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Abstract

Traumatic peripheral nerve injury represents a major clinical and public health problem that often 

leads to significant functional impairment and permanent disability. Despite modern diagnostic 

procedures and advanced microsurgical techniques, functional recovery after peripheral nerve 

repair is often unsatisfactory. Therefore, there is an unmet need for new therapeutic or adjunctive 

strategies to promote the functional recovery in nerve injury patients. In contrast to the central 

nervous system, Schwann cells in the peripheral nervous system play a pivotal role in several 

aspects of nerve repair such as degeneration, remyelination, and axonal growth. Several non-

surgical approaches, including pharmacological, electrical, cell-based, and laser therapies, have 

been employed to promote myelination and enhance functional recovery after peripheral nerve 

injury. This review will succinctly discuss the potential therapeutic strategies in the context of 

myelination following peripheral neurotrauma.
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Traumatic peripheral nerve injury (TPNI) represents a major clinical and public health 

problem that often leads to significant functional impairment and permanent disability.1 It is 

estimated that roughly 3% of all trauma patients have peripheral nerve injuries2 and more 
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than 50,000 peripheral nerve repair procedures are performed annually in the United States 

alone.3 TPNIs are generally associated with motor vehicle collisions, penetrating injuries, 

lacerations, gun-shots, falls, burns, fractures, ischemia, traction and crush injuries,4 and have 

been studied in both civilian2,5–7 and military populations.8 TPNIs are also more common in 

children than previously identified and can result in major social and economic burdens.9 

Despite progress in understanding the pathophysiology and the biological factors involved in 

of nerve injury and recovery, as well as the availability of modern diagnostic procedures and 

advanced microsurgical techniques, few treatment options exist to alter the course of 

recovery after TPNI.4,10 This review will discuss the current knowledge of TPNI and 

recovery in terms of pathophysiology of nerve injury, classification, regeneration, diagnostic 

consideration and therapeutic strategies. The main focus is to provide a better understanding 

of potential non-surgical therapeutic approaches in promoting myelination following 

peripheral neurotrauma.

Pathophysiology and classification of nerve injury

At the cellular level, TPNIs exist in varying severities, which relate directly to the 

classification of these injuries. The severity of injury is related to the extent of anatomic 

disruption to the constituents of the nerve. On an anatomic level, the nerves grossly consist 

of axons, myelin (in myelinated fibers), Schwann cells, blood vessels, fat and connective 

tissue.10–12 The outer covering of the nerve is a connective tissue epineurium, which is the 

site of most microsurgical techniques for repair. Within the nerve there are fascicles 

embedded in an internal connective tissue epineurium. Each individual fascicle is 

surrounded by perineurial connective tissue, and each fascicle contains many nerve fibers, 

which in turn, are encapsulated by longitudinally oriented endoneurial tubes. Nerves with 

fewer and larger fascicles may be more vulnerable to injury as a result of their inherent 

deficiency in connective epineurial tissue.11,12 Some fibers within any given fascicle contain 

myelin which is compact in distribution around internodes, in contrast to the less myelin-

dense paranodal and myelin-deficient nodes of Ranvier, where sodium channels are 

concentrated allowing propagation of action potentials (saltatory conduction). In practice, 

injuries to connective tissue, myelin, and axons all comingle in most TPNI.

The two commonly used classifications of nerve injury are the Seddon and Sunderland 

Classifications.11,13 Seddon’s scheme, first published in 1943, divides nerve injuries into 

neurapraxia, axonotmesis, and neurotmesis in order of increasing severity. Neurapraxia, the 

mildest class of nerve injury, is characterized as a conduction block from a seemingly 

isolated injury to myelin, usually along a particular section of the nerve (segmental 

demyelination). In practice, myelin is not likely the only tissue type to be disrupted in these 

injuries, as nerve dysfunction from focal ischemia and subtle injuries to other tissue types 

may also play a role. Nonetheless, neuropraxic injuries are believed to spare most, if not all 

axons and these injuries often result from compression or traction on the nerve. In 

axonotmesis, the hallmark is axonal disruption and resulting Wallerian degeneration, but 

some connective tissue structures are preserved. Axonotmesis is typical after peripheral 

nerve crush and stretch injuries. Neurotmesis, where the nerve is severed, is the most severe 

class of nerve injury and is often caused by substantial trauma to the nerve and adjoining 

structures.11–13
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Sunderland’s classification breaks down nerve injury into five categories:12 the first degree 

of nerve injury corresponds to neurapraxia, here with the distinction that the distal segment 

of the nerve, which is outside of the zone of injury, can conduct normally. Here too, the 

