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Objective. To construct a predictive signature based on autophagy-associated lncRNAs for predicting prognosis in lung
adenocarcinoma (LUAD). Materials and Methods. Differentially expressed autophagy genes (DEAGs) and differentially
expressed lncRNAs (DElncRNAs) were screened between normal and LUAD samples at thresholds of ∣ log2Fold Change∣ > 1
and P value < 0.05. Univariate Cox regression analysis was conducted to identify overall survival- (OS-) associated DElncRNAs.
The total cohort was randomly divided into a training group (n = 229) and a validation group (n = 228) at a ratio of 1 : 1.
Multivariate Cox regression analysis was used to build prognostic models in the training group that were further validated by
the area under curve (AUC) values of the receiver operating characteristic (ROC) curves in both the validation and total
cohorts. Results. A total of 30 DEAGs and 2997 DElncRNAs were identified between 497 LUAD tissues and 54 normal tissues;
however, only 1183 DElncRNAs were related to the 30 DEAGs. A signature consisting of 13 DElncRNAs was built to predict OS
in lung adenocarcinoma, and the survival analysis indicated a significant OS advantage of the low-risk group over the high-risk
group in the training group, with a 5-year OS AUC of 0.854. In the validation group, survival analysis also indicated a
significantly favorable OS for the low-risk group over the high-risk group, with a 5-year OS AUC of 0.737. Univariate and
multivariate Cox regression analyses indicated that only positive surgical margin (vs negative surgical margin) and high-risk
group (vs low-risk group) based on the predictive signature were independent risk factors predictive of overall mortality in
LUAD. Conclusions. This study investigated the association between autophagy-associated lncRNAs and prognosis in LUAD
and built a robust predictive signature of 13 lncRNAs to predict OS.

1. Introduction

Lung cancer remains a significant public health problem
threatening life, with 142,670 estimated deaths in the United
States in 2019 and over 1.6 million deaths worldwide annu-
ally [1, 2]. Lung cancer generally consists of small cell lung
cancer (SCLC) and non-small-cell lung cancer (NSCLC),
with lung adenocarcinoma (LUAD) accounting for almost
50% of NSCLC cases [3–5]. Although various therapeutic
approaches have been introduced for LUAD, there were still
no obvious improvements in ameliorating unfavorable prog-
noses, especially in patients with metastatic disease. Metasta-
ses of LUAD to the nervous system, bone, liver, adrenal gland
and even urethra tend to indicate poor therapeutic outcomes,

and only some selected cases may benefit from systematic
therapy [6–8]. The TNM staging system provides a relatively
reliable predictive model for prognosis and remains the most
frequently applied predictor of survival [9]. However, a com-
prehensive investigation of the underlying molecular mecha-
nisms and cellular pathways may be effective potential
diagnostic tools and therapeutic targets for LUAD. Whole-
exome sequencing and immune profiling analyses of LUAD
indicated that molecular and immune phenotypes were
associated with survival and response to adjuvant therapy
in the clinical outcomes and personalized immune-based
therapy of LUAD [10].

Autophagy, a highly evolutionarily conserved catabolic
process, recycles and degrades cellular components via
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Figure 1: Continued.
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lysosomes to provide material for biomolecule synthesis
[11, 12]. Malfunctions in autophagy are involved in a wide
range of diseases, including cancer, neurodegeneration,
and autoimmune diseases [13–16]. Autophagy is a double-
edged sword with survival-supporting effects or cell death
promotion in cancer cells, and it affects cancer cell responses
to cytotoxic drugs [14]. Increasing evidence indicates that
the interplay of autophagy and apoptosis is crucial in the
pathophysiology of LUAD [17]. Long noncoding RNAs
(lncRNAs), characterized by their noncoding function
and their greater than 200 nucleotide length, are involved
in carcinogenesis, cancer progression, and metastasis and
can serve as robust diagnostic and predictive biomarkers
in a variety of cancers [18–22].

Considering the significance of autophagy and lncRNAs
in cancer biology, this study is aimed at investigating
autophagy genes and autophagy-associated lncRNAs in
LUAD from the TCGA (The Cancer Genome Atlas) database
and building an effective signature based on autophagy-
associated lncRNAs to predict prognosis in LUAD.

