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Multiple sclerosis (MS) is an autoimmune inflammatory demyelin-
ating disease of the central nervous system. Dysregulation of
STAT3, a transcription factor pivotal to various cellular processes
including Th17 cell differentiation, has been implicated in MS. Here,
we report that STAT3 is activated in infiltrating monocytic cells near
active MS lesions and that activation of STAT3 in myeloid cells is
essential for leukocyte infiltration, neuroinflammation, and demy-
elination in experimental autoimmune encephalomyelitis (EAE).
Genetic disruption of Stat3 in peripheral myeloid lineage cells abro-
gated EAE, which was associated with decreased antigen-specific T
helper cell responses. Myeloid cells from immunized Stat3 mutant
mice exhibited impaired antigen-presenting functions and were in-
effective in driving encephalitogenic T cell differentiation. Single-cell
transcriptome analyses of myeloid lineage cells from preclinical
wild-type and mutant mice revealed that loss of myeloid STAT3
signaling disrupted antigen-dependent cross-activation of myeloid
cells and T helper cells. This study identifies a previously unrecog-
nized requisite for myeloid cell STAT3 in the activation of myelin-
reactive T cells and suggests myeloid STAT3 as a potential therapeu-
tic target for autoimmune demyelinating disease.
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Functional interactions between the innate and adaptive im-
mune system are pivotal in host defense and must be tightly

regulated. In multiple sclerosis (MS), an inflammatory demyelin-
ating disease of the central nervous system (CNS), the involve-
ment of autoreactive T cells in disease pathogenesis is widely
recognized (1). Monocytes and macrophages from the innate
immune compartment also contribute to neuroinflammation and
myelin destruction (2–4). Large-scale genetic studies support both
adaptive and innate immune functions in MS pathogenesis (5). In
fact, activated macrophages/microglia express antigen-presenting
major histocompatibility complex (MHC) class II (6) and are the
main inflammatory cells in active MS lesions that often out-
number lymphocytes (7). Variations at the MHC class II locus
are the strongest genetic factor for increased MS susceptibility (8).
Moreover, peripheral blood mononuclear cells from relapsing
remitting MS patients express higher levels of genes involved
in antigen processing and inflammation during relapses (9);
and genes associated with innate immune cell activation appear
overrepresented in progressive MS (10). Although it remains
unclear how autoreactive T cells that recognize CNS antigens
are activated, myeloid cells likely contribute to MS pathology
through their antigen-presenting and innate immune functions.
Experimental autoimmune encephalomyelitis (EAE) is an

experimental model that features activation of myelin-reactive
lymphocytes and infiltration of immune cells leading to men-
ingitis, inflammatory demyelination, and axonal damage in the
CNS, key pathological components of MS, and is thus com-
monly used to model autoimmune demyelination aspects of MS.
In EAE, monocytic cells represent a prominent component of

neuroinflammatory infiltrates and have been shown to be crucial
for facilitating T cell polarization, immune cell invasion, and dis-
ease pathogenesis (11–16). As EAE is largely driven by autoreactive
T helper (Th) cells, myeloid cells are necessary for EAE due
to both their role in differentiating T cells into Th1 and Th17
subsets in the peripheral lymphatic organs and their ability to
reactivate them within the CNS. Interactions between autoreactive
T cells and antigen-presenting cells (APCs) perpetuate local CNS
autoimmune reactions and drive disease progression (17). Fur-
thermore, APCs directly interact with effector T cells during EAE
in leptomeninges and nascent CNS lesions (18, 19). As such, it is
perhaps not surprising that increases in circulating inflammatory
monocytes correlate with relapses (20). However, intracellular
mechanisms that drive myeloid cell activation of T cells during
CNS autoimmunity remain incompletely understood.
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Signal transducer and activator of transcription 3 (STAT3), a
member of the Janus kinase (JAK)/STAT family of tyrosine
kinases, transduces extracellular signals from cytokines such as
interleukin (IL)-6 and IL-10 and regulates an array of genes
critical for immune responses and cell differentiation (21).
Genome-wide association studies identified Stat3 as a potential
MS susceptibility locus (22–25); however, the exact role of
STAT3 in MS pathogenesis is not clear. Elevated levels of
phosphorylated STAT3 have been found in circulating T cells
and monocytes from MS patients and correlate with disease
progression (26–28). Phosphorylated STAT3 was also observed
in macrophages/microglia and astrocytes in the white matter
adjacent to active MS lesions (29). Mice with selective deletion
of the Stat3 gene in CD4+ T cells did not develop EAE due to
impaired induction of encephalitogenic Th17 cells (30). Systemic
blockade of JAK/STAT pathways suppressed Th1/Th17 differen-
tiation, myeloid cell activation, and leukocyte infiltration during
EAE (31). Conversely, STAT3 appears to have a nonredundant
role in IL-10–mediated antiinflammatory responses in monocytes/
macrophages as Il10 deficiency results in exacerbated EAE (32).
Therefore, loss of Stat3 in myeloid cells may aggravate inflam-
mation and autoimmune diseases. On the other hand, STAT3
mediates IL-6 signaling, and Il6-null mice are resistant to EAE
due to deficiency of effector T cell development (33–35). In-
terestingly, myeloid cell-specific ablation of Socs3, a negative
regulator of STAT3, results in excessive Th1/17 responses and
exacerbated demyelination of the cerebellum (36), underscoring
a potential pathogenic role for STAT3 overactivation in myeloid
cells in neuroinflammation.
To determine the in vivo function of myeloid STAT3 signaling

in CNS autoimmune diseases, we generated myeloid cell-restricted
Stat3 mutant mice and subjected them to MOG35–55-induced
EAE. Here, we provide in vivo evidence that activation of STAT3
in peripheral myeloid cells is required for EAE development in
large part through cross-talk with CD4+ T cells and promotion of
Th1/Th17 cell differentiation and activation.