axonal structure is believed to be preserved. The second degree of nerve injury consists of 

axon degeneration distally with preserved endoneurial tubes with a good chance of near 

normal recovery if the injuries are not too distant from the targets. The third degree of nerve 

injury consists of the destruction of endoneurial tubes and nerve fibers with preserved 

fascicles and perineurium. Intrafascicular structures are disorganized but fascicular 

continuity is preserved. The fourth degree of nerve injury is associated with fascicular and 

perineurial destruction with only epineurium spared. The fifth degree of nerve injury is of 

complete loss of nerve continuity and complete destruction of axon and surrounding 

connective tissue, which corresponds to neurotmesis in Seddon’s classification. In 

neurotmesis the prognosis of spontaneous recovery is poor, and nerve continuity is believed 

unlikely or even impossible without surgical intervention.

Regeneration

Recovery of nerve function after injury depends on several factors including the degree and 

location of the nerve injury and patient related factors. The degree of nerve injury itself 

depends on number and size of fascicles within the injured nerve (e.g. partial vs. complete 

severance of fascicles). Not all nerves have the same capacity for recovery, and therefore the 

type and location of nerve injured (e.g. proximal vs distal nerve segment, mixed nerve, etc.), 

are critical prognostic factors for regeneration.4,12,14,15 Finally, advanced patient age and the 

chronicity of the injury each negatively affect the capacity for regeneration with older 

patients and those with delayed presentations or intervention often faring most poorly. 

Regeneration and repair processes of injured nerve occur at multiple levels including the 

nerve cell body, the segment between the neuron and the injury site (proximal stump), the 

injury site itself, the segment between the injury site and the end organ (distal stump), and 

the end organ.4 One critical factor in regeneration is the process of Wallerian degeneration, 

which affects the segment of nerve distal to transected axons. This process starts within 48 

hours and is usually complete by day 7–9 for motor axons and by day 11 for sensory nerves, 

with the difference in times ascribed to special consequences to dysfunction and early failure 

in neuromuscular transmission in motor fibers. Wallerian degeneration itself is an early 

means to distinguish neurapraxic from axonal injuries provided electrodiagnostic studies are 

performed after this period.

There are generally accepted three mechanisms of repair: remyelination, collateral 

sprouting, and axon regrowth.4,16 In neurapraxic lesions, Schwann cells must de-

differentiate to a stage where cell division is possible to proliferate and make new myelin, 

and this stage may take three months. Beyond this time period, persistent deficits imply 

axonal damage. The partial axon lesions recover through the mode of collateral sprouting 

that can take up to six months. Terminal sprouts are chemotrophic outgrowths from the 

intact nerve endings which grow from the conical growth-cone which emanates often from 

myelin-free nodes of Ranvier within the intramuscular nerves.1 This process sacrifices single 

fiber motor-specificity by placing more muscle fibers under the control of remaining axons. 

Therefore, the motor unit size (the number of muscle fibers dependent on one nerve fiber), 
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can increase fivefold through the process of collateral sprouting.14 In complete lesions, 

recovery depends on an axon regrowth rate of approximately 1 mm/day, with some variation 

in this rate related to patient factor (age) and injury factors (injury site, mechanism of injury, 

proximity of the injury to the nerve cell body, time and type of repair),14,15 with the fastest 

reported regeneration rates associated with proximal limb and younger patients.12,14

During the regeneration process, the gap caused by the retracted stumps of a fully transected 

nerve is bridged by new tissue termed as “nerve bridge” and the regrowing axons from the 

proximal stump follow blood vessels through newly formed nerve bridge to reach the distal 

stump and their target organs.17,18 However, there can be scar formation within the nerve 

bridge that can lead to misdirection and aberrant regeneration of the sprouting axons.4 

Therefore proximal lesions and those that must regenerate through scar hold the worst 

prognosis owing to the time lost during which reversible target muscle denervation atrophy 

becomes irreversible (12–18 months) in axotomy state.4,19 In the most severe forms of 

axonotmeses and neurotmeses (Sunderland class 3–5), recovery is encumbered by increasing 

disorganization of fascicular structure and scar formation inside the nerve. This is perhaps 

related to the random and disorganized growth of regenerating axons towards the end-organ.
1,12 This may predispose more severe injuries to incomplete recovery of muscle function. 