2. Materials and Methods

2.1. Data Collection. We retrieved the FPKM (fragments
per kilobase of transcript per million fragments mapped)
(level 3) sequencing profiles of mRNAs and lncRNAs from
the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/)
and clinical information from the cBio Cancer Genomics
Portal (http://cbioportal.org) in August 2019. The autoph-
agy genes were collected from the Human Autophagy
Database (HADb; http://www.autophagy.lu/project.html).

2.2. Identification of Differentially Expressed RNAs. The dif-
ferentially expressed autophagy genes (DEAGs) and differen-

tially expressed lncRNAs (DElncRNAs) were screened
between LUAD and normal tissues by the “limma” package
in R, with thresholds set as ∣ log2Fold Change ðFCÞ∣ > 1 and
P value < 0.05. Heatmaps of the DEAGs were plotted by
the “pheatmap” package.

2.3. Functional Enrichment Analysis of the DEAGs. Func-
tional enrichment analysis of the DEAGs was conducted
using DAVID, including biological functions, cellular com-
ponents, and molecular functions, and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG, http://www.kegg.jp/)
database was searched for significant pathways (P < 0:05
and enrichment score > 1:5). Autophagy-related DElncR-
NAs (ARDElncRNAs) were identified by evaluating the
expression correlations between the DElncRNAs and DEAGs
using correlation scores > 0:4 in the total LUAD cohort.

2.4. Prognosis-Associated ARDElncRNAs. Univariate Cox
regression analysis was conducted to explore overall survival-
(OS-) associated ARDElncRNAs with the “survival” package
in R. The interaction network between DEAGs and OS-
associated ARDElncRNAs was constructed and visualized
by Cytoscape v3.7.0 software.

2.5. Construction and Validation of the ARDElncRNA-Based
Signature. The total TCGA cohort was randomly divided into
a training group (n = 229) and validation group (n = 228) in a
ratio of 1 : 1 by the “caret” package in R. Multivariate Cox
regression analysis was performed to build a prognostic
model in the training group using the “survival” package in
R. The predictive value of the ARDElncRNA-based signature
was evaluated by the area under the curve (AUC) values of
the receiver-operator characteristic (ROC) curves in the
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Figure 1: The differentially expressed autophagy genes between lung adenocarcinoma and normal tissues. (a) Heatmap of DEAGs, with red
indicating high expression and green indicating low expression. (b) Volcano plot of DEAGs, with red dots indicating high expression and
green dots indicating low expression. (c) Box plot of DEAGs, with the red boxes representing the tumor group and green boxes
representing the normal group.
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training, validation, and total groups using the “survival-
ROC” package.

2.6. Independent Risk Factors for Overall Mortality in LUAD.
The clinical variables included the age at diagnosis, sex, T sta-
tus, N status, M status, AJCC TNM stage, surgical margin

resection status, and risk score of the ARDElncRNA-based
signature. The patients were divided by age into the following
groups: ≤18-60, 60-80, >80 years old, and unknown. Sex was
classified as male or female. T status was categorized as T1,
T2, T3/4, and unknown. N status was negative (N0), positive
(including N1, N2, and N3), and unknown. M status
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Figure 2: Gene functional enrichment analysis of the differentially expressed autophagy genes. (a) The top 10 biological processes in Gene
Ontology analysis. (b) The top 10 cellular components in Gene Ontology analysis. (c) The top 10 molecular functions in Gene Ontology
analysis. (d) The top 10 Kyoto Encyclopedia of Genes and Genomes pathways.
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included negative, positive, and unknown. Stage was catego-
rized into four types: I, II, III/IV, and unknown. Surgical
margin resection status was divided into negative (R0), posi-
tive (R1/2), and unknown. The risk scores based on the
ARDElncRNA-based signature were classified into low- and
high-risk score groups. Univariate and multivariate Cox
regression analyses were performed to explore independent
predictors of OS in LUAD.

Table 1: Expression correlations between DEAGs and OS-
associated lncRNAs.

