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Abstract

Keratocystic odontogenic tumors (KCOTs) are locally aggressive odontogenic neoplasms with 

recurrence rates of up to 60%. Approximately 5% of KCOTs are associated with nevoid basal cell 

carcinoma (Gorlin) syndrome and 90% of these show genomic inactivation of the PTCH1 gene 

encoding Patched 1. Sporadic KCOTs reportedly have PTCH1 mutations in 30% of cases, but 

previous genomic analyses have been limited by low tumor DNA yield. The aim of this study was 

to identify recurrent genomic aberrations in sporadic KCOTs using a next-generation sequencing 

panel with complete exonic coverage of sonic hedgehog (SHH) pathway members PTCH1, SMO, 
SUFU, GLI1, and GLI2. Included were 44 sporadic KCOTs from 23 female and 21 male patients 

with a median age of 50 years (range, 10 to 82 y) and located in the mandible (N = 33) or maxilla 

(N = 11). Sequencing identified PTCH1 inactivating mutations in 41/44 (93%) cases, with biallelic 

inactivation in 35 (80%) cases; 9q copy neutral loss of heterozygosity targeting the PTCH1 locus 

was identified in 15 (34%) cases. No genomic aberrations were identified in other sequenced SHH 

pathway members. In summary, we demonstrate PTCH1 inactivating mutations in 93% of sporadic 

KCOTs, indicating that SHH pathway alterations are a near-universal event in these benign but 
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locally aggressive neoplasms. The high frequency of complete PTCH1 loss of function may 

provide a rational target for SHH pathway inhibitors to be explored in future studies.

Keywords

odontogenic keratocyst; odontogenic cyst; odontogenic tumor; sonic hedgehog; Gorlin

Keratocystic odontogenic tumors (KCOTs) are benign, locally aggressive odontogenic 

neoplasms and are among the most common lesions of odontogenic origin in the jaws.1,2 

Most KCOTs (~90%) are incidental and solitary; an estimated 10% of patients may develop 

≥ 2 KCOTs, and up to 5% of affected individuals have nevoid basal cell carcinoma (Gorlin) 

syndrome (NBCCS).3,4

KCOTs have a predilection for the posterior mandible and asymptomatic posteroanterior 

growth with cortical expansion occurring later in the disease course.5 The optimal surgical 

management of these patients is unclear due to the large size of some tumors at the time of 

diagnosis, the cystic and friable nature of the tissue, and the propensity for satellite cyst 

formation.6 On the basis of retrospective studies, recurrence rates are as high as 60% with 

curettage or enucleation, ~20% with adjunctive treatment such as peripheral ostectomy or 

cryotherapy, and approach 0% with en bloc or segmental resection.7 Carnoy solution, 

commonly used previously for chemical cauterization following enucleation and curettage, 

has been abandoned since the Food and Drug Administration banned the use of chloroform 

for compounding, and use of modified Carnoy solution (without chloroform) has yielded 

inadequate results.8 The management of syndromic patients or those with recurrent, 

synchronous or metachronous disease can be particularly challenging.

NBCCS, first described in 1960 by Gorlin and Goltz,9 results from germ-line pathogenic 

variants in the PTCH1 gene encoding patched 1, and, less commonly, in SUFU and PTCH2, 
all of which encode proteins crucial for sonic hedgehog (SHH) signaling.10–16 Accordingly, 

PTCH1 inactivation has been identified in 90% of syndromic KCOTs.17,18 In contrast, only 

30% of sporadic KCOTs have been shown to have PTCH1 genomic inactivation.17–26 Most 

studies investigating sporadic KCOT report small sample sizes with a low yield of tumor 

DNA; however, a more recent study identified PTCH1 inactivation in 16/19 (84%) of 

KCOTs.27 Nevertheless, the paucity of published data and the heterogeneity of reported 

mutational findings resulted in the renaming of KCOT as “odontogenic keratocyst (OKC)” 

in the 2017 World Health Organization (WHO) classification.1,28

The aim of this study was to perform comprehensive mutational profiling of sporadic KCOT 

using a large next-generation sequencing (NGS) panel targeting cancer-associated genes 

including those of the SHH signaling pathway with the goal to improve histopathologic 

classification and nomenclature and to foster the discovery of novel therapeutic approaches.
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MATERIALS AND METHODS

Case Selection

Cases of KCOT/OKC diagnosed between 2012 and 2018 were retrospectively identified in 

surgical pathology archives at University Hospitals Cleveland Medical Center/Case Western 

Reserve University School of Medicine and StrataDX, a surgical pathology laboratory in 

Lexington, MA affiliated with Harvard School of Dental Medicine. Hematoxylin and eosin-

stained slides were reviewed by 2 specialists in oral and maxillofacial pathology (I.J.S. and 

R.S.M.) for diagnostic confirmation based on previously described diagnostic criteria.29 

Cases selected were associated with no or minimal inflammation and had sufficient tumor 

content (ie, neoplastic cyst lining) of at least 30% tumor content following macro-dissection. 