Results
STAT3 Is Activated in Subsets of CD11b+ Cells Adjacent to Active MS
Lesions and in Inflamed Loci in the EAE Animal Model of MS. As the
transcriptional activity of STAT3 is critically dependent on phos-
phorylation of tyrosine 705 (pY705), the levels of phosphorylated
STAT3 (pSTAT3, Y705) and total STAT3 were evaluated by
Western blotting analysis of postmortem brain tissues from MS
patients and control subjects (Fig. 1 A and B and SI Appendix,
Table S1). We found significant increases in both pSTAT3 (∼4.9-
fold) and total STAT3 (∼2.3-fold) in MS tissues compared to
controls (Fig. 1B). Cellular location of pSTAT3 was then de-
termined by double immunolabeling with monoclonal antibodies
that specifically detect STAT3 phosphorylated at Tyr705. While
we did not find a pSTAT3 signal in control cases, we observed
sparse pSTAT3-positive cells near demyelinating lesions in the
white matter (Fig. 1C). Most interestingly, we often observed
distinct pSTAT3 immunoreactivity in CD11b+ monocytes in the
lumen of blood vessels and perivascular regions (Fig. 1D). Simi-
larly, STAT3 immunoreactivity was elevated in macrophages/
microglia clustered around blood vessels (Fig. 1E), a finding
consistent with the vasocentric nature of new lesion formation
that is often seen in MS. These findings demonstrate that not only
total STAT3 expression is increased, it is also activated in subsets
of myeloid cells that are frequently associated with the inflamed
vasculature in active MS, and suggest that myeloid STAT3
activation may be involved in the pathogenesis of new lesion
formation.
Next, we investigated whether STAT3 is activated in the EAE

model of MS as EAE approximates autoimmune activation and
cell trafficking aspects of MS. In contrast to a complete lack of
pSTAT3 immunoreactivity in normal spinal cords (Fig. 2A),

prominent pSTAT3 immunoreactivity was found at the site of
immune cell infiltration in EAE mice (Fig. 2 B–F). Using a visual
method for colocalization, in which colocalization is determined
if a cell or its nucleus exhibits yellow color when the green (cell
markers) and red (pSTAT3) channels are superimposed, we found
that pSTAT3 signal was colocalized to a subset of CD68+ (Fig.
2C), tomato lectin+ (Fig. 2D), and CD11b+ myeloid cells (Fig.
2E). Very few pSTAT3+ cells were GFAP+ astrocytes (Fig. 2B) or
CD4+ T cells (Fig. 2F). This spatial distribution of pSTAT3+ cells
further suggests that STAT3 activation in myeloid cells may con-
tribute to immune cell infiltration and the pathogenesis of EAE.

Selective Ablation of Stat3 in Myeloid Cells Abrogates MOG35–55-
Induced EAE. To investigate the in vivo function of myeloid
STAT3 in autoimmune demyelination, we disrupted Stat3 gene
specifically in myeloid lineage cells. Stat3 gene was floxed at exon
22 encoding the Tyr residue that is essential for STAT3 activation
(37) (Fig. 3A). Truncated STAT3 protein may be expressed but is
not activated due to the lack of Tyr705, resulting in functional
STAT3 inactivation in targeted cells. We confirmed that the tar-
geted sequence of Stat3 gene was indeed deleted upon recombi-
nation as determined by genomic PCR of fluorescence-activated
cell sorting (FACS) isolated CD11b+ splenocytes (Fig. 3B). Flow
cytometry analysis of LysMcre reporter mice (LysMcre:rosa26-
Ai14) further showed high efficacy of cre recombination in pe-
ripheral myeloid cells, such as granulocytes, Ly6Chi and Ly6Clo

monocytes, and dendritic cells, but not CNS microglia (SI Ap-
pendix, Fig. S1C). In addition, IL-6–induced STAT3 phos-
phorylation was markedly abolished in bone marrow-derived
macrophages (BMDMs) from LysMcre:Stat3fl/fl in comparison
to controls (SI Appendix, Fig. S1).
LysMcre:Stat3fl/fl and littermate Stat3fl/fl controls were then

subjected to MOG35–55-induced EAE. In stark contrast to Stat3fl/fl

mice that developed typical EAE symptoms and progression,
LysMcre:Stat3fl/fl mice were resistant (Fig. 3 C and D) and did
not exhibit characteristic weight loss associated with EAE onset
(Fig. 3E). Consistent with the lack of EAE symptoms in the
LysMcre:Stat3fl/fl mice, there was little peripheral immune cell
infiltration (Fig. 3 G and H), microglia activation (Fig. 3 I and J),
and demyelination (Fig. 3F). Although activated CD68+ macro-
phages were present in leptomeninges of the LysMcre:Stat3fl/fl

mice, they were essentially excluded from CNS parenchyma (Fig.
3I). Moreover, LysMcre:Stat3fl/fl mice also had attenuated spinal
production of proinflammatory cytokines (Tnf, Il1β, Ifnγ, and
Gm-csf) and chemokines (Ccl2, Ccl3, and Ccl5) compared to
controls (Fig. 3K). EAE-associated up-regulation of intercellular
adhesion molecule-1 (Icam-1) and loss of activated leukocyte cell
adhesion molecule (Alcam) were also abolished in LysMcre:Stat3fl/fl

mice (SI Appendix, Fig. S2A). Immunohistochemistry confirmed
robust up-regulation of ICAM-1 in immunized Stat3fl/fl mice, par-
ticularly in regions where leukocytes infiltrated, whereas moderate
ICAM-1 immunoreactivity in the mutant mice was largely restricted
to leptomeninges (SI Appendix, Fig. S2). Taken together, these data
demonstrate that disruption of STAT3 signaling in myeloid cells
abrogated EAE development and prevented leukocyte infiltration,
neuroinflammation, and demyelination.