Endoneurial tubes, Schwann cells and muscle fibers may indeed be viable for 12–18 months 

after prolonged axotomy;1,4,19 however, motor recovery is rarely possible after this time 

period even with surgical repair because of reduced capacity of motor axons to regenerate.16 

Sensory fibers, without their inherent dependency on a viable muscle end-organ, may enjoy 

a slightly longer period of viable recovery.19

Electrodiagnostic evaluation of TPNI

The nature of the cellular and structural injury in the nerve defies imaging in most scenarios, 

and electrodiagnostic testing (EDX) is currently the most sensitive and specific method to 

evaluate TPNI. However, EDXs such as nerve conduction study (NCS) and 

electromyography (EMG) depend critically on the time-dependent post injury sequelae to 

the nerve and end-organ denervation, for a sensitivity that evolves over time after the injury. 

NCS determines nerve conduction velocities to help evaluate axonal degeneration from 

demyelinating disorders and EMG evaluates the motor unit action potential (MUAP) of a 

motor unit. Unlike surgical intervention, which can give some immediate information about 

the nature of the nerve injury, EDX has the key benefit of offering information about the 

functional status of the nerve and distally innervated units and carries far less risk of damage 

to the nerve or perioperative complications. It is for these reasons EDX plays a crucial 

ongoing role in the evaluation of these patients. The main aim of EDX in TPNI is to classify 

the pathophysiology of nerve injury as to axonal or demyelinating in nature, as well as to 

identify the location, grade and prognosis of the injury. This information is crucial in 

deciding the plans for an intervention. Despite the importance of these studies, it is also 

crucial to recognize the limitations and time dependency of EDX data, which typically 

include information from distinct NCSs and EMG studies obtained in a single session.

Neurapraxia and axonotmesis are indistinguishable using EDX testing for the first few days 

after nerve injury even when information is combined for sensory and motor nerves. The 
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distal segment of an injured nerve remains excitable during this time, and therefore EDX 

may not provide sufficient information to inform prognosis for approximately 11 days after 

injury. Testing, during this period can nonetheless aid in localization of the injury and 

grading severity with the severest lesions (whether neurapraxic or axonotmetic) failing to 

evidence MUAP recruitment. In neurapraxia, the distal compound muscle action potential 

(CMAP) is normal, but stimulation proximal to the lesion will not result in responses in the 

case of complete conduction block. EMG in these cases will show no MUAP (indicating a 

complete neurapraxic lesion) or reduced recruitment (indicating a partial neurapraxic lesion) 

– all without abnormal spontaneous activity. These changes usually resolve by 12 weeks, but 

delayed conduction may persist owing to thinner and shorter internodes associated with 

remyelination.4,20 In axonotmesis, distal CMAP may be decreased or absent, but only after 

7–9 days for motor and 11 days for sensory fiber injury. A decrease in amplitude of CMAP 

is proportional to the degree of axonal loss. EMG examination will show reduced 

recruitment or absent MUAP in the case of neurotmesis. MUAP recruitment can also serve 

to indicate axonal continuity after Wallerian degeneration is complete. Abnormal 

spontaneous activity will begin approximately 2–3 weeks after injury however; the extent of 

this activity may not correlate with severity.20 There are some notable shortcomings of 

commonly used EDX techniques. EDX does not allow the critical distinction of subtypes of 

intermediate (Sunderland class 3–5) injuries.1 The absent MUAP recruitment can be 

erroneously ascribed to loss of axonal continuity in mixed neurapraxic and axonotmetic 

lesions when NCS-EMG is performed before remyelination takes place.

Reinnervation changes first appear 2–3 months after axonotmesis and are typified by 

nominal increases in CMAP amplitude, however are probably better predicted based on 

MUAP configuration. Collateral sprouting results in longer duration polyphasic complexes 

and unstable motor units in the subacute phase followed by large amplitude and long 

duration motor unit potentials with persistently reduced recruitment. The very first sign of 

axon regrowth can be nascent units, which are small, polyphasic motor unit potentials.20

Taken together, the nature of EDX combined with the nature of nerve recovery allows the 

assessment of valuable clinical information, albeit with constraints on timing. The more 

detailed information is obtained once denervation has taken place with EDX yielding more 

definitive answers over time after TPNI.4 Studies performed within a week of injury allow 

localization of the injured segment in addition to some information about the grade or 

completeness of the injury. After one week, studies that focus on motor nerves can 

distinguish between axonotmesis and neurapraxia, in addition to the information about 

completeness of the injury. This same distinction is possible for sensory fibers at 11 days 

post-injury. Studies performed at 3–4 weeks allow all of the above distinctions in addition to 

assessment of abnormal spontaneous activity. Studies performed at 3–4 months allow the 

documentation of reinnervation.