DEAGs DElncRNAs Correlation P values

ATIC AL157400.2 0.444360577 1.82E-25

BIRC5 DEPDC1-AS1 0.4832965 1.88E-30

BIRC5 AC021016.2 -0.433811504 3.18E-24

BIRC5 TMPO-AS1 0.567742456 9.45E-44

BIRC5 AC099850.3 0.730138322 6.65E-84

BIRC5 TBX5-AS1 -0.436332494 1.62E-24

DAPK2 AC025271.4 0.416487849 2.84E-22

EIF4EBP1 MIR193BHG 0.40665219 3.24E-21

ERBB2 AC022509.2 0.453023068 1.60E-26

ERO1A AL450992.1 0.459664478 2.37E-27

ERO1A AP000695.2 0.423841103 4.36E-23

ERO1A FAM83A-AS1 0.404049204 6.10E-21

FOS FENDRR 0.401599724 1.10E-20

FOS AC010976.2 0.415847677 3.34E-22

GAPDH LINC00941 0.474791308 2.62E-29

GAPDH AC099850.3 0.41089708 1.15E-21

GAPDH LINC02323 0.428872623 1.18E-23

GRID1 HID1-AS1 0.410196674 1.36E-21

GRID1 AC005180.1 0.424510968 3.67E-23

GRID1 LINC01352 0.479484409 6.17E-30

GRID1 MIR497HG 0.406012066 3.79E-21

GRID1 TBX5-AS1 0.519536812 1.05E-35

IFNG LINC02576 0.502638658 3.54E-33

IFNG IFNG-AS1 0.509396601 3.59E-34

IFNG FAM30A 0.420786534 9.55E-23

IFNG LINC01281 0.46391669 6.84E-28

IFNG LINC02362 0.520330327 7.92E-36

MAP1LC3C AC245041.2 0.402043463 9.88E-21

NLRC4 AC090796.1 0.427690851 1.60E-23

NLRC4 HID1-AS1 0.406839642 3.10E-21

NLRC4 AC004921.1 0.520206459 8.28E-36

NLRC4 AC135012.3 0.422379934 6.35E-23

NLRC4 AL034397.3 0.615024927 4.82E-53

NLRC4 C5orf64 0.545917326 6.02E-40

NLRC4 AC011899.2 0.700536094 1.49E-74

NLRC4 LINC01150 0.521684592 4.89E-36

NLRC4 AC090559.1 0.649814293 5.88E-61

NLRC4 LINC00968 0.451512303 2.46E-26

NLRC4 AC026369.3 0.524436025 1.82E-36

NLRC4 AL390036.1 0.62122729 2.21E-54

NLRC4 FENDRR 0.412286149 8.12E-22

PARP1 AC099850.3 0.427391558 1.73E-23

PTK6 AL121829.2 0.430579374 7.51E-24

TMEM74 AF127936.2 0.481028722 3.82E-30

TMEM74 AC027031.2 0.566844781 1.37E-43

VMP1 AF131215.6 0.408834647 1.90E-21

VMP1 IFNG-AS1 0.604256223 8.65E-51

Table 1: Continued.

