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Abstract: The social and economic impact of chronic inflammatory diseases, such as arthritis,
explains the growing interest of the research in this field. The antioxidant and anti-inflammatory
properties of the endogenous gasotransmitter hydrogen sulfide (H2S) were recently demonstrated in
the context of different inflammatory diseases. In particular, H2S is able to suppress the production
of pro-inflammatory mediations by lymphocytes and innate immunity cells. Considering these
biological effects of H2S, a potential role in the treatment of inflammatory arthritis, such as rheumatoid
arthritis (RA), can be postulated. However, despite the growing interest in H2S, more evidence is
needed to understand the pathophysiology and the potential of H2S as a therapeutic agent. Within
this review, we provide an overview on H2S biological effects, on its role in immune-mediated
inflammatory diseases, on H2S releasing drugs, and on systems of tissue repair and regeneration that
are currently under investigation for potential therapeutic applications in arthritic diseases.

Keywords: inflammation; arthritis; organosulfur compounds; oxidative stress; stem-cell therapy;
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1. Introduction

Hydrogen sulfide is an endogenously produced biological agent belonging to the gasotransmitter
family. The physiological role and the relevance of this molecule are rapidly expanding. Endogenous H2S
plays pivotal roles in the biochemical pathways of the central nervous, respiratory, and cardiovascular
systems. This gasotransmitter is physiologically present in the human body, and it is mainly produced
endogenously by four enzymes: cystathionine beta-synthase (CBS EC 4.2.1.22), cystathionine
gamma-lyase (CSE, EC 4.4.1.1), 3-mercaptopyruvate sulfotransferase (MST, EC 2.8.1.2), and cysteine
aminotransferase (CAT) (reviewed in references [1–5]). However, other enzymes such as thiosulfate
sulfurtransferase (TST) [6] and the more recently discovered selenium-binding protein 1 (SELENBP1)
are able to catalyze H2S production [7].

Although there are limits of measurement techniques and the quantification of biologic H2S levels is
debated, H2S physiological levels may range from 50–160µM in the mammalian brain to 30 nM–100 µM
in the peripheral blood and 25 µM in the synovial fluid of patients with non-inflammatory
arthritis [8–13]. It is known that a relevant fraction of H2S is bound to proteins in several tissues,
such as hemoglobin [14,15]. An endogenous source of H2S is also represented by the enterobacterial
flora and by the non-enzymatic reduction of sulfurs [4].

As a gasotransmitter, H2S can pass freely through cell membranes and does not require a specific
receptor to mediate its effect. Only recently, H2S was considered an important signaling molecule.
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The biological effects of H2S are multiple and opposite, depending on its concentration. The first H2S
biological effect was discovered in the vascular system, with the ability to induce the relaxation of
vascular smooth muscle, causing vasodilation [16]. Despite the controversial role initially attributed to
H2S, it is to date recognized that, at low concentrations, it exhibits anti-apoptotic, anti-nociceptive,
cardio-protective, and blood pressure-lowering effects, while also improving angiogenesis, via the
activation of KATP channels and extracellular signal-regulated kinases, such as Akt pathways [1,17–22].
Moreover, H2S shows neuroprotective and anti-inflammatory effects in general due to its antioxidant
effects and inhibition of pro-inflammatory cytokines [23–28]. The potential effects of H2S were also
discussed in several review articles [29–32] and are here summarized in Figure 1.

1 
 

 

 

Figure 1. Schematic description of the effects of H2S. The anti-inflammatory effect of H2S is due to
its ability to inhibit some essential pro-inflammatory transcription factors and intracellular signaling,
such as nuclear factor κB (NF-κB) and phosphodiesterases (PDEs), and to improve angiogenesis
through KATP channel/mitogen-activated protein kinase (MAPK) pathway activation. It inhibits the
production of inflammatory cytokines and avoids the adhesion of leukocytes and endothelial cells.
Moreover, the gasotransmitter can have pro- or anti-apoptotic effects depending on the cell type and its
concentration. At the appropriate concentration, it is also able to have an anti-apoptotic effect due to its
antioxidant properties, as well as its ability to increase the mitochondrial activity and the expression of
anti-apoptotic proteins [17]. However, exogenous H2S is also able to induce apoptosis in cancer cells.
H2S can also act on the vascular smooth muscle producing vasodilation. M1, macrophages M1; M2,
macrophages M2; KATP, ATP-dependent K -channels.