Therapeutic strategies

Currently the treatment of choice for peripheral nerve injury that results in laceration is 

advanced microsurgical end-to-end repair with tensionless epineurial sutures or autologous 

nerve grafting where end-to-end anastomosis is not possible (Table 1).21–24 However, 
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functional recovery after peripheral nerve repair is often unsatisfactory and it is apparent that 

microsurgical approaches fail to address the complex cellular and molecular events 

associated with TPNI. Therefore, there is an unmet need for new therapeutic or adjunctive 

strategies to promote functional recovery in TPNI patients. In contrast to the central nervous 

system (CNS), Schwann cells in the peripheral nervous system (PNS) produce a growth-

permissive environment for the injured nerve and play a pivotal role in several aspects of 

nerve repair such as degeneration, remyelination, and axonal growth.7,16 Several treatment 

strategies have been employed to enhance the recovery process after TPNI, including 

pharmacological, electrical and cell based therapies.7,25–27 While each has shown some 

promise in treating patients, none has provided a single universally applicable cure for the 

consequences of TPNI and they are also not without significant pitfalls or potent side-effect 

profiles. Surgical interventions have been extensively reviewed by several authors;4,24,28,29 

this section will highlight the usefulness of novel non-surgical therapeutic approaches in 

promoting myelination following peripheral neurotrauma (Table 1).

Pharmacotherapy

At present, there is no clinically approved pharmacological agent available for the treatment 

of TPNI. However, several agents have reported to be potential candidates to improve nerve 

regeneration by promoting myelination in the peripheral nerves.

Steroid Hormones

Steroid hormones, such as estrogen and progesterone, have been investigated for use in 

TPNI,30–32 with both in vivo and in vitro evidence demonstrating the receptors for these 

hormones in the constituent cells of the peripheral nerve such as Schwann cells, DRG 

neurons, sensory and autonomic neurons.27 Both hormones are known to be neuroprotective 

and promote myelination, with estrogen (17β-Estradiol) promotes nerve recovery in both the 

central and peripheral nervous systems.33,34 In the PNS, estrogen exerts its effects through 

the modulation of steroid nuclear receptors, which in turn upregulate the PI3K/AKT/mTOR 

signaling pathway and thereby promote myelination.32 It is reported that PNS dorsal root 

ganglion neurons activate mTOR following a sciatic nerve injury and this activity enhances 

axonal growth capacity with increased expression of growth-associated protein, GAP-43.35 

Activation of mTOR can also lead to downstream phosphorylation of S6 ribosomal protein 

and 4EBP-1 to initiate protein synthesis.36 Since GAP-43 plays a key role in axon sprouting 

and outgrowth in regenerating axons,37 it is possible that GAP-43 is involved in estrogen-

induced upregulation of mTOR signaling and myelination. Progesterone may act in an 

independent manner following binding to its specific progesterone receptor, which in turn 

induces myelination via upregulation of Krox20 (also termed early growth response gene: 

Egr2),38 a transcription factor that regulates PNS myelination.39 This activation directly 

drives expression of myelin proteins like MPZ and PMP22, both of which are primary 

constituents of the myelin sheath.34,38 However, both estrogen and progesterone suffer from 

well-documented side-effect profiles which can differ from patient to patient depending on 

the dose and duration of drug treatments. The United States Food and Drug Administration 

mandated a “black box” warning on all estrogen products based on the results of the 

Women’s Health Initiative (WHI) because unopposed estrogen use can increase the risk of 
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endometrial cancer in intact uteri, invasive breast cancer in post-menopausal women, and 

deep vein thrombosis (DVT).40 Additional risk factors for estrogen include hypertension, 

obesity, diabetes mellitus, tobacco use, and/or history of venous thromboembolism. Estrogen 

receptor signaling are also involved in prostate carcinogenesis.41 In WHI studies, an 

increased risk of DVT, pulmonary embolism, stroke, and myocardial infarction was 

observed in women ≥65 years with daily conjugated estrogens combined with 

medroxyprogesterone.

On the other hand, corticosteroids are sometimes used as a treatment option for nerve injury, 

including acute spinal cord injury, facial nerve paralysis, compressive neuropathy, and 

neuropathic pain,42–45 A recent clinical study also demonstrated an important role for oral 

corticosteroids in the recovery of motor and sensory function following iatrogenic nerve 

injuries in total hip and knee arthroplasty.46 However, several retrospective reviews have 

shown that long-term glucocorticoid use, even in low doses, is a significant independent 

predictor of diverse adverse effects, including bone loss or fracture, serious infections, 

gastrointestinal bleeding or ulcer, and cataracts.47–50 The risk incurred with glucocorticoid 

use is both dose- and duration-dependent. Although the generalized use of hormonal 

therapies has not been common in the treatment of TPNI, several pre-clinical studies have 

shown that topical steroids can improve functional recovery and morphometric indices of the 

injured peripheral nerve51–53 and this may have clinical implications after nerve transection 

because of its fewer or no adverse effects compared to chronic systemic administration. 