Peripheral Antigen-Specific Th1 Responses Are Reduced in Stat3
Mutant Mice at the Preclinical and Onset Stages of EAE. To deter-
mine if the lack of CNS inflammatory responses in LysMcre:Stat3fl/fl

mice was resulted from impaired development of encephalitogenic
Th1/Th17 cells, we examined the kinetics of antigen-specific T cell
responses over the course of EAE. Mononuclear cells were iso-
lated from secondary lymphatic organs of immunized mice at
different stages of EAE and tested for their responses upon
secondary exposure to MOG35–55 peptide (Fig. 4). During the
preclinical and onset stages of EAE, LysMcre:Stat3fl/fl splenocytes
secreted significantly less interferon (IFN) γ (Fig. 4A) and a
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trend of less IL-17A (Fig. 4B) when compared to littermate
controls. Moreover, antigen-elicited production of the patho-
genic cytokine granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) was significantly suppressed in the mutant mice
compared to littermate controls at the onset of disease (Fig. 4C).
Consistent with these data, the frequency (Fig. 4 D–H) and the
number (SI Appendix, Fig. S4) of IFNγ- and GM-CSF–producing
CD4+ T cells were significantly lower in immunized LysMcre:Stat3fl/fl

mice than that of Stat3fl/fl mice at disease onset. In contrast to
diminished pathogenic T cell responses during the early phase
of EAE, antigen-specific production of IFNγ, GM-CSF, IL-17A,
and many proinflammatory mediators was comparable between
genotypes at later stages (Fig. 4 A–C and SI Appendix, Fig. S3).
Major myeloid and lymphocyte populations in blood and spleens
were also similar between genotypes (SI Appendix, Fig. S5). Col-
lectively, these data show that disruption of STAT3 signaling in
myeloid cells results in decreased pathogenic Th1 responses, pri-
marily at preclinical and early stages of EAE, and that activation of
STAT3 in myeloid cells is required for generating antigen-specific
encephalitogenic CD4+ T helper cells and induction of EAE.

Disruption of STAT3 Signaling in Myeloid Cells Impairs Their Capability
to Differentiate Naive CD4+ T Cells into Th1 and Th17 Ex Vivo. Direct
engagement of naive CD4+ T cells with antigen-presenting cells
and a proper cytokine milieu dictate the differentiation of T cells
into effector cells. To directly test whether Stat3 mutant myeloid
cells are less efficient at differentiating naive CD4+ T cells into
antigen-specific pathogenic T cells, we took an ex vivo cocul-
ture approach (Fig. 5A). We isolated CD11b+ splenocytes from
LysMcre:Stat3fl/fl and littermate Stat3fl/fl mice 9 d after immuniza-
tion with MOG35–55 and cocultured them with CD4+ T cells from
naive 2D2 mice that express a transgenic TCR for MOG35–55 (38)
(Fig. 5A). Positive immunomagnetic selection for CD11b and CD4
yielded highly enriched corresponding populations (SI Appendix,
Fig. S6 A and B), and immunophenotyping analyses revealed no
overt populational differences in isolated CD11b+ cells between
genotypes (SI Appendix, Fig. S6C). However, upon culturing with
naive CD4+ 2D2 T cells in the presence of MOG35–55, the co-
cultures containing Stat3 mutant myeloid cells had a lower per-
centage of CD11b+CD11c+ APCs than that with wild-type (WT)
myeloid cells (SI Appendix, Fig. S6D), and fewer IFNγ- and IL-
17A–producing CD4+ T cells (Fig. 5B). Consistent with decreased

Fig. 1. Increased STAT3 phosphorylation in myeloid cells in MS. (A and B) Western blot and densitometry analysis of brain white matter tissue lysates from
nonneurological controls (n = 6) and MS patients (n = 8) with antibodies against pSTAT3 (Y705) and total STAT3. Data represent mean ± SEM; *P < 0.05; **P <
0.01; ns, not significant. (C) Representative photomicrographs of double-immunostained MS brain tissues showing pSTAT3 (Y705) in subsets of CD11b+ cells in
the white matter lesions. (D) Representative images depicting pSTAT3+ CD11b+ double-positive cells in the lumen of a blood vessel and perivascular space in
the normal appearing white matter from a progressive MS case. Myelin was labeled with Sudan black. (E) Representative images showing spatial distribution
of STAT3 immunoreactivity to CD68+ activated macrophages/microglia around small blood vessels of a chronic progressive MS case. (Scale bars: 50 μm.)
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number of Th1 and Th17 cells in MOG-stimulated mutant mye-
loid cells plus 2D2 T cells, antigen-specific production of IFNγ,
IL-17A, and GM-CSF was also significantly reduced (Fig. 5C).
Many other inflammatory mediators, including TNFα, IL-1β, IL-6,
IL-12, IL-4, IL-18, IL-23, CCL3, and CCL5, were similarly re-
duced in cocultures of 2D2 T cells with mutant myeloid cells (SI
Appendix, Fig. S7A). Furthermore, mutant CD11b+ cells were less
efficient than their wild-type counterpart in promoting Th1 cell
proliferation (SI Appendix, Fig. S8). Together, these data suggest
that myeloid cells from immunized LysMcre:Stat3fl/fl mice are less
efficient in polarizing and activating Th1 and Th17 cells and
eliciting antigen-specific adaptive immune responses.
In the absence of T cells, CD11b+ cells from immunized