In the last few years, many studies demonstrated a relevant role of H2S to mediate the inflammation
and the processes of tissues repair. Chronic inflammation is the key feature of inflammatory arthritis,
such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). The impact of chronic inflammatory
diseases on the quality of life and autonomy in the daily activities in a wide population with different
ages and the consequent high economic costs explain the growing interest in this field. Recently,
the connection between H2S and joint inflammation, in the context of arthritis, is growing, either as a
pathogenic or potential therapeutic role. Therefore, in this review, we describe the effects of H2S on
inflammatory arthritis and its potential therapeutic approach.
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2. Oxidative Stress and Inflammation in Arthritis

RA and PsA represent the most common chronic inflammatory arthritis. They share common
pathogenic features, both linked to chronic inflammation secondary to a dysregulation of the immune
response; however, the clinical manifestations and outcomes are usually different. Despite the
clinical and pathological differences, both diseases share some similarities in the inflammatory
pathways. In the course of active arthritis, joint inflammation is overall characterized by increased
vascularization, oxidative stress, and infiltration of immune cells in the synovium (Figure 2); these
events induce fibroblast-like synoviocyte (FLS) hypertrophy which, ultimately, perpetuates the
inflammation, generating a chronic loop. In the early stages of arthritis, the oxidative stress seems
to have a key role in initiating the inflammatory process, as demonstrated in some studies [33,34].
Moreover, oxidative stress may account for post-translational modifications of proteins, potentially
responsible for autoreactive antibody production [35], particular to RA. Synovial angiogenesis is also
an early alteration in the arthritic joint and is characterized by endothelial swelling, cell infiltration,
and tortuous vessels. The amplified expression in the synovium of pro-inflammatory cytokines
and growth factors, particularly vascular endothelial growth factor (VEGF), contributes to increased
vascularity [36]. However, the new vessels are mostly dysfunctional and, consequently, the RA/PsA
synovial membrane results hypoxic. Unsurprisingly, the resulting synovial hypoxia was correlated with
local joint inflammation [37]. In the inflamed synovium, altered mitochondrial function and oxidative
damage were also observed, which are both possibly related to hypoxia [38,39]. The perpetuation
of inflammation leads to damage of the cartilage, which allows the invasion of the subchondral
bone by FLS, immune cells, and pro-inflammatory cytokines [40]. The exposure of the subchondral
bone to the action of proteinase and activation of osteoclasts (OCs) leads to the characteristic bony
erosions (Figure 2). Additionally, PsA is also characterized by inflammation of the enthesis associated
with a peculiar osteoproductive phenomenon, which leads to calcification of tendons, ankylosis
of joints, and consequently to impaired quality of life. This phenomenon is possibly related to
impaired mechanisms of tissue repair. Despite the recent progress and advances, the pathogenic
mechanisms behind RA and PsA onset are far from being completely understood. The pathogenesis of
inflammatory arthritis is characterized by an immune dysregulation, which involves the activation of
both innate and adaptive immunity. Immune-mediated pathogenesis was demonstrated by different
evidence, such as the presence of auto-reactive T cells in the synovium [41], the association with
major histocompatibility complex (MHC)-I, and the good response to immunosuppressive drugs [42].
An altered metabolic response of the immune cells may also contribute to the perpetuation of the
inflammatory loop in the inflamed synovium. FLS and synovial macrophages are enhancers of joint
inflammation, which ultimately leads to cartilage disruption [43]. In fact, FLS have a tumor-like
behaviour in PsA joints. They are characterized by a few key features, i.e., the increased proliferation and
invasiveness, the resistance to apoptosis, and the active production of matrix-degrading enzymes and
pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), and interleukin 17 (IL-17) [44].
Regarding innate immunity, dendritic cells (DCs) are present in the synovium, synovial fluid, and ectopic
lymph tissue of RA inflamed joints compared with osteoarthritis; in the context of inflammation,
DCs have a role as antigen-presenting cells (APCs) and as a producer of pro-inflammatory cytokines,
i.e., IL-23 and IL-12, which induce the differentiation of T helper 17 cells (Th17) and Th1 subsets, relevant
in joint inflammation [45]. Moreover, defective regulatory T cells are associated with autoimmune
disorders, such as RA [46]. Furthermore, macrophages play an active role in the pathogenesis of
inflammatory arthritides because of the high expression of pro-inflammatory cytokines and matrix
metalloproteinases, and they are APCs for T cells and B cells, representing a source of osteoclast
precursors in an inflammatory context [47]. Lymphocytes infiltrate the synovium, where aggregates
of T cells and B cells are found, and their absence is associated with remission [48,49]. Despite the
progress in arthritis treatment over the last few decades, up to 40% of patients are still non-responders
to the available treatments; for this reason, research toward a better understanding of the pathogenesis
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is continuously growing with a particular interest in new pathogenic mechanisms and possible
therapeutic targets.
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Figure 2. Pathogenesis of inflammatory arthritides. Self-reactive T helper cells seem involved in the
maintenance of inflammation, further sustained by B cells, especially in rheumatoid arthritis (RA),