Therefore, the potential clinical usefulness of topical steroids to reduce post-injury nerve 

dysfunction warrants further investigations.

Erythropoietin

Erythropoietin (EPO), an endogenous hormone and FDA-approved drug for the treatment of 

anemia, has neuroprotective properties in both the central and peripheral nervous system.
54–57 Although originally discovered as hematopoietic agent, EPO has been extensively 

studied in translational neuroscience and its role in neuroprotection/neuroregeneration has 

been elegantly reviewed by several authors.27,58–60 It is documented that EPO and its 

receptor (EPOR) are present in a wide variety of non-erythroid cells throughout the body 

and may impact many biological functions. In the nervous system, EPO is produced and 

secreted by the neurons of hippocampus, cortex, internal capsule, midbrain, and nervous 

system tumors.61–63 The EPOR is also expressed on the myelin sheath of radicular nerves in 

human PNS.64 We and others have shown the presence and upregulation of EPOR at the site 

of peripheral nerve injury in mice.65,66 EPO improves the sciatic function index of mice and 

rats after crush injury,57,65–68 and this functional improvement was observed with EPO 

administration prior to injury, immediately after injury, and after 1 week suggesting that the 

timing is not critical.57,65–68 Importantly, EPO mediated functional improvement can be 

demonstrated from single doses up to days after injuries in mice and seems to correlate with 

injury.65 Although the mechanisms by which EPO works are still poorly understood, it is 

thought to work by promoting the expression of myelin genes, MPZ and PMP22.69 We have 

shown that mice which received systemic EPO following nerve crush injury maintained 

more myelinated axons at the site of injury.57 In vitro EPO treatment also promoted myelin 

formation and protected myelin from the effect of nitric oxide (NO) exposure in co-cultures 

Modrak et al. Page 7

J Neurosci Res. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of Schwann cells and dorsal root ganglion cells.57 In addition to the fundamental 

myeloprotective role of EPO, these findings also demonstrated an anti-oxidative effect of 

EPO at the site of nerve injury which is consistent with the direct role of EPO against 

oxidative stress.59 Given EPO’s widespread and frequent use to treat anemia in humans and 

its favorable side-effect profile,70,71 early clinical trials have already begun investigating 

EPO’s therapeutic potential treating human peripheral nerve trauma associated with joint 

replacement surgery.46,72 It is also noteworthy that clinical use of EPO is not without 

problems, in particular the route of administration and the potent side-effect profile. Aside 

from blood hyper-viscosity from increased RBC production, hypertension and its related 

problems,73,74 the most common side effects of EPO therapy are headache and an influenza-

like syndrome.75,76

4-aminopyridine

4-aminopyridine (4-AP), a broad-spectrum potassium (K+) channel blocker and FDA-

approved drug for the symptomatic treatment of multiple sclerosis (MS),77,78 that has been 

shown to improve neuromuscular function in patients with other demyelinating disorders 

including myasthenia gravis,79 spinal cord injury,80 and Lambert-Eaton syndrome.81,82 The 

neurological benefits of 4-AP are believed to result from increases in action potential 

duration, calcium influx, neurotransmitter release, synaptic transmission, and direct effects 

on muscle.83–85 4-AP may enhance cell-membrane excitability and impulse conduction, and 

we observed that clinically relevant doses of 4-AP treatment beginning shortly after injury 

enhance global functional recovery, promote remyelination and improve nerve conduction 

velocity in an established mouse model of peripheral nerve crush injury.86 We also showed 

that 4-AP can distinguish or classify a crush injury from a transection injury by transient 

motor function recovery,86–88 an effect most likely related to its nerve conduction restoration 

properties because the time course of recovery was far too rapid to be explained by 

regenerative mechanism and it is demonstrable at time-points far earlier than those allowed 

by EDX (see above). Importantly, at the tissue level, 4-AP also appears to be 

myeloprotective and possibly axonoprotective.86,87 Early studies with 4-AP showed an 

increase in action potential duration and amplitude when measured on experimentally 

demyelinated mammalian peripheral nerve fibers.89,90 These findings highlight a possible 

diagnostic and therapeutic contribution to recovery and prognosis owed to excitatory 

molecules that may stabilize impulse conduction within hours to days after injury.91–93 

Ongoing work on clinical translation of these findings may reveal clinical indications to 