LysMcre:Stat3fl/fl mice produced lower levels of TNFα and IL-1β
than that of Stat3fl/fl mice upon lipopolysaccharide (LPS)/IFNγ
activation (Fig. 5D). We also observed decreased production of
IL-17A, CCL3, and CCL5, but not IL-6, IL-12, IL-4, IL-10, IL-18,
IL-23, or IP-10 upon LPS/IFNγ activation (Fig. 5D and SI Ap-
pendix, Fig. S7B). In contrast, CCL2 was significantly higher in
stimulated mutant CD11b+ monocultures (SI Appendix, Fig. S7B).
Interestingly, mutant myeloid cells expressed significantly less
MHC class II than wild-type cells upon stimulation (Fig. 5E and SI
Appendix, Fig. S9). The decreased expression of MHC class II and
costimulatory molecules on mutant myeloid cells may account for
decreased antigen-specific Th1/Th17 responses in cocultures,
which in turn produced less instructive signals, such as GM-CSF to
myeloid cells, resulting in decreased myeloid cell activation and
production of proinflammatory cytokines.
To examine whether inactivation of STAT3 affects individual

myeloid cell types differentially, we stimulated ex vivo CD11b+

cells (Fig. 5A) with LPS and examined TNFα production in in-
dividual cells by intracellular staining and flow cytometry (SI
Appendix, Fig. S10). When compared to wild-type cells, a lower
percentage of mutant Ly6Chi and Ly6Clow monocytes produced
TNFα upon activation, in agreement with above multiplex find-
ings (Fig. 5 and SI Appendix, Fig. S7). Although there was no
difference in TNFα production between mutant and wild-type
neutrophils, we found a significant reduction in MOG-dependent
secretion of myeloperoxidase (MPO) in the Stat3mutant myeloid
cocultures (SI Appendix, Fig. S10B), suggesting that neutrophil
activation may be affected by the loss of STAT3 signaling.

Previous study showed that Stat3-deficient peritoneal macro-
phages exhibit enhanced proinflammatory responses due to loss
of the IL-10/STAT3 antiinflammatory axis (39). Therefore, we
examined BMDMs from naive LysMcre:Stat3fl/fl and littermate
controls. While differentiation and maturation of BMDMs were
comparable between genotypes (SI Appendix, Fig. S11A), upon
stimulation, LysMcre:Stat3fl/fl BMDMs expressed lower levels of
CD40 and CD80, higher MHC class II, and proinflammatory
mediators such as TNFα, IL-1β, IL-6, IL-12, and CCL2 at both
messenger RNA (mRNA) and protein levels than control
BMDMs (SI Appendix, Fig. S11 B–D). In cocultures of BMDM
plus Th1 or Th17 cells, antigen-specific production of IFNγ and
IL-17A was not different between genotypes (SI Appendix, Fig.
S11E). Our results confirmed previous findings that STAT3-
deficient macrophages exhibit enhanced innate immune responses
but, in the meantime, revealed that cultured BMDMs did not
recapitulate immune responses of myeloid cells isolated from
MOG-immunized mice (Fig. 5 and SI Appendix, Fig. S7), which
further underscores the importance of examining STAT3-dependent
immune responses in vivo.

LysMcre:Stat3fl/fl Mice Develop Passive EAE after Adoptive Transfer of
Encephalitogenic T Cells. Our data thus far suggest that impaired
development of myelin-specific Th1 underlies the insensitivity of
Stat3mutant mice to MOG35–55-induced EAE. If this indeed is the
case, LysMcre:Stat3fl/fl mice should be susceptible to passive EAE
mediated by adoptive transfer of encephalitogenic T cells (Fig.
6A). After antigen reactivation, donor cells from draining lymph
nodes of preclinical EAE mice consisted primarily of B cells,
CD8+ T cells, and CD4+ T cells, of which 46.6% were IFNγ-
secreting Th1 and 32.4% were IL-17A–secreting Th17 cells (SI
Appendix, Fig. S12 A and B). In contrast to active EAE, where
only about 5% of LysMcre:Stat3fl/fl mice developed the disease
(Fig. 3), two-thirds of the mutant mice developed passive EAE
after receiving encephalitogenic T cells (Fig. 6), and ones that
developed disease had comparable levels of neuroinflammation as
wild-type controls (Fig. 6 D–F and SI Appendix, Fig. S12C). These
data further support the notion that myeloid STAT3 signaling is
critical to the development of myelin-specific pathogenic T cells.
It is worth noting that, although a majority of LysMcre:Stat3fl/fl

mice developed EAE symptoms upon adoptive transfer of en-
cephalitogenic T cells, their overall clinical scores were lower

Fig. 2. STAT3 is activated in infiltrating myeloid
cells during the peak of EAE. Spinal cord sections
from normal naive mice and EAE mice at 14 d post-
immunization (dpi) (clinical score 2 to 3) were ana-
lyzed by immunofluorescence microscopy. Repre-
sentative images of medial ventral spinal cord areas
are shown. Arrows indicate double-positive cells. (A)
pSTAT3 was not detected in spinal cord sections
from normal mice. (B and C ) Colocalization of
pSTAT3 to a few GFAP+ astrocytes and CD68+ acti-
vated microglia/macrophages during EAE. (Inset)
Higher magnification of double-labeled cells. (D)
Some pSTAT3+ cells were also positive for tomato
lectin (TL) that labels blood vessels and microglia/
macrophages. (E) Colocalization of pSTAT3 to CD11b+

cells. (F) pSTAT3+ cells in the parenchyma rarely were
CD4+. The arrow indicates a pSTAT3+CD4+ T cell found
in the leptomeninges of EAE mice. (Scale bar: 50 μm.)
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than that of Stat3fl/fl mice, which suggests additional mecha-
nisms or cell types affected by loss of myeloid STAT3 signaling.
One possibility is impaired innate functions of mutant macro-
phages and neutrophils (SI Appendix, Fig. S10).