This study was performed with approval by the Institutional Review Board at University 

Hospitals Cleveland Medical Center (Cleveland, OH).

Targeted NGS

NGS was performed using the targeted sequencing platform of Brigham and Women’s 

Hospital, OncoPanel, which interrogates the exonic sequences of 447 cancer-associated 

genes for mutations and copy number variations, and 191 introns across 60 genes for gene 

rearrangements.30,31 Single nucleotide polymorphisms known to be heterozygous in the 

population were targeted at 4 Mbp intervals. DNA extraction from formalin-fixed paraffin-

embedded tissue sections of the tumor (QIAamp DNA mini kit; Qiagen, Valencia, CA), 

construction of hybrid-capture libraries, sequencing using the Illumina HiSeq. 2500 

(Illumina, San Diego, CA), and sequence data analysis were performed as previously 

described.31 Sequencing was performed on tumor DNA only, without a paired non-

neoplastic tissue section. All detected alterations (including single nucleotide variants, copy 

number alterations, and translocation calls) were reviewed manually and annotated as 

previously reported.31 Copy neutral loss of heterozygosity (CN-LOH) was determined based 

on deviation of single nucleotide polymorphism allele fractions from the 50% variant allele 

fraction expected in a diploid sample.

A total of 56 cases were included for sequencing analyses. Ten cases failed quality metrics 

due to low-sequencing quality and were excluded from the study.

RESULTS

A total of 46 cases were successfully analyzed by NGS, with a mean estimated tumor 

percentage of 34% (range, 10% to 50%), and mean target coverage of 256 (range, 24 to 

402). Two cases with PTCH1 mutations at an allele frequency of ~0.5 and a clinical history 

suspicious for NBCCS were subsequently omitted from further analysis.

Clinical Findings

Table 1 summarizes the clinical findings of 44 sporadic KCOTs in 23 female and 21 male 

patients with a median age of 50 years (range, 10 to 82 y). Tumors were located in the 

mandible (N = 33) or maxilla (N = 11). Follow-up information was not available.
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Histologically, all KCOTs consisted of benign, thinly parakeratinized stratified squamous 

epithelium with a palisaded and variably hyperchromatic basal cell layer supported by 

underlying fibrous connective tissue and devoid of significant inflammation (Fig. 1). 

Keratinaceous debris was occasionally present within the cyst lumen.

Targeted NGS Results

NGS results are summarized in Table 2. PTCH1 alterations were detected in 41/44 (93%) 

cases; no other somatic SHH pathway variants were detected (Figs. 2–4). All 3 PTCH1 wild-

type cases were located in the mandible. The distribution of single nucleotide variants within 

the PTCH1 (NM_000264) coding region is shown in Figure 3. PTCH1 alterations resulted 

from frameshift (N = 30), nonsense (N = 14), splice site (N = 8), insertion (N = 4), missense 

(N = 3) mutations or deletions (N = 1). One case (#19) demonstrated 1 copy loss of the 

PTCH1 gene only. Twenty cases harbored 2 PTCH1 mutations and 15 cases harbored 9q 

CN-LOH resulting in biallelic PTCH1 inactivation (Fig. 5) resulting in a total of 35/44 

(79.5%) cases with biallelic PTCH1 inactivation. Very rare additional somatic mutations and 

copy number alterations of uncertain significance were detected across the cohort.

DISCUSSION

KCOT was originally described as a distinct odontogenic cyst in 1926 by the name 

“cholesteatoma.”32 In subsequent decades it was also referred to as “primordial cyst” due to 

presumed origin from dental lamina (dental primordium), before being formally described as 

“odontogenic keratocyst” (OKC) in 1956 by Philipsen.33,34 Philipsen’s original series of 7 

cases demonstrated the characteristic histopathologic features of thinly parakeratinized and 

uniformly thin stratified squamous epithelium with a conspicuously palisaded and 

hyperchromatic basal cell layer but also presented at least 1 case with surface orthokeratin.33 