DEAGs DElncRNAs Correlation P values

VMP1 LINC01811 0.480470855 4.54E-30

VMP1 AC010999.2 0.64087377 7.96E-59

VMP1 AL021026.1 0.515098693 4.99E-35

VMP1 AL606489.1 0.453317152 1.47E-26

VMP1 AL034397.3 0.410714008 1.20E-21

VMP1 AL591686.1 0.43870005 8.55E-25

VMP1 AL442125.1 0.438302333 9.52E-25

VMP1 AC002519.1 0.678129757 3.29E-68

VMP1 AC084117.1 0.724641884 4.48E-82

VMP1 AC016747.2 0.506683107 9.04E-34

VMP1 C5orf64 0.544372157 1.09E-39

VMP1 LINC01338 0.459058135 2.83E-27

VMP1 AC103681.2 0.51428241 6.64E-35

VMP1 AC091057.1 0.51146999 1.76E-34

VMP1 AC005884.1 0.605423729 4.97E-51

VMP1 AP000864.1 0.519643474 1.01E-35

VMP1 AC037459.2 0.632197563 8.00E-57

VMP1 AF131215.5 0.456755168 5.51E-27

VMP1 AL356608.1 0.519080165 1.23E-35

VMP1 AC026202.2 0.756218065 3.10E-93

VMP1 LINC00628 0.446931586 8.90E-26

VMP1 AL162632.3 0.508247027 5.31E-34

VMP1 SEMA6A-AS2 0.408303227 2.17E-21

VMP1 AL391807.1 0.482667739 2.29E-30

VMP1 LINC01213 0.616028773 2.94E-53

VMP1 AC012213.2 0.554034976 2.50E-41

VMP1 AL390036.1 0.468472261 1.77E-28

VMP1 AL121894.1 0.430161293 8.38E-24

VMP1 LINC01691 0.423537637 4.71E-23

VMP1 AC034102.8 0.687069659 1.14E-70

VMP1 FRMD6-AS1 0.533454663 6.76E-38

VMP1 AC119424.1 0.406469336 3.39E-21

VMP1 AC026355.1 0.675391559 1.80E-67

VMP1 LINC01138 0.511085231 2.01E-34

VMP1 LINC01337 0.442013564 3.47E-25

VMP1 LINC01798 0.469674869 1.23E-28

VMP1 LINC01800 0.519909371 9.19E-36

VMP1 AP000302.1 0.571330031 2.10E-44

VMP1 ABCA9-AS1 0.438916673 8.06E-25

VMP1 AC069542.1 0.411642121 9.52E-22
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3. Results

3.1. Functional Enrichment Analysis of the DEAGs in LUAD.
A total of 232 autophagy genes were collected from the
HADb database, and we identified 30 DEAGs between 497
tumor tissues and 54 normal tissues from TCGA at the
threshold of ∣ log2FC∣ > 1 and P value < 0.05. As demon-
strated in the heatmap (Figure 1(a)), volcano plot
(Figure 1(b)), and boxplot (Figure 1(c)), 18 autophagy genes
were upregulated, while 12 were downregulated in LUAD
compared with normal tissues. Gene functional enrichment
analysis indicated that autophagy-associated mechanisms
were frequently implicated. “Autophagy”, “process utilizing
autophagic mechanism”, and “macroautophagy” were
among the top 20 biological processes; “autophagosome”
and “autophagosome membrane” were the enriched cellular
components; and “autophagy-animal” was the significant
KEGG pathway (Figures 2(a), 2(b), and 2(d)). Moreover,
we found that these DEAGs were also enriched in carcino-
genesis and immunology, such as “HIF-1 signaling pathway”,
“bladder cancer”, “platinum drug resistance”, “EGFR tyro-
sine kinase inhibitor resistance”, “PD-L1 expression and
PD-1 checkpoint pathway in cancer”, “T cell receptor signal-
ing pathway”, and “Th17 cell differentiation” in KEGG
analysis (Figure 2(d)).

3.2. DElncRNAs in LUAD. A total of 2997 DElncRNAs were
screened between normal samples and lung adenocarcinoma
samples at the threshold of ∣ log2FC∣ > 1 and P value < 0.05,
among which 2346 DElncRNAs were upregulated while 651
DElncRNAs were downregulated. Based on the expression
profiles of 497 lung adenocarcinoma tissues, 1183
ARDElncRNAs were identified with correlation scores > 0:4
and P value < 0.05.

3.3. Prognosis-Associated ARDElncRNAs in LUAD. After the
exclusion of LUAD patients with unavailable follow-up
information or an OS duration less than 1 month, a total of
457 LUAD patients were included for univariate Cox regres-
sion analysis. Only 78 of 1183 ARDElncRNAs were found to
be associated with the OS of LUAD patients, and expression
correlations between DEAGs and OS-associated lncRNAs
are summarized in Table 1. An interaction network was built
on the 78 OS-associated ARDElncRNAs and 16 correspond-
ing associated DEAGs, including ATIC, BIRC5, DAPK2,
EIF4EBP1, ERBB2, ERO1A, FOS, GAPDH, GRID1, IFNG,
MAP1LC3C, NLRC4, PARP1, PTK6, TMEM74, and
VMP1, as shown in Figure 3.

3.4. OS-Associated ARDElncRNA-Based Signature for OS in
LUAD. The 457 lung adenocarcinoma patients were
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Figure 4: Kaplan-Meier survival curves and ROC curves to evaluate prognostic models based on the 13-lncRNA signature. (a) Kaplan-Meier
survival curves for lung adenocarcinoma patients between the low- and high-risk groups in the training cohort. (b) ROC curves showing the
predictive ability of the signature for 5-year OS. (c) Kaplan-Meier survival curves for lung adenocarcinoma patients between the low- and
high-risk groups in the validation cohort. (d) ROC curves showing the predictive ability of the signature for 5-year OS. (e) Kaplan-Meier
survival curves for lung adenocarcinoma patients between the low- and high-risk groups in the total group. (f) ROC curves showing the
predictive ability of the signature for 5-year OS.
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randomly divided into a training group (n = 229) and a vali-
dation group (n = 228). The 78 identified OS-associated
ARDElncRNAs were first analyzed by multivariate Cox