STAT3 Activation in the Peripheral Myeloid Cells, but Not CNS
Microglia, Is Necessary for the Development of Active EAE. Our data
above suggest that STAT3 activation in blood-derived myeloid cells

plays a pathogenic role in the induction of EAE. To address
whether LysMcre:Stat3fl/fl mice become susceptible to MOG-
induced EAE when their peripheral myeloid cells are replenished
with wild-type cells as well as whether CNS microglial STAT3
contributes to EAE pathogenesis, we generated bone-marrow
(BM) chimeric mice (Fig. 7A). Flow cytometry analyses of
splenocytes, blood, and CNS mononuclear cells from chimeric
mice showed high engraftment efficiency of the peripheral
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immune system (85 to 95%) and minimal engraftment in the
CNS (Fig. 7B). Moreover, chimera reconstituted with BM from
LysMcre:RosatdTomato reporter mice confirmed that peripheral
myeloid cells do not engraft into the CNS parenchyma under
normal conditions (Fig. 7C). The few tdTomato+ (tdT+) donor
cells found per tissue section were all associated with meninges or
blood vessels. In contrast, when Cx3cr1gfp/+ transgenic mice, in which
microglia express GFP, were reconstituted with LysMcre:RosatdTomato

BM and later subjected to EAE, massive peripheral donor-derived
tdTomato+ myeloid cells infiltrated into the CNS and were clearly
distinguishable from resident GFP+ microglia (Fig. 7D). These
results show that peripheral infiltrates are the primary driver of
neuroinflammation and that the chimera model is suitable for
investigating central and peripheral immune contributions in
EAE. Stat3fl/fl chimeric mice were then examined for their sus-
ceptibility to MOG-induced EAE. Chimeric mice engrafted with
wild-type BM (i.e., Stat3fl/fl (donor) → Stat3fl/fl (recipient) and
Stat3fl/fl → LysMcre:Stat3fl/fl) developed typical EAE (Fig. 7 E and
F). In contrast, chimeric mice hosting mutant myeloid cells in the
periphery (i.e., LysMcre:Stat3fl/fl → Stat3fl/f and LysMcre:Stat3fl/fl →
LysMcre:Stat3fl/f) failed to develop EAE (Fig. 7 E and F). In line
with clinical scores, the number of CNS infiltrates were indistin-
guishable between wild-type and mutant mice that received wild-
type BM (Fig. 7G andH), suggesting that STAT3 activation in the
peripheral myeloid compartment, but not the CNS compartment,
is critical for the development of EAE.
During our EAE experiments involving bone marrow chimeric

mice, we observed that, although wild-type mice reconstituted
with mutant BM (LysMcre:Stat3fl/fl → Stat3fl/fl) did not develop
EAE (Fig. 7D), they displayed sickness behaviors, appeared
hunched and lethargic, and died at various days after MOG

immunization. These mice, however, did not develop other
symptoms associated with atypical EAE, such as ataxia and
axial rotation. We suspect this may due to enhanced innate
immune responses elicited by immunization as we found that
the serum from LysMcre:Stat3fl/fl mice at the preclinical stage
had higher levels of TNFα compared to littermate controls and
that STAT3-deficient BMDMs had exacerbated immune re-
sponses upon LPS stimulation (SI Appendix, Fig. S11). Of note,
LysMcre:Stat3fl/fl → Stat3fl/fl chimeric mice did not exhibit any
apparent health problems prior to immunization. LysMcre:Stat3fl/fl →
LysMcre:Stat3fl/fl chimeric mice did not exhibit these prob-
lems, probably due to inherent adaptation to myeloid Stat3
inactivation.
To overcome the adverse effects of myeloablation by irradia-

tion and to determine the contribution of microglial STAT3, we
generated tamoxifen-inducible microglia-specific Stat3 mutant
mice. The efficiency of Cx3cr1-driven recombination in microglia
(40) was first established with reporter mice (Fig. 8 A–C). Al-
though recombination occurred in peripheral CX3CR1-express-
ing cells (Fig. 8C), 4 wk after tamoxifen pulse treatment, the
short-lived blood-born Cx3cr1-expressing cells were replaced by
unrearranged bone marrow progeny whereas Cre-recombined
microglia persisted (>96%), resulting in specific gene targeting
in long-lived microglial cells (Fig. 8C). When active EAE was
induced in Stat3fl/fl and Cx3cr1CreERT:Stat3fl/fl mice 4 wk after
tamoxifen treatment, EAE clinical scores (Fig. 8 D and E) and
CNS cytokine transcripts (Fig. 8F) were not significantly differ-
ent between genotypes. Thus, our collective data demonstrate
that microglia STAT3 signaling does not play a major role in
EAE development and progression.
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Single-Cell Gene Profiling of Peripheral Myeloid Cells from Preclinical
EAE Mice Revealed STAT3 Dependency during Cross-Activation of
Myeloid Cells and Autoreactive T Cells. We have shown that pe-
ripheral myeloid cells play a critical role in antigen presentation
and secretion of instructive cytokines for Th cell priming and
differentiation in the EAE model of MS. In attempts to identify
potential myeloid cell subsets and molecular networks that are
regulated by STAT3 in an antigen-specific manner, we conducted
single-cell RNA-seq (scRNA-seq) experiments on sorted CD11b+

