cell) and for the second
real-data experiment (5 flow cells with ≤ 10 samples per
run). Barcoded Illumina sequencing runs were carried
out for all samples in the real-data experiments. All se-
quencing runs are summarized in Additional file 10.
Read mappability was determined with BWA MEM (ver-
sion 0.7.17-r1188) (with standard settings and read map-
ping mode -x ont2d) [41].

Plasmid identification
To check if smaller contigs in barcoded assemblies of the
real-data experiments represented plasmids, we used the
online version of BLAST [28]. All non-chromosomal con-
tigs (assumed to be all contigs but the longest in each as-
sembly) were blasted against the nucleotide (nt) database,
restricted to sequences that correspond to bacteria (taxid:
2), and if the best hit was characterized as plasmid and
had a high identity (≥ 90%) and a low e value (0 or close to
0), we assumed that the contig represented a correctly as-
sembled plasmid (Additional file 8). Three plasmids that
generated hits to human BAC constructs were removed
from the corresponding assemblies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-01974-9.

Additional file 1. Sample summary. Names, accessions and summary
statistics of all utilized reference genomes.

Additional file 2. Mash distances. Relatedness of genomes within each
experiment.

Additional file 3. Main Evaluation Simulation Experiment I. Read
classification and assembly accuracy in a simulation experiment with 10
different human pathogens.

Additional file 4. Evaluation 3 Additional Simulation Experiments. Read
classification and assembly accuracy for 3 additional simulation
experiments (5 species x 2 strains, class I and class III S. aureus, 10
Pseudomonas).

Additional file 5. Main Evaluation Simulation Experiment II. Read
classification and assembly accuracy in a simulation experiment with 10 –
50 S. aureus genomes.

Additional file 6. Incorrectly assembled plasmids (simulations).
Incorrectly assembled or incompletely recovered plasmids in the
simulated sets with 10 – 50 plasmid-containing S. aureus isolates.

Additional file 7. Main Evaluation Simulation Experiment III. Read
classification and assembly accuracy in a simulation experiment with 10 –
50 plasmid-containing S. aureus genomes.

Additional file 8. Putative plasmids (real data). BLAST results for contigs
putatively representing plasmids in two real-data experiments.

Additional file 9. Evaluation of real-data experiments. Assembly accur-
acy and properties of the utilized reference genomes in two real-data
experiments.

Additional file 10. Sequencing data summary. Summary statistics of all
generated read sets (Oxford Nanopore and Illumina).

Additional file 11. Detailed legends for the supplementary tables.

Additional file 12. Supplementary figures.

Additional file 13. Review history.

Acknowledgements
We thank Lisanna Hülse for technical assistance regarding DNA extraction,
library preparation, and Nanopore sequencing. We thank Harald Seifert
(University of Cologne) for providing the bacterial isolates. Computational
support and infrastructure were provided by the “Centre for Information and
Media Technology” (ZIM) at the University of Düsseldorf (Germany). Illumina-
based sequencing was performed by the Biologisch-Medizinisches For-
schungszentrum der Heinrich-Heine-Universität Düsseldorf (BMFZ).

Peer review information
Andrew Cosgrove was the primary editor on this article and managed its
editorial process and peer review in collaboration with the rest of the
editorial team.

Review history
The review history is available as Additional file 13.

Authors’ contributions
AD and AJK contributed to the study concept and design, data
management, data analysis, data interpretation, and manuscript writing. SM
contributed to the data management, data analysis and data interpretation,
and manuscript writing. All authors have read and approved the final draft
submitted.

Authors’ information
Twitter handles: @AlexDilthey (Alexander Dilthey), @Bioinformeyer (Sebastian
A. Meyer), @AchimKaasch (Achim J. Kaasch).

Funding
This work was supported by the Jürgen Manchot Foundation and the
Intramural Research Program of the National Human Genome Research
Institute, National Institutes of Health.

Availability of data and materials
The datasets generated and analyzed during the current study, as well as the
generated reference assemblies, are available under the BioProject accession
number PRJNA528186: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA5281
86 [42].
Assemblies from Ultraplexing-based and random assignment of reads and
the source code of the Ultraplexer are available on OSF: https://doi.org/10.
17605/OSF.IO/4M9VH [43].
The source code of the Ultraplexing algorithm is also available on GitHub:
https://github.com/SebastianMeyer1989/UltraPlexer [44].
The Ultraplexing algorithm is made available under the MIT license and
implemented in C++, Perl, and R. Sequence-to-graph alignment depends on
the Cortex (cortex_var) package version 1.0.5.21 [16].