Thereafter, OKC was divided into parakeratinized and orthokeratinized variants, before the 

orthokeratinized odontogenic cyst was recognized as a distinct entity on the basis of 

distinguishing histopathologic features, uniformly indolent biological behavior, and lack of 

syndromic association.35,36

In appreciation of its aggressive behavior and emerging association with PTCH1 
inactivation, the WHO reclassified OKC as “keratocystic odontogenic tumor” in 2005.36 

Original reports predominantly included syndromic cases and subsequent reports 

cumulatively identified PTCH1 inactivating mutations in only 30% of sporadic cases, 

prompting reclassification as a “developmental” odontogenic cyst (OKC) by the WHO in 

2017.18,28,37 Identification of inactivating PTCH1 mutations in 93% of sporadic KCOT in 

this study, with biallelic inactivation in 80% of cases, suggests an important role of SHH 

pathway dysregulation in tumor development and confirms that KCOT represents a true 

neoplasm rather than a developmental/reactive condition. These findings support those of Qu 

et al27 and stand in contrast to older studies, which were limited by low-sensitivity 

sequencing methods and insufficient neoplastic DNA yield.17–22 This cohort consisted of 

cases containing at least 30% neoplastic DNA, but the frequency of PTCH1 alterations in 

sporadic KCOT may nevertheless remain underestimated as our sequencing panel has 

incomplete intronic coverage of PTCH1 and may miss structural variants or intronic variants 
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introducing cryptic splice sites. In addition, epigenetic silencing or posttranslational 

silencing of PTCH1 would require alternative testing strategies.

As in NBCCS cohorts, the observed loss-of-function mutations in our cohort were localized 

across the entire coding region of PTCH1, consistent with its tumor suppressor function. The 

most common mechanisms of inactivation were frameshift (N = 30), nonsense (N = 14), and 

splice site (N = 8) mutations.38 Three PTCH1 missense mutations were identified, 2 

(p.L106R and p.G509R) previously reported in NBCCS patients and the other (p.G509V) 

exhibiting dominant-negative activity.39–41 Nearly all mutations occurred in the coding 

regions of the 2 large extracellular loops required for SHH ligand binding and in the sterol 

sensing domain that may play a role in SMO inhibition, corroborating previous reports 

mapping PTCH1 mutations in sporadic KCOT.18,27,42,43 The large intracellular loop was the 

site of only 1 mutation (case #33, c.2197dupT;p. S733fs*), the only reported mutation within 

this domain in sporadic KCOTs to date. 9q CN-LOH occurred in 15/ 44 (34%) cases and 

represented an important mechanism contributing to PTCH1 biallelic inactivation. 9q CN-

LOH has not been previously reported in sporadic KCOT, likely because earlier studies did 

not detect this type of alteration. SUFU mutations were not identified in this cohort, 

although they account for up to 5% of NBCCS. However, to date, KCOTs have not been 

reported in NBCCS patients with germ-line SUFU mutations.44

The pattern of SHH pathway mutations in KCOT resembles that of basal cell carcinoma 

(BCC), in which up to 90% harbor inactivation of at least 1 PTCH1 allele and 10% to 20% 

harbor activating SMO mutations.45–49 These genomic similarities may be explained by the 

overlapping roles of SHH signaling in folliculogenesis and odontogenesis.50 Although 

PTCH1 and other SHH gene mutations in BCC are often caused by UV light, the KCOTs 

studied here did not exhibit a UV-related hypermutational signature. Approximately one 

third of medulloblastomas is characterized by SHH dysregulation, resulting from biallelic 

PTCH1 or SUFU inactivation, activating SMO mutations, or GLI amplification.51,52 Like-

wise, embryonal and fusion-gene negative alveolar rhabdomyosarcoma demonstrate SHH 

pathway perturbation.53–55 The role of monoallelic PTCH1 inactivation has been supported 

by in vivo studies.56–58 BCC, medulloblastoma, and rhabdomyosarcoma, like KCOT, may 

all occur sporadically or in the context of NBCCS.

Occasionally, KCOTs pursue a more rapidly aggressive clinical course, characterized by 

early cortical perforation and pain/paresthesia, and further studies are necessary to better 

define this subset genomically.5

The identification of PTCH1 inactivation in sporadic KCOTs has significant potential 

implications for patient management. SHH inhibition in BCC has been well studied and 

vismodegib (GDC-0449) reduces BCC tumor burden in NBCCS patients (NCT00957229) 

and is associated with tumor response in locally advanced or metastatic BCC 

(NCT00833417), albeit with significant side effects.59–62 Among NBCCS patients treated 

with vismodegib, incidental KCOT shrinkage has been reported.63,64 Itraconazole and 

posaconazole are potent SHH inhibitors that inhibit BCC carcinoma growth in clinical trials 

and animal studies, respectively.65,66 Further studies are needed to determine their role in 

KCOT management.
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In conclusion, we demonstrate PTCH1 inactivating mutations in 93% of sporadic KCOTs, 

indicating that SHH pathway alterations are a near-universal event and supporting their 

classification as a neoplasm with cystic growth. Recurrent PTCH1 inactivation in KCOT 

provides a rational target for SHH pathway inhibitors to be explored in future studies. 