regression in the training group to build a prognostic
model. A signature consisting of 13 ARDElncRNAs was
built to predict the OS of LUAD, including AC010999.2,
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Figure 5: (a) The distribution of the risk scores of the 457 total included cases. (b) The distribution of OS time and status of the 457 total
included cases. (c) Heatmap of the expression of the 13 lncRNAs in the low risk score and high risk score groups, with red indicating high
expression and green indicating low expression.
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AC084117.1, AC016747.2, LINC01338, AL356608.1,
AL162632.3, SEMA6A-AS2, AC012213.2, LINC01691,
AC034102.8, TMPO-AS1, AL121829.2, and AC069542.1.
The detailed signature was as follows: risk score = ð−4:025Þ∗
AC010999:2 + ð0:1964Þ∗AC084117:1 + ð−1:23Þ∗ AC016747:2
+ ð0:4893Þ∗ LINC01338 + ð−6:623Þ∗ AL356608:1 + ð6:577Þ∗
AL162632:3 + ð9:316Þ∗SEMA6A −AS2 + ð10:78Þ∗ AC012213:2
+ ð1:632Þ∗ LINC01691 + ð−1:12Þ∗ AC034102:8 + ð0:7756Þ∗
TMPO − AS1 + ð1:359Þ∗ AL121829:2 + ð0:1708Þ∗ AC069542:1:
The training group was further divided into a low-risk group
and a high-risk group by the median risk score of the 13-
ARDElncRNA signature. The Kaplan-Meier survival analysis
indicated a significant OS advantage of the low-risk group over
the high-risk group, as shown in Figure 4(a) (P < 0:001), and
the sensitivity and specificity of this model in predicting OS
was favorable with a 5-year OS AUC of 0.854 (Figure 4(b)).

3.5. Validation of the ARDElncRNA-Based Signature for OS
in LUAD. The predictive value of the ARDElncRNA-based
signature was further evaluated in the validation and total
groups. The survival curve analysis indicated significantly a
favorable OS for the low-risk group compared with the
high-risk group (Figure 4(c), P < 0:001), with a 5-year OS
AUC of 0.737 (Figure 4(d)) in the validation group. More-
over, in the total LUAD group combining the training and
validation groups, there was still a significant difference
between the low-risk and high-risk groups (Figure 4(e),
P < 0:001), with a 5-year OS AUC of 0.811 (Figure 4(f)).

The distribution of the risk scores, OS statuses, and OS
times of the 457 total included patients are shown in
Figures 5(a) and 5(b). The heatmap in Figure 5(c) shows
the expression distributions of the 13 ARDElncRNAs in
the low-risk and high-risk groups, with the color changing
from green to red, indicating rising trends from low
expression to high expression levels.

3.6. Risk Factors Predictive of Overall Mortality in LUAD.
Univariate Cox regression analysis was conducted to investi-
gate the influences of clinicopathological factors, including
the age at diagnosis, sex, T status, N status, M status, stage,
surgical margin resection status, and risk score of the
ARDElncRNA-based signature. Age at diagnosis and sex
were not significant factors associated with OS; however, T2
(vs T1, HR 1.535, 95% CI 1.063-2.216, P = 0:022), T3/4 (vs
T1, HR 3.208, 95% CI 2.001-5.142, P < 0:001), positive N
status (vs negative N status, HR 2.693, 95% CI 1.985-
3.653, P < 0:001), positive M status (vs negative M status,
HR 2.236, 95% CI 1.304-3.835, P = 0:003), stage II (vs
stage I, HR 2.765, 95% CI 1.903-4.017, P < 0:001), stage
III/IV (vs stage I, HR 3.629, 95% CI 2.524-5.216, P <
0:001), positive surgical margin (vs negative surgical mar-
gin, HR 4-027, 95% CI 2.249-7.212, P < 0:001), and high
risk score (vs low risk score, HR 2.036, 95% CI 1.499-
2.767, P < 0:001) were significant factors associated with
OS (Table 1 and Figure 6(a)). Multivariate Cox regression
analysis indicated that only positive surgical margin (vs
negative surgical margin, HR 3.428, 95% CI 1.808-6.498,