TPNI, both in diagnosis and treatment.94 However, despite the beneficial effects, the clinical 

ability of 4-AP to restore function has been limited because of its narrow therapeutic 

window, the need for frequent dosing throughout the day, and significant adverse side effects 

such as anxiety, tremors and seizures.95–97 Clinical trials have shown that the efficacy of 4-

AP is related to the total drug exposure whereas the toxicity is related to the peak serum 

levels.98,99 We have demonstrated that long-term treatment is beneficial with 4-AP 

following acute TPNI improving functional recovery, myelin thickness, as well as important 

parameter of EDX, such as NCV.86,87 Our findings with 4-AP convincingly demonstrated 

that it can be used either as local, transdermal or injectable form to exert its beneficial effect 

on TPNI recovery.86–88 Given the interplay between clinical efficacy, safety profile, and 
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patient compliance, further developments of safe methods of administering 4-AP are a 

reasonable focus in the near term to allow treatment of the demyelinating component of 

TPNI, despite its promise as a regenerative medicine agent.

Electrical stimulation

Electrical stimulation (ES) represents a promising non-pharmacological approach to 

accelerate and promote recovery following peripheral nerve injury.100–105 Studies in animals 

and humans have shown that ES promotes preferential reinnervation of both motor and 

sensory neurons, allowing for a faster recovery.100,106,107 In addition to promoting 

reinnervation, ES also aids in the remyelination process following peripheral nerve injury.108 

ES is also reported to provide benefit on nerve injury-induced muscle atrophy and function.
109–111 Like ES, treadmill running is reported to exert positive effects on nerve regeneration 

and functional recovery.112,113 Moreover, the combination of these two activity-dependent 

therapies, ES and treadmill running, has been shown to exert positive synergistic effects on 

nerve regeneration and muscle reinnervation.114,115 While post-operative direct low-

frequency (20 Hz) ES of the proximal nerve stump for 1 hour (2- to 3- fold threshold 

current) is a standard regimen,116 experimental studies have demonstrated that the same ES 

parameters seven days prior to axotomy (conditioning ES, CES) can promote functional 

nerve regeneration with upregulation of regeneration-associated genes.117,118 Although the 

exact mechanisms by which ES and exercise enhance nerve regeneration are poorly defined, 

cyclic adenosine monophosphate (cAMP) and brain-derived neurotrophic factor (BDNF) are 

reported to play key roles.119–121 ES causes an increased influx of calcium into the neurons 

followed by an increase in intracellular cAMP levels,120,122 and the downstream signaling 

molecule of cAMP, protein kinase A, promotes the expression of regeneration-associated 

genes for axonal growth.120 Calcium-induced phosphorylation of extracellular signal 

regulated kinase, ERK, has been shown to cause increased expression of BDNF and 

myelination in the peripheral nervous system.123,124 Despite the reported benefits with ES, 

the clinical use of implantable electrical devices remains a challenge because of the nature of 

invasive procedures, the lack of proper controls, and patient dissatisfaction with discomfort.
125

Cell-based therapy

Some of the severest injuries to peripheral nerves, such as avulsions, lacerations, and 

contusions may suffer from the additional loss of Schwann cells needed to mediate 

regeneration. Such injuries may fail to regenerate even at the accepted rate of 1 mm/day.16 

With this slower rate of regeneration, end organ reinnervation may take months or years or 

may fail eventaully.16,19 In the chronic axotomy state, the denervated Schwann cells 

eventually lose their capacity to support growth of the neurons and the lack of healthy 

Schwann cells is an important issue in nerve regeneration, which spurs interest in cell-based 

therapy.16,19,126,127

Cell-based therapy is a promising branch of regenerative medicine and Schwann cell 

cultures have demonstrated favorable results in the experimental model of TPNI with 

regeneration and remyelination.128,129 However, the process of human Schwann cell 
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collection involves invasive nerve biopsy and the culture also has limited in vitro expansion.
130 In search for a suitable cell line, stem cells (SCs) have garnered substantial interests as 

candidate transplant cells because of their availability, rapid in vitro expansion, survival and 

integration within the host tissue.131 Based on the differentiation potential, there are three 

categories of SC therapy: totipotent, pluripotent, and multipotent stem cells. Pluripotent and 

multipotent stem cells have been the focus of most research to date.132

Embryonic stem cells (ESCs) are pluripotent SCs that can differentiate into all three germ 

layers and Schwann cells can be generated from ESCs with 60% efficiency.133 In an animal 

model, injection of ESCs translated to improved nerve repair and functional ability.134 ESCs 

are limited in their therapeutic potential as they are in short supply, owing to their source in 

the human embryo and they also carry a risk of teratoma formation.135 Human induced 

pluripotent stem cells (hPSCs) have shown some promise in the regeneration and protection 

of myelin, possibly by providing an exogenous source of self-renewing Schwann cells.136 