myeloid cells from Stat3 mutant and littermate controls on day 9
post-MOG immunization (Fig. 9A). While a fraction of CD11b+

myeloid cells underwent scRNA-seq, the remaining CD11b+ cells
were cocultured with naive 2D2 T cells in the presence or absence
of the antigen, followed by FACS isolation and scRNA-seq (Fig.
9A). Two independent experiments representing six mice per
genotypes generated a dataset from a total of 446 myeloid cells, of
which 1,229 filtered genes were identified (Dataset S1). Unsu-
pervised hierarchical clustering of the top 100 variably expressed
genes revealed that myeloid cells organized into their respective
groups and that the most variance was attributable to differences
between mutant and wild-type myeloid cells that were cocultured
with T cells in the presence of antigen: namely, MKO/T+MOG vs.
MWT/T+MOG (Fig. 9B). In contrast, CD11b+ cells freshly iso-
lated from the spleens of mutant and wild-type mice exhibited
similar gene profiles (MKO ctrl vs. MWT ctrl) (Fig. 9B), suggesting
that peripheral myeloid cell development and phenotypes were
similar between wild-type and Stat3 mutant mice at the preclinical
phase of EAE. A t-distributed stochastic neighbor embedding
(tSNE) plot further demonstrated a close spatial relationship be-
tween clusters of mutant and wild-type myeloid cells (MKO ctrl vs.
MWT ctrl) (Fig. 9C). Interestingly, in the presence of antigen and
2D2 T cells, the transcriptomic profile of Stat3 mutant myeloid
cells started to diverge substantially from that of wild-type cells on

the pseudotime single-cell trajectory plot (Fig. 9D). These data
reveal a requirement for a STAT3-dependent myeloid cell pop-
ulation(s) in intercellular communications that results in cross-
activation of myeloid cells and antigen-specific T effector cells.
Among the top variance genes (Fig. 9B), the cluster of genes

that were most highly expressed in the MKO/T+MOG group
versus others were a number of ribosomal proteins and regula-
tory genes related to transcription, RNA transport, and mRNA
translation (e.g., Rps19, Rps23, Rps14, Rplp2, Rpl7, Eef1a1, and
Uba52). The clusters of transcripts that were highly expressed in
myeloid cells from the MWT/T+MOG group but collapsed in
Stat3 mutant myeloid cells included genes involved in innate
immune responses, antigen-presentation and processing, cytokine
signaling, and inflammatory responses (e.g., Tyrobp, Cyba, Camp,
Prdx5, Fpr1, Lyz2, Ly6c, B2m, Alox5ap, Ifitm6, Ccl3, and Lst1). The
distribution of expression levels of several top variance transcripts
in individual myeloid cells across experimental groups was visu-
alized with violin plots (Fig. 9E). Of note, Tyrobp (DAP12), a key
immunoreceptor tyrosine-based activation motif (ITAM)-bearing
adaptor molecule that regulates immune responses (41), was
completely down-regulated in Stat3 mutant myeloid cells (Fig.
9E). Similarly, Fcgr3 (Fc receptor γ-chain 3) was also lost in the
MKO/T+MOG group (Fig. 9E). Previous studies showed that
dendritic Tyrobp- and Fc receptor γ-mediated pathways control
autoimmune CD4 T cells by regulating antigen processing and
presentation (42) and that Tyrobp-deficient mice fail to develop
autoimmunity due to impaired antigen priming of T cells (43).
Together, these data further support that STAT3 signaling is re-
quired for optimal APC function in the development of autoim-
munity. Our results also suggest potential functional links between
myeloid STAT3 and Tyrobp signaling in autoimmune diseases.
Ingenuity pathway comparison analyses of gene expression pro-
files of the two most spatially distinct groups (MKO/T+MOG vs.
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Fig. 5. CD11b+ myeloid cells from mutant mice
exhibit impaired capability to differentiate antigen-
specific CD4+ T cells ex vivo. (A) Schematic of the
experimental design. Stat3fl/fl and LysMcre:Stat3fl/fl

mice were immunized with MOG35–55 and PT was
not administered. After 7 to 9 d, CD11b+ cells from
spleens of immunized Stat3fl/fl and LysMcre:Stat3fl/fl

mice and CD4+ T cells from naive 2D2 mice were
isolated with magnetic selection. CD11b+ and CD4+

cells were cocultured at a 2:1 ratio in the presence
or absence of 30 μg/mL MOG35–55 for 2 to 3 d before
cells and the supernatant were harvested and an-
alyzed. Cells isolated from three mice per genotype
were pooled and cultured in triplicates. (B) The
population of IFNγ- and IL-17A–producing CD4+

T cells 2 d after coculturing with myeloid cells as
evaluated by intracellular staining and flow
cytometry. Numbers next to red boxes indicate the
percentage of IFNγ+ or IL-17A+ cells in CD4+ T cells.
(C ) The level of cytokines secreted from myeloid/
T cell cocultures at div 3 as determined by multiplex
immunoassay. (D and E ) Production of proin-
flammatory cytokines and expression of antigen-
presenting/costimulatory molecules by ex vivo my-
eloid cells. CD11b+ cells isolated from immunized
LysMcre:Stat3fl/fl and Stat3fl/fl mice as described in A
were stimulated with or without LPS/IFNγ (10 ng/mL
each) for 24 h. Production of inflammatory cyto-
kines was measured with multiplex immunoassay
(D), and surface expression of MHC class II, CD40,
CD80, and CD86 was analyzed by flow cytometry
(E ). Data are mean ± SEM and representative of
two to three independent experiments with three
mice per genotype. *P < 0.05, **P < 0.01, ***P <
0.005.
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MWT/T+MOG) revealed that EIF2 signaling, mTOR signaling,
and Fcγ receptor-mediated phagocytosis/phagosome maturation
are among the top dysregulated pathways (SI Appendix, Fig. S13).
Upstream analysis predicted RICTOR (rapamycin-insensitive
companion of mTOR) as a top regulator that is inhibited in the
mutant cells (activation z score −6.5, P = 2.2 × 10−42). RICTOR is
an essential component of mammalian target of rapamycin complex
2 (mTORC2) that integrates nutrient- and growth factor-derived
signals to regulate cell growth, survival and immune responses,
corroborating with the general cellular functions of STAT3 and
suggesting cross-talk between STAT3 and mTORC2 signaling in
maintaining myeloid cell activation with MOG-specific Th cells.