where it is possible to detect autoantibodies (

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW 4 of 26 

Figure 2. Pathogenesis of inflammatory arthritides. Self-reactive T helper cells seem involved in 
the maintenance of inflammation

where it is possible ( ), such 

generate vasodilation, infiltration of immune cells, and destruction of the cartilage. , dendritic 

cell/APC; , osteoclast; , chondrocyte. 

3. H2S as Inhibitor of Oxidative Stress and Inflammation

H2S can be an endogenous mediator to limit free radical damage and inflammation [50]. A 
relevant role is played by H2S in balancing oxidative and reductive species, thus influencing the cell’s 
redox state. H2S is a strong reducing agent able to directly react with multiple oxidant stressors 
including superoxide radical anion [51], hydrogen peroxide [52], and peroxynitrite (ONOO−) [50] (see 
Figure 3). Furthermore, H2S is able to antagonize lipid peroxidation and oxidation of thiols, to reverse 
mitochondrial dysfunction [53], and to increase the activity of the most important enzymes involved 
in the cell’s antioxidant defense. One of these enzymes, the Cu/Zn superoxide dismutase (SOD) [54], 
is a target of H2S, which binds to the catalytic Cu center, thus increasing the ROS scavenging activity.
Moreover, the persulfuration of Cys-111 of the human SOD1 stabilizes the enzyme against oxidation-
induced aggregation without affecting its activity [55]. The activity of other enzymes, also implicated 
in the cell’s antioxidant response, such as catalase (CAT), glutathione reductase (GR), glutathione S-
transferase (GST), quinone reductase (QR), and glutathione peroxidase (GPx), was likewise 
augmented in rat kidney upon treatment with diallyl sulfide (DAS), which is an H2S-releasing 
molecule [56]. 
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), such as the rheumatoid factor and anti-cyclic
citrullinated peptide (anti-CCP) antibodies. Furthermore, innate immunity is involved in chronic
inflammation. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the differentiation
of the macrophages. Monocytes and macrophages, as well as dendritic cells, seem to play a vital role in
the pathogenesis of inflammatory arthritis, as antigen-presenting cells (APCs), and they can express
several pro-inflammatory cytokines. In early stages of inflammation, hypoxia and the production of
ROS (reactive oxygen species) and RNS (reactive nitrogen species) seems to play a role in the initiation
of the inflammatory process and induction of angiogenesis. The new blood vessels further maximize
the recruitment of immune cells, amplifying the inflammatory process. The chronic inflammation
finally perpetuates the production of pro-inflammatory cytokines (such as tumor necrosis factor-α
(TNF-α)) and other mediators, such as prostaglandin E2, which ultimately generate vasodilation,

infiltration of immune cells, and destruction of the cartilage.
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3. H2S as Inhibitor of Oxidative Stress and Inflammation