T status (T2 vs T1)

T status (T3/4 vs T1)

N status (Postive vs Negative)

M status (Postive vs Negatvie)

Stage (II vs I)

Stage (III/IV vs I)
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Risk score (High vs Low)
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Figure 6: Forest plots of univariate and multivariate Cox regression analyses of risk factors associated with overall mortality in the TCGA
LUAD cohort. (a) Forest plot of univariate Cox regression results. (b) Forest plot of multivariate Cox regression results.
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P < 0:001) and high risk score (vs low risk score, HR
1.823, 95% CI 1.315-2.526, P < 0:001) were independent
risk factors predictive of overall mortality in LUAD
(Table 2 and Figure 6(b)). The flowchart of this study is
shown in Figure 7.

4. Discussion

Autophagy plays a dual role in suppressing and promoting
initiation or progression in different phases of cancer.
Autophagy was found to mediate the secretion of immune-
modulating factors that promote cellular proliferation and
leads to an invasive cancer phenotype [23]. The upregulation
of autophagy facilitates cancer survival under stress circum-
stances and increases cancer growth and aggressiveness;

therefore, efforts to inhibit autophagy to improve cancer
therapeutic effects have attracted great interest [24].

Growing evidence indicates a close correlation between
autophagy and lung cancer. PAQR3 was demonstrated to
suppress the tumor progression of NSCLC cells by modulat-
ing EGFR-regulated autophagy [25]. The downregulation of
autophagy facilitated the anti-LUAD efficacy of Shh pathway
suppression, thus highlighting a potential approach for
LUAD therapy [26]. miR-150-mediated autophagy dysfunc-
tions were found to induce ER stress and the DNA damage
response and contribute to NSCLC development [27]. With
regard to cisplatin resistance in NSCLC, the autophagy inhi-
bition of cancer stem cells identified by CD133 expression
could promote the efficacy of cisplatin against NSCLC [28].

This study initially identified 30 DEAGs between 497
LUAD tissues and 54 normal tissues. Gene functional

Table 2: Univariate and multivariate Cox regression analyses of LUAD.

Variables Total (n = 457) Univariate Cox regression Multivariate Cox regression
HR 95% CI P HR 95% CI P

Age (years)

18–60 130 1 Reference NA 1 Reference NA

60–80 292 1.124 0.800-1.580 0.5 NA NA NA

>80 25 1.338 0.653-2.740 0.426 NA NA NA

Unknown 10 NA NA NA NA NA NA

Sex

Male 249 1 Reference NA 1 Reference NA

Female 208 1.083 0.802-1.461 0.603 NA NA NA

T status

T1 155 1 Reference NA 1 Reference NA

T2 244 1.535 1.063-2.216 0.022 1.149 0.780-1.691 0.483

T3/4 55 3.208 2.001-5.142 <0.001 1.447 0.820-2.553 0.202

Unknown 3 NA NA NA NA NA NA

N status

Negative 295 1 Reference NA 1 Reference NA

Positive 151 2.693 1.985-3.653 <0.001 1.551 0.911-2.641 0.106

Unknown 11 NA NA NA NA NA NA

M status

Negative 307 1 Reference NA 1 Reference NA

Positive 23 2.236 1.304-3.835 0.003 0.948 0.485-1.854 0.877

Unknown 127 NA NA NA NA NA NA

Stage

Stage I 247 1 Reference NA 1 Reference NA

Stage II 104 2.765 1.903-4.017 <0.001 1.69 0.940-3.039 0.08

Stage III/IV 98 3.629 2.524-5.216 <0.001 1.798 0.886-3.649 0.104

Unknown 8 NA NA NA NA NA NA

Surgical margin

Negative (R0) 310 1 Reference NA 1 Reference NA

Positive (R1/2) 16 4.027 2.249-7.212 <0.001 3.428 1.808-6.498 <0.001
Unknown 131 NA NA NA NA NA NA