Discussion
In this study, we demonstrate that STAT3 activation in peripheral
myeloid cells is required for the development of CNS pathologies
in an autoimmune animal model of MS. We found that phos-
phorylated STAT3 was significantly elevated and was frequently
associated with infiltrating CD11b+ cells and/or CD68+ macro-
phages around vasculature in MS tissues. Conditional deletion of
Stat3 in myeloid cells resulted in resistance to MOG35–55-induced
EAE due to impaired encephalitogenic T cell development and
suppressed leukocyte infiltration and neuroinflammation. Con-
sistent with this hypothesis, myeloid cells isolated from immunized
LysMcre:Stat3fl/fl mice expressed lower levels of antigen-presenting
and costimulatory molecules and were less effective in differ-
entiating naive 2D2 CD4+ T cells into Th1/Th17 effector cells.
Furthermore, LysMcre:Stat3fl/fl mice were susceptible to passively

induced EAE. In contrast to the essential pathogenic role of
peripheral myeloid STAT3 signaling, loss of CNS microglial
STAT3 did not significantly affect EAE development and
progression. Together, these data demonstrate a critical in vivo
function of STAT3 signaling in the peripheral myeloid cell com-
partment in regulating encephalitogenic T cell development and
neuroinflammation.
The main mechanism by which STAT3 inactivation in periph-

eral myeloid cells abolished the development of EAE is impaired
functions of myeloid APCs in priming and differentiating CD4+

T cells into encephalitogenic T cells in vivo. Stat3 ablation in
myeloid cells did not alter circulating or splenic myeloid cell
populations at preclinical stages, as determined by immuno-
phenotyping and myeloid cell gene profiling. However, the
functionality of these Stat3 mutant and WT myeloid cells differed
drastically when they interacted with autoreactive CD4+ T cells in
the presence of a cognate antigen. In contrast to WTmyeloid cells,
Stat3 mutant myeloid cells were ineffective in priming and dif-
ferentiating naive CD4+ T cells into Th1/Th17 cells ex vivo,
resulting in lower Th1/Th17 cytokine secretion (IL-17, IFNγ, and
GM-CSF) that in turn led to less monocyte activation and lower
production of proinflammatory cytokines (IL-1β, TNF, IL-12,
IL-23, and IL-6). Indeed, CD11b+CD11c+ APCs were found at
reduced frequencies in MOG-stimulated cocultures of mutant
myeloid cells/T cells as compared to WT counterparts. Our
results thus reveal a previously unrecognized role for myeloid
STAT3 signaling in modulating antigen-dependent interactions
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with CD4+ T cells, as well as a cytokine environment that drives
autoimmune inflammation.
Myeloid cells are heterogeneous and phenotypically dynamic

at different activation stages in terms of surface protein profiles,
signaling molecule expression and cytokine production. Using a
high-dimensional single-cell mass cytometry approach, a recent
study systematically compared myeloid cell populations across
different clinical stages of EAE and identified five separate
clusters of peripherally derived, CNS-infiltrating myeloid cells
(44). Interestingly, among these, two monocyte populations had
increased pSTAT3 signal at the onset of EAE, compared to all
other infiltrating monocytes or CNS-resident myeloid cells, and
most likely represented activated myeloid APCs based on their
surface marker expression patterns (44). These findings are in
accordance with our data demonstrating that selective inactivation

of STAT3 signaling in peripheral myeloid cells ameliorates the
development of encephalitogenic T cells and EAE. Our study
also highlights the potential of myeloid STAT3 as a therapeutic
target in autoimmune demyelinating disease. Single-cell tran-
scriptome profiling of myeloid cells revealed that the STAT3-
dependent impairment only becomes evident when myeloid
cells were cocultured with MOG-reactive T cells, suggesting
yet-to-be-identified STAT3-dependent, antigen-initiated re-
ciprocal communications between CD4+ T cells and myeloid
cells that drive CNS inflammation. In line with these findings, loss
of MHC class II expression on CD11c+ myeloid cells effectively
prevented EAE induction (45). The exact nature of activated
myeloid cells that are regulated by STAT3 signaling in the context
of EAE and T cell activation remains to be determined and likely
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requires a combination of functional and transcriptomic analyses
at single-cell levels.
Besides regulating APC functions in activating MOG-specific