Multipotent somatic stem cells from bone marrow, mesenchymal stem cells (MSCs), have 

also shown some promise with greater number of myelinated axons when used in 

combination of artificial conduits and acellular grafts,131,137,138 and they are also capable in 

myelinating cultured PC12 cells in vitro.139

In addition, adipose tissue and skin have been reported to provide easily accessible and less 

invasive potential sources of SCs. Adipose-derived stem cells (ADSCs) are a form of 

multipotent stem cells that can differentiate into a Schwann-like cell with similar functional 

properties.140 It is possible that ADSCs may exert their effects via the release of growth 

factors, such as nerve growth factor, vascular endothelial growth factor, and BDNF, as well 

as through the recruitment of endogenous Schwann cells.141,142 Although ADSCs are one of 

the more attractive SC therapies due to their availability in the adipose tissue, one restriction 

is their tendency to differentiate toward adipocytes, which can hinder nerve recovery.143 The 

skin and associated structures have a highly available supply of transplantable cells due to 

their ability to differentiate into Schwann-like cells.7,131 Skin-derived precursor cells 

(SKPCs) are neural crest-related precursor cells found in the dermis, which are capable of in 
vitro differentiation into neural crest cells, including those with the features of Schwann 

cells and peripheral neurons.144–146

While there is still much to learn about the role of SCs and their therapeutic potential in 

TPNI, there is now exciting in-vivo and in-vitro evidence indicating that they may be 

efficacious myelinating phenotypes and localization can be maintained. Most importantly, 

clinical studies exploring the feasibility of cell-based strategies as an adjunct therapy in 

chronic nerve injury will require careful investigation to determine the amount and method 

of cell delivery and the fate (cell survival and differentiation) of transplanted cells for safety, 

reliability, and maximum efficacy.

Photobiomodulation with laser therapy

Photobiomodulation (PBM) with low-level laser therapy (LLLT) has been extensively 

studied in many clinical practices including physical medicine and rehabilitation, stroke, 

degenerative or traumatic brain disorders, and nerve repair.147–149 Laser therapy is a 
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noninvasive treatment modality that induces a photochemical reaction in the cell and 

increases the DNA and RNA synthesis in the cell nucleus, with subsequent cell proliferation 

and protein synthesis, including changes in nerve cell action potential.147,148 The precise 

mechanisms underlying PBM with LLLT and its therapeutic benefits are not fully 

understood. It is believed that the initial trigger of PBM is the absorption of light (photons) 

by cytochrome C oxidase in the mitochondrial respiratory pathway. The increased activity of 

cytochrome C oxidase in turn increases the production of adenosine triphosphate (ATP) and 

thus modulates the cell functions.150,151 Both clinical and experimental studies have 

reported the beneficial effects of LLLT in TPNIs. Animal and in vitro studies have shown 

that LLLT promotes the regeneration and functional recovery of the injured peripheral nerve, 

accelerates the myelination of regenerated nerves, increases the axonal diameter, and 

stimulates Schwann cell proliferation.152–158 Double-blind randomized studies have 

reported that post-operative LLLT can enhance the regenerative process of the peripheral 

nerve with increased number of myelinated axons159 and improve the motor nerve function 

with functional recovery.160 However, other studies did not observe any beneficial effects of 

LLLT.161,162 Although LLLT has no reported adverse effects, there is no standardization in 

treatment with LLLT and different irradiation parameters have been used in different models 

of PNI, and there is also a paucity in the clinical trials with LLLT. Therefore, future studies 

exploring the effects of different variables, such as wavelengths, dose, continuous or pulsed 

mode, application site, and type of radiation would verify the usefulness of LLLT in TPNI as 

an adjunct therapy.