H2S can be an endogenous mediator to limit free radical damage and inflammation [50]. A relevant
role is played by H2S in balancing oxidative and reductive species, thus influencing the cell’s
redox state. H2S is a strong reducing agent able to directly react with multiple oxidant stressors
including superoxide radical anion [51], hydrogen peroxide [52], and peroxynitrite (ONOO−) [50]
(see Figure 3). Furthermore, H2S is able to antagonize lipid peroxidation and oxidation of thiols,
to reverse mitochondrial dysfunction [53], and to increase the activity of the most important enzymes
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involved in the cell’s antioxidant defense. One of these enzymes, the Cu/Zn superoxide dismutase
(SOD) [54], is a target of H2S, which binds to the catalytic Cu center, thus increasing the ROS
scavenging activity. Moreover, the persulfuration of Cys-111 of the human SOD1 stabilizes the
enzyme against oxidation-induced aggregation without affecting its activity [55]. The activity of
other enzymes, also implicated in the cell’s antioxidant response, such as catalase (CAT), glutathione
reductase (GR), glutathione S-transferase (GST), quinone reductase (QR), and glutathione peroxidase
(GPx), was likewise augmented in rat kidney upon treatment with diallyl sulfide (DAS), which is an
H2S-releasing molecule [56].
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Figure 3. Biological anti-inflammatory effects of H2S. H2S exerts an anti-inflammatory effect via
different biologic effects: direct and indirect reducing action (Nrf2, ARE activation), a regulatory effect
on the immune system via NF-kB interaction, interference with rolling and migration of circulating
cells, inhibition of enzymes involved in the inflammatory signaling (protein tyrosine phosphatases
(PTPs), PDEs). H2S induces separation between Nrf2 and Keap1, allowing Nrf2 to enter the nucleus
and bind to the ARE gene; furthermore, it modulates in a dose-dependent manner the expression of
many cytokine genes, while it obtains an anti-apoptotic effect through Akt activation. H2S, through
action on ATP-sensitive potassium channels (KATP), inhibits the expression of adhesion molecules
on the leukocytes (cluster of differentiation (CD)11/CD18) and endothelium (P-selectin, intracellular
adhesion molecule 1 (ICAM1)).

H2S is also able to upregulate the antioxidant response elements (ARE) gene transcription [57]
(Figure 3) and to produce glutathione persulfide (GSSH) in mitochondria [50,52], a more efficient
H2O2-scavenging molecule than GSH. In more detail, H2S induces the dissociation between nuclear
erythroid factor 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) through the
sulfhydration of Keap 1 at the Cys-151 residue and induction of a disulfide bond between Cys-288 and
Cys-613 residues, thus allowing the Nrf2 nuclear translocation and binding to AREs (Figure 3) [58–63].
The antioxidant activity of this gasotransmitter is also related to the activation of KATP channels to
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reduce oxidative glutamate toxicity [64]. Moreover, the anti-oxidative effects of H2S are also related
to the anti-inflammatory effect via an increase in the expression of anti-oxidant enzymes, such as
indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) and heme oxygenase 1 (HO1), SOD, CAT, and GPx,
which lead to the suppression of reactive oxygen species (ROS) production (Figure 3) [65,66]. Surely,
the direct antioxidant effect as a free radical scavenger and as an inducer of antioxidant enzymes might
have a potential anti-inflammatory effect in joint inflammation [67,68].

Interestingly, H2S is also an inflammation modulator that can have both pro- and anti-inflammatory
effects on immune cells, depending on the concentration [68]. Commonly, a pro-inflammatory effect
was observed at high H2S concentrations, whereas an anti-inflammatory effect was observed at
physiological concentrations. Overall, the role of H2S in resolving ongoing inflammation and inducing
tissue repair was suggested [26,31,69–71]. The exogenous administration of H2S at physiological levels
enhances T-cell activation in T-cell lines and upregulates the expression of cluster of differentiation 69
(CD69), IL-2, and CD25 [72]; H2S-induced signaling plays a key role in T-cell activation. Moreover,
H2S shows a regulatory interaction with IL-10. Furthermore, the upregulation of IL-10 expression was
observed after the exogenous administration of H2S [73]. The ability of H2S donors to modulate the
expression of genes for many pro-inflammatory cytokines, chemokines, and enzymes is largely linked
to effects on NF-κB activity. In rodent models of colitis, treatment with H2S-donors significantly reduced
tissue expression of IL-1β, interferon-γ, TNF-α, IL-12 p40, IL-2, regulated upon activation, normal
T cell expressed and presumably secreted (RANTES), and inducible nitric oxide synthase (iNOS),
without affecting the IL-10 expression [71,74,75]. Allyl disulfide treatment significantly inhibited NF-κB
activation and production of TNF-α, as observed by biopsies from patients with ulcerative colitis. It was
shown that H2S donors are able to reduce TNF-α release following lipopolysaccharide (LPS) exposure
in RAW 264.7 cells, a murine monocyte/macrophage-like lineage [76]. Moreover, it was recently
demonstrated that H2S can shift the macrophage phenotype from pro- to anti-inflammatory [70,77].