Risk score

Low 229 1 Reference NA 1 Reference NA

High 228 2.036 1.499-2.767 <0.001 1.823 1.315-2.526 <0.001
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enrichment analysis revealed that the main mechanisms were
involved in carcinogenesis, including bladder cancer, EGFR
tyrosine kinase inhibitor resistance, and platinum drug resis-
tance. Moreover, the immunological pathways were also sug-
gested to correlate with the DEAGs. Targeting autophagy was
found to be an alternative and novel strategy in cancer immu-
nology. Rocaglamide, a natural product, could enhance the
natural killer cell-mediated lysis of NSCLC cells by targeting
ULK1, which is required for autophagy initiation and autoph-
agy inhibition [29]. SIRPαD1-Fc, as a CD47-targeting fusion
protein, promoted macrophage-mediated phagocytosis and
cytotoxicity by inhibiting autophagy, which highlighted a
potential approach for NSCLC treatment involving simulta-
neously targeting CD47 and autophagy [30].

Considering the increasingly significant role of lncRNAs
in cancer, this study screened 2997 DElncRNAs between can-
cer and normal samples, and 1183 ARDElncRNAs associated
with 30 DEAGs were identified. The correlations between
lncRNAs and autophagy in cancer biology have been widely
investigated. The upregulation of the lncRNA GAS5 was
found to enhance cisplatin sensitivity in NSCLC by inhibiting
autophagy [31]. The overexpression of the lncRNA NBAT1

also inhibited autophagy by interacting with PSMD10 and
suppressing ATG7 transcription in NSCLC cells, which led
to reduced cell viability, clonogenicity, and chemoresistance
[32]. The lncRNA MSTO2P promoted lung cancer cell pro-
liferation and autophagy by upregulating EZH2 [33]. The
lncRNA BLACAT1 promoted ATG7 expression through
miR-17, facilitated autophagy, and promoted the chemore-
sistance of NSCLC cells through the miR-17/ATG7 signaling
pathway [34]. In this study, 78 OS-associated ARDElncRNAs
and 16 corresponding associated DEAGs were identified and
provided more molecular targets to investigate the underly-
ing mechanism on carcinogenesis and progression of LUAD.

Taking clinical and prognostic information into consid-
eration, 78 of 1183 ARDElncRNAs were associated with OS
in LUAD. A signature consisting of 13 ARDElncRNAs was
developed from the training cohort and further validated in
the validation group and total group. Univariate and multi-
variate Cox regression analyses were conducted to investigate
the influences of clinicopathological factors and the risk score
of the ARDElncRNA-based signature, and only positive sur-
gical margin (vs negative surgical margin) and high score (vs
low score) based on the ARDElncRNA-based signature were

232 autophagy genes were collected and 30 DEAGs were 
screened between 497 tumor tissues and 54 normal tissues 

from TCGA

2997 DElncRNAs were screened with 2346 upregulated 
DElncRNAs and 651 downregulated DElncRNAs.

Autophagy related DElncRNAs (ARDElncRNAs) were identified by evaluating the expression 
correlations between DElncRNAs and DEAGs, using correlation scores >0.4 in the total LUAD 

cohort.

Gene functional enrichment analysis 
of 30 DEAGs

457 LUAD patients with available follow‑up information and an OS duration more than 1 
month were included to conduct univariate Cox regression analysis.

Training group (n = 229) Validation group (n = 228)

A prognostic model consisting of 13 ARDElncRNAs was built to predict 
OS of LUAD Validation of ARDElncRNAs-based signature for OS in 

validation group and total group

Univariate and multivariate Cox regression analysis indicated positive 
surgical margin and high risk score based on lncRNA signature were 

independent risk factors predictive of overall mortality in LUAD

78 ARDElncRNAs corresponding to 16 DEAGs were associated with OS, and 
used to build interaction network.

Figure 7: The flowchart of this study.
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independent risk factors predictive of overall mortality in
LUAD.

However, there were some limitations in our study. First,
the ARDElncRNAs were identified based on the expression
correlations between DElncRNAs and DEAGs. The underly-
ing mechanisms and molecular correlations between
ARDElncRNAs and autophagy need to be investigated.
Moreover, the ARDElncRNA signature was developed and
validated using a retrospective cohort from TCGA, and the
predictive efficacy needs to be further proven in other pro-
spective cohorts.

5. Conclusions

This study first investigated the correlation between
autophagy-associated lncRNAs and prognosis in LUAD
and built a robust predictive signature of 13 ARDElncRNAs
to predict OS.
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