Epigenetics and small molecule alterations in myelination

There is growing evidence that the interplay of environmental risk factors and individual 

genetic susceptibility modulates disease presentation and therapeutic responsiveness.163–165 

Epigenetics offers a promising link between genetic and environmental influences on 

phenotype development.163–167 Epigenetic modifications, which include DNA methylation, 

posttranslational modifications of histones, and non-coding RNAs, results in the heritable 

silencing of genes without a change in their coding sequence.167,168 Such modifications can 

be induced by stress, tissue damage, and diseases, and can affect both physiological and 

pathological processes.166,169–171 Epigenetic mechanisms thus play an essential role in 

transcriptional control of genes, maintenance of cellular identity, cell activation, and cellular 

repair processes during stress; with purported roles in many disease processes including 

autoimmune disease, multiple sclerosis, neuroinflammation, cancer, and normal aging.
169–171

The ever-evolving field of epigenetics also has the potential to play an important role in 

peripheral nerve recovery and myelination.172–175 Myelination by Schwann cells is under 

strict transcriptional control176,177 involving sequential, feedforward cascades of 

promyelinating transcription factors where Sox 10 (SRY-related HMG-box-10) and Oct6 

(octamer-binding transcription factor-6) synergistically induce the expression of Krox20 

(also termed early growth response gene: Egr2). Krox 20 is considered a master regulator of 

PNS myelination because it activates many myelin genes, suppresses myelination inhibitors, 

and maintains the myelinated state.39 Krox20 together with NAB (NGFI-A/Egr-binding) 

protein regulates the transcription of myelin structural proteins and biosynthetic components 
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of myelin lipid layer.178,179 In addition, several epigenetic and chromatin modifiers are 

involved in myelination of mammalian nervous system and are crucial for SC differentiation, 

myelin formation and myelin maintenance.180,181 For example, histone deacetylase (HDAC) 

remodels chromatin and condenses chromatic architecture and thus limits DNA access for 

transcription factors.182 Recently, an HDAC3-dependent pathway was identified as a potent 

inhibitor of peripheral myelogenesis.183 Both in vitro and in vivo studies demonstrate that 

addition of HDAC3 inhibitors or the ablation of HDAC3 in Schwann cells significantly 

increases the production of myelin, conduction velocity, CMAP amplitude, and enhances 

sensory and motor function.183 HDAC3 also antagonizes the myelogenic neuregulin-PI3K-

AKT signaling axis. While these findings highlight the therapeutic potential of transient 

HDAC3 inhibition for improving peripheral myelin repair, it is unknown how different 

members of the HDAC family interact, their potential compensatory mechanisms, and how 

their expression and activity are regulated.182

It is evident that epigenetic changes can give rise to several significant disorders and we are 

just at the beginning of learning and understanding the contributions of these molecular 

genetic alterations to human diseases. While the reversible nature of epigenetic alterations is 

encouraging in the effort to find therapies that can reverse the molecular silencing early, it is 

unknown whether the epigenetic modifications are the cause or the result of disease 

progression. Future epigenetic studies in TPNIs will certainly enrich our knowledge and 

pave the way to use epigenetics as a tool to identify a disease biomarker and the potential 

therapeutic target.

Future directions and conclusions

In the past three decades, tremendous advances were made in TPNI diagnosis and 

management. However, the failure of well-defined microsurgical techniques to provide 

satisfactory functional recovery in the presence of complex cellular and molecular events 

with TPNI raises the question of using more robust therapeutic approaches or combination 

of new approaches with current strategies to promote functional recovery and quality of life 

in TPNI patients. Table 1 shows currently used and the potentially novel therapeutic 

strategies for TPNI management. Future treatments for TPNI will likely require the 

development of new pharmacologic adjuvant agents as well as uncovering the mechanistic 

details of those currently available. Key to the successful translation of treatments into 

widespread use in humans is well-executed clinical trials, which we and others have begun 

on several adjuvant forms of TPNI treatments. Critical gains in promoting myelin formation 

or myeloprotection, and allowing early diagnosis will advance treatment substantially.
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TPNI traumatic peripheral nerve injury
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EDX electrodiagnostic testing

NCS nerve conduction study

EMG electromyography

MUAP motor unit action potential

CMAP compound muscle action potential

CNS central nervous system

PNS peripheral nervous system

WHI Women’s Health Initiative

DVT deep vein thrombosis

TCF/LEF T-cell factor/lymphoid-enhancer

MPZ myelin protein zero (MPZ)

PMP22 peripheral myelin protein 22

EPO erythropoietin (EPO)

EPOR erythropoietin receptor

4-AP 4-aminopyridine

ES electrical stimulation

cAMP cyclic adenosine monophosphate

BDNF brain-derived neurotrophic factor

ESCs embryonic stem cells

hPSCs human pluripotent stem cells

ADSCs adipose-derived stem cells

SKPCs skin-derived precursor cells

LLLT low-level laser therapy

PBM Photobiomodulation

Sox 10 SRY-related HMG-box-10

Oct6 octamer-binding transcription factor-6

Krox20 early growth response gene (Egr2)

NAB NGFI-A/Egr-binding protein

HDAC histone deacetylase
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