Additional genomic studies are necessary to better define the small subset of rapidly 

aggressive KCOT.
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FIGURE 1. 
All KCOTs were characterized by uniformly thin epithelial lining supported by fibrous 

connective tissue with minimal inflammation (A). The cystic lining is thinly parakeratinized 

and the basal cell layer exhibits nuclear hyperchromasia and focal palisading (B).
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FIGURE 2. 
Case #13: KCOT (A) characterized by a PTCH1 missense mutation (c.317T > G;p.L106R) 

(B, arrow) and a PTCH1 nonsense mutation (c.279delC;p.Y93*) (C, arrow) resulting in 

biallelic PTCH1 inactivation. Case #17: KCOT (D) characterized by a PTCH1 nonsense 

mutation (c.250C >T;p.Q84*) (E, arrow) and a PTCH1 frameshift mutation 

(c.1341dupA;p.L448Tfs49*) (F, arrow) resulting in biallelic PTCH1 inactivation. Images 

show the forward strand of 9q, corresponding to the PTCH1 template strand.
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FIGURE 3. 
Overview of genomic events in 44 cases of sporadic KCOT showing near-universal PTCH1 
inactivation and no identification of variants in other SHH-associated genes. LOH indicates 

loss of heterozygosity.
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FIGURE 4. 
Distribution of non-synonymous PTCH1 mutations by protein domain in sporadic KCOT. 

cDNA position based on transcript NM_000264. Dotted lines indicate exon boundaries. 

Black, white, light gray, and dark gray shades represent C/N terminals, transmembrane 

domains, intracellular domains, and extracellular domains, respectively. Exons are numbered 

and exons 1, 22, 23, and 24 are displayed in abbreviated lengths.
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FIGURE 5. 
9q CN-LOH represented a major mechanism of PTCH1 biallelic inactivation in sporadic 

KCOT. Chromosomal copy number variation plot (case #38) shows no copy number 

alterations but corresponding 9q allele frequency shows 2 heterozygous alleles with 

deviation from 50% allele frequency, consistent with CN-LOH.
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TABLE 1.

Clinicopatholoqic Findings in 44 Sporadic KCOTs

Case # Age (y) Sex Site Size(cm)

1 56 M R mandible 3.0

2 59 M L mandible 2.5

3 61 F R mandible 2.3

4 66 M L mandible 2.0

5 76 F R mandible 0.5

6 64 M Ant. mandible 3.0

7 34 M R maxilla 2.5

8 38 F L mandible 2.5

9 59 F L mandible 0.6

10 66 F L mandible 3.0

11 72 M R maxilla 4.5

12 82 F L mandible 3.0

13 45 F R maxilla 1.6

14 17 M R maxilla 1.5

15 20 M L mandible 4.0

16 11 M L mandible 3.5

17 20 F R mandible 2.0

18 64 M Ant. mandible 1.5

19 10 F L maxilla Unknown

20 35 M L mandible 5.0

21 31 M L mandible 3.0

22 69 F L maxilla 2.0

23 72 F R mandible Unknown

24 18 M R mandible 6.0

25 13 M Ant. mandible Unknown

26 21 M L mandible Unknown

27 25 M L mandible 5.0

28 13 F R mandible 1.0

29 19 F L mandible Unknown

30 60 M L mandible Unknown

31 54 F R mandible 5.0

32 56 F R mandible 5.0

33 28 F L maxilla 6.0

34 21 F R mandible 2.0

35 24 M Ant. Mandible Unknown

36 67 F R maxilla Unknown

37 57 F R mandible Unknown

38 54 F Ant. Mandible Unknown

39 70 M R mandible 1.5
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Case # Age (y) Sex Site Size(cm)

40 41 F L maxilla Unknown

41 71 M L maxilla 2.0

42 50 F L mandible Unknown

43 56 M R maxilla Unknown

44 33 F L mandible 2.0

Ant. indicates anterior; F, female; L, left; M, male; R, right.
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