T cells in vivo and ex vivo, STAT3 signaling in peripheral myeloid
cells also affects the effector phase of EAE as LysMcre:Stat3fl/fl

mice developed passive EAE at lower incidence and severity than
their littermate controls. Neutrophils have been shown to be es-
sential in the early phase of EAE and may also contribute to MS
pathogenesis (46, 47). Although they have not been shown to di-
rectly induce CD4+ T cell differentiation, infiltrating neutrophils
secrete inflammatory molecules that promote local APC acti-
vation, which in turn reactivates myelin-specific T cells ensuring
neuroinflammation (48). Neutrophils may acquire APC-like
properties and influence antigen-specific T cell functions as
recent evidence suggests that neutrophils have the capacity to

function as antigen-presenting cells under certain pathological
conditions (49). Whether this occurs in EAE and whether STAT3
regulates potential APC-like functions of neutrophils are presently
open questions. Deletion of Socs3, an inducible negative regulator
of STAT3, in myeloid cells resulted in a more severe form of
atypical EAE that was mainly mediated by enhanced neutrophil
functions (36, 50). Although we did not observe significant dif-
ferences in neutrophil populations between Stat3 mutant and
control mice at preclinical and EAE onset or between wild-type
and mutant ex vivo myeloid cells cocultured with 2D2 T cells, we
did, however, find a significant reduction in antigen-dependent
MPO secretion in the mutant CD11b+ cells plus 2D2 cocultures
(SI Appendix, Fig. S10B). MPO is mainly secreted from activated
neutrophils and has been implicated in myeloid cell infiltra-
tion and blood–brain barrier (BBB) breakage during EAE (51).
In addition, our pathway analysis of the myeloid cell RNA-seq
dataset suggests decreased fMLP signaling in neutrophils, IL-8/
CXCL8 signaling, and leukocyte extravasation pathways in Stat3
mutant myeloid cells (SI Appendix, Fig. S13). Immune cell ex-
travasation across the BBB into the CNS parenchyma represents a
critical step in breaking CNS immune privilege and initiating
neuroinflammatory reactions. Matrix metalloproteinases (MMPs)
such as MMP-2/9, secreted primarily by infiltrated myeloid cells
have been shown to degrade the basement membrane matrix and
promote leukocyte diapedesis (52). Interestingly, MMP-8, produced
mainly by infiltrating neutrophils during EAE and of which gene
ablation reduces EAE progression (53), was down-regulated in Stat3
mutant myeloid cell populations only when stimulated with antigen
cognate T cells (Fig. 9E). These findings suggest that STAT3 sig-
naling in granulocytes likely contributes to leukocyte transmigration
and activation during CNS autoimmune pathogenesis.
We found increased STAT3 activation in infiltrating myeloid

cells in the vicinity of blood vessels in apparent newly forming
MS lesions. The STAT3 locus has been associated with two au-
toimmune diseases: Crohn’s disease and MS (54). Comorbidity
of inflammatory bowel disease and MS has been implicated in
some MS patients (55). Interestingly, a STAT3 allele variant
associated with a protective haplotype in MS is associated with
increased risk in Crohn’s disease (24). Animal studies showed
that targeted deletion of Stat3 in CD4 T cells (30) and myeloid
cells (the current study) prevents the development of EAE and
that pharmacological inhibition of JAK/STAT ameliorates
EAE pathogenesis and progression (31). These studies collectively
support a significant role for STAT3 in autoimmune disease
pathogenesis. One limitation of this study is that LysMcre:Stat3fl/-

mice were prone to developing chronic enterocolitis with age with
enhanced IL-12p40 production and Th1 activity (39, 56). The
inflamed gastrointestinal tract could disrupt the balance of com-
mensal microbiota that may affect EAE and other autoimmune
diseases (57). Although a few of our mutant mice developed rectal
prolapse during or before EAE induction, we did not observe any
correlations between these two phenotypes as all Stat3 mutant
mice failed to develop EAE and mutant mice reconstituted with
wild-type marrows were fully susceptible to active EAE. More-
over, mutant mice with rectal prolapse developed passive EAE
after adoptive transfer of encephalitogenic T cells. It is noteworthy
that IL-10–deficient mice also develop chronic enterocolitis (58).
However, unlike lysMCre:Stat3fl/fl mice, IL-10–deficient mice are
more susceptible to EAE and develop more severe symptoms
(32). This suggests that resistance of myeloid Stat3 mutant mice to
active EAE is unlikely simply due to their predisposition to de-
veloping enterocolitis and cannot be solely explained by potential
effects on commensal microbiota. Moreover, myeloid cells iso-
lated from immunized mutant mice exhibited impaired, rather
than enhanced, functions in priming MOG-specific CD4+ T cells.
In summary, our data suggest that STAT3 activation in mono-

cytic cells is a feature of active MS lesions. Our data also dem-
onstrate a previously uncharacterized, but essential, pathogenic
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role for STAT3 signaling in myeloid cells in the development of
CNS autoimmunity in experimental models of MS. Our results
reveal a regulatory capacity of STAT3 in myeloid APC functions
and in sustaining cognate antigen-dependent cross-activation of
myeloid cells and T helper cells that drives autoimmune-mediated
demyelination. This study implies that targeting the JAK/STAT3
axis in the myeloid compartment may be beneficial in curbing
inflammatory demyelinating diseases.

Methods
Human Brain Tissues. Postmortem brain tissues (SI Appendix, Table S1) from
clinical diagnosed and neuropathologically confirmed MS and control cases
were processed and characterized as described previously (59).

Animals. Stat3fl/fl mice containing two LoxP sites flanking exon 22 that
encodes the tyrosine residue (Y705) essential for STAT3 activation (39)
were backcrossed to C57BL/6 mice for at least nine generations (60). All
mice were housed under constant 12-h light/dark cycles in covered cages
and fed with a standard rodent diet ad libitum under specific pathogen-
free conditions at the Comparative Medicine Program, Texas A&M Uni-
versity. Animal studies were approved by the Institutional Animal Care and
Use Committee.

Detailed methods can be found in SI Appendix.

Data Availability Statement. The sequence reported in this paper has been
deposited in the National Center for Biotechnology Information (NCBI)
BioProject database (accession no. PRJNA605403).
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