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Dilthey et al. Genome Biology           (2020) 21:68 Page 11 of 12

https://doi.org/10.1186/s13059-020-01974-9
https://doi.org/10.1186/s13059-020-01974-9
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA528186
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA528186
https://doi.org/10.17605/OSF.IO/4M9VH
https://doi.org/10.17605/OSF.IO/4M9VH
https://github.com/SebastianMeyer1989/UltraPlexer


Author details
1Institute of Medical Microbiology and Hospital Hygiene, University Hospital,
Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. 2Genome
Informatics Section, Computational and Statistical Genomics Branch, National
Human Genome Research Institute, Bethesda, MD 20892, USA. 3Institute of
Medical Microbiology and Hospital Hygiene, University Hospital,
Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.

Received: 19 July 2019 Accepted: 24 February 2020

References
1. Falush D. Bacterial genomics: microbial GWAS coming of age. Nat Microbiol.

2016;1(5):16059.
2. Chen PE, Shapiro BJ. The advent of genome-wide association studies for

bacteria. Curr Opin Microbiol. 2015;25:17–24.
3. Young BC, Earle SG, Soeng S, Sar P, Kumar V, Hor S, et al. Panton-Valentine

leucocidin is the key determinant of Staphylococcus aureus pyomyositis in
a bacterial GWAS. eLife. 2019;8:e42486.

4. Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, et al.
The use of next generation sequencing for improving food safety:
translation into practice. Food Microbiol. 2019;79:96–115.

5. Cocolin L, Mataragas M, Bourdichon F, Doulgeraki A, Pilet M-F, Jagadeesan
B, et al. Next generation microbiological risk assessment meta-omics: the
next need for integration. Int J Food Microbiol. 2018;287:10–7.

6. Diaz-Sanchez S, Hanning I, Pendleton S, D’Souza D. Next-generation
sequencing: the future of molecular genetics in poultry production and
food safety. Poult Sci. 2013;92(2):562–72.

7. Taboada EN, Graham MR, Carriço JA, Van Domselaar G. Food safety in the
age of next generation sequencing, bioinformatics, and open data access.
Front Microbiol. 2017;8:909.

8. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, et al.
Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res.
2011;39(13):e90.

9. Menzies BE. The role of fibronectin binding proteins in the pathogenesis of
Staphylococcus aureus infections. Curr Opin Infect Dis. 2003;16(3):225–9.

10. Bartels MD, Petersen A, Worning P, Nielsen JB, Larner-Svensson H, Johansen
HK, et al. Comparing whole-genome sequencing with sanger sequencing
for spa typing of methicillin-resistant Staphylococcus aureus. J Clin
Microbiol. 2014;52(12):4305–8.

11. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics
Proteomics Bioinformatics. 2015;13(5):278–89.

12. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, et al.
Assessing the performance of the Oxford Nanopore Technologies MinION.
Biomol Detect Quantif. 2015;3:1–8.

13. Krishnakumar R, Sinha A, Bird SW, Jayamohan H, Edwards HS, Schoeniger JS,
et al. Systematic and stochastic influences on the performance of the
MinION nanopore sequencer across a range of nucleotide bias. Sci Rep.
2018;8:3159.

14. Utturkar SM, Klingeman DM, Land ML, Schadt CW, Doktycz MJ, Pelletier DA, et
al. Evaluation and validation of de novo and hybrid assembly techniques to
derive high-quality genome sequences. Bioinformatics. 2014;30(19):2709–16.

15. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore
sequencing and assembly of a human genome with ultra-long reads. Nat
Biotechnol. 2018;36(4):338–45.

16. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat Genet. 2012;
44(2):226–32.

17. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome
assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;
13(6):e1005595.

18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
SPAdes: a new genome assembly algorithm and its applications to single-
cell sequencing. J Comput Biol. 2012;19(5):455–77.

19. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an
algorithm for hybrid assembly of short and long reads. Bioinformatics. 2016;
32(7):1009–15.

20. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9.

21. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and
repeat separation. Genome Res. 2017;27(5):722–36.

22. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon:
an integrated tool for comprehensive microbial variant detection and
genome assembly improvement. PLoS One. 2014;9(11):e112963.

23. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, Mcvey SD, et al.
Reducing assembly complexity of microbial genomes with single-molecule
sequencing. Genome Biol. 2013;14(9):R101.

24. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome
assemblies with multiplex MinION sequencing. Microb Genomics. 2017;
3(10):e000132.

25. Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB, et al. De
novo assembly of haplotype-resolved genomes with trio binning. Nat
Biotechnol. 2018;36(12):1174–82.

26. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et
al. Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biol. 2016;17:132.

27. Schmid M, Frei D, Patrignani A, Schlapbach R, Frey JE, Remus-Emsermann
MNP, et al. Pushing the limits of de novo genome assembly for complex
prokaryotic genomes harboring very long, near identical repeats. Nucleic
Acids Res. 2018;46(17):8953–65.

28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10.

29. Goldstein S, Beka L, Graf J, Klassen JL. Evaluation of strategies for the
assembly of diverse bacterial genomes using MinION long-read sequencing.
BMC Genomics. 2019;20:23.

30. De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND, Swann J, et al.
Comparison of long-read sequencing technologies in the hybrid assembly
of complex bacterial genomes. Microb Genomics. 2019;5(9):e000294.

31. Ip CLC, Loose M, Tyson JR, de Cesare M, Brown BL, Jain M, et al. MinION
Analysis and Reference Consortium: phase 1 data release and analysis.
F1000Research. 2015;4:1075.

32. Hestand MS, Van Houdt J, Cristofoli F, Vermeesch JR. Polymerase specific
error rates and profiles identified by single molecule sequencing. Mutat Res.
2016;784–785:39–45.

33. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al.
Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nat Biotechnol. 2018;36(9):875–9.

34. Rautiainen M, Mäkinen V, Marschall T. Bit-parallel sequence-to-graph
alignment. Bioinforma Oxf Engl. 2019;35(19):3599–607.

35. Jain C, Dilthey A, Misra S, Zhang H, Aluru S. Accelerating sequence
alignment to graphs. bioRxiv. 2019;27:651638.

36. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al.
Versatile and open software for comparing large genomes. Genome Biol.
2004;5(2):R12.

37. Šošić M, Šikić M. Edlib: a C/C ++ library for fast, exact sequence alignment
using edit distance. Bioinformatics. 2017;33(9):1394–5.

38. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a
curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res. 2007;35(suppl_1):D61–5.

39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):
2078–9.

40. Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator—toward accurate
genome assembly. Bioinformatics. 2013;29(1):119–21.

41. Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. ArXiv13033997 Q-Bio. 2013;arXiv:1303.3997.

42. Dilthey A, Meyer SA, Kaasch AJ. Ultraplexing validation: BioProject; 2019.
Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA528186.
[cited 2020 Feb 19].

43. Dilthey A, Meyer SA, Kaasch AJ. Ultraplexing validation: OSF; 2020. Available
from: https://osf.io/4m9vh/, https://doi.org/10.17605/OSF.IO/4M9VH. [cited
2020 Feb 19].

44. Dilthey A, Meyer SA, Kaasch AJ. UltraPlexer: GitHub; 2019. Available from:
https://github.com/SebastianMeyer1989/UltraPlexer. [cited 2020 Feb 19].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Dilthey et al. Genome Biology           (2020) 21:68 Page 12 of 12

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA528186
https://osf.io/4m9vh/
https://doi.org/10.17605/OSF.IO/4M9VH
https://github.com/SebastianMeyer1989/UltraPlexer

	Abstract
	Background
	Results
	Simulation experiment I: Multi-species Ultraplexing
	Simulation experiment II: Single-species Ultraplexing with 10–50 isolates
	Simulation experiment III: Impact of plasmids
	Real-data experiment I: Nanopore-based Ultraplexing of 10 S. aureus clinical samples
	Read-data experiment II: Nanopore-based Ultraplexing of 48 clinical isolates

	Discussion
	Conclusion
	Methods
	The Ultraplexing read assignment algorithm
	Hybrid assembly and assembly evaluation criteria
	Read assignment accuracy and edit distance
	Simulation experiments
	DNA extraction and long-read sequencing
	Real-data validation experiments
	Plasmid identification

	Supplementary information
	Acknowledgements
	Peer review information
	Review history
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