Additionally, H2S plays also a relevant role in orchestrating immune cell tissue recruitment and
infiltration, which are vital in the generation of the inflammatory processes. Leukocyte recruitment
and tissue infiltration at the site of inflammation are initial events in inflammation response that
are linked to the increase of the production of vascular cell adhesion molecule 1 (VCAM1) and
intracellular adhesion molecule 1 (ICAM1) in endothelial cells. H2S donors and non-selective inhibitors
of CSE and CBS specifically inhibit the migration of leukocytes by directly reducing the adherence
of circulating cells to the inflamed vascular walls (as shown in Figure 1); consequently, H2S reduces
the infiltration of neutrophils and lymphocytes in tissue [78]. H2S downregulates ICAM expression
in high-glucose-treated [79] and TNF-treated human umbilical vein endothelial cells [80]. Moreover,
the upregulation of heme oxygenase 1 (HO1) and inhibition of the NF-κB pathway due to H2S-donors
can induce the inhibition of VCAM1 expression [81,82]. In neutrophils, H2S may also induce the
apoptosis, amplifying the anti-inflammatory effect [83].

Moreover, several enzymes involved in the inflammatory response can be inhibited by H2S.
The majority of protein tyrosine phosphatases (PTPs) have a conserved catalytic domain that contains
a cysteine residue, which is able to perform a nucleophilic attack on a substrate; this catalytic
residue can be sulfhydrated, as well as in the case of PTP1B. PTP1B is ubiquitously expressed [84]
and plays a regulatory role in the control of immune cell signaling in macrophages, monocytes,
and granulocytes [85]. PTP1B is important in the release of inflammatory cytokines such as IL-4, IL-6,
TNF-α, extracellular signal-regulated kinase (ERK), protein kinase B (PKB/Akt) (see Figure 3), human
epidermal growth factor receptor 2 (HER2), and NF-κB [84,86,87]. Although PTP1B is a negative
regulator of inflammation able to regulate inflammatory processes [88,89], it was also demonstrated
that the administration of an inhibitor of PTP1B attenuates the LPS-induced neuroinflammation in
mice [90]. PTP1B was the first phosphatase that was shown to be sulfhydrated [91]. The PTP1B
sulfhydration occurs at the Cys-215 residue in the active site and leads to inhibition of the PTP
activity at a second-order rate (22.4–1.8 M−1

·s−1) with a rate of H2S-mediated PTP1B inactivation of
10–1.4 M−1

·s−1. In a model of endoplasmic reticulum stress, the sulfhydration of PTP1B decreases
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its activity, increasing the phosphorylation and activation of eIF2a kinase protein kinase RNA-like
endoplasmic reticulum kinase (PERK) Tyr-619, which is a direct PTP1B substrate and has an important
role in the endoplasmic reticulum stress response.

Furthermore, H2S can have an inhibitory effect on some phosphodiesterase (PDE) enzymes and,
consequently, a positive effect on inflammation [92,93]. PDE inhibitors can have beneficial effects in
inflammation by increasing cAMP level, as well as inhibiting the production of ROS and cytokines
such as TNF-α and IL-1. Furthermore, PDE5 inhibitors, which increase cGMP levels, can inhibit the
production of IL-6 and TNF-α [94,95]. Both endogenous and exogenous H2S serves as an inhibitor
of PDEs [96]. With a half maximal inhibitory concentration (IC50) of 1.6 µM, H2S can inhibit the
activity of the cGMP-specific PDE5 widely distributed in the cardiovascular system [97,98] and of
the mitochondrial PDE2A stimulating mitochondrial electron transport [99]. However, the H2S
selectivity among different PDE isoforms should be deeply investigated. Notably, the inhibitor of
PDE-4, apremilast, was approved for the treatment of PsA [100]; this further highlights the possible
therapeutic role of H2S in inflammatory arthritis, due to its effect on PDE enzymes.

The effects on the gastrointestinal tract are representative of the behaviour of this gasotransmitter
in inflammation. In detail, H2S is able to promote healing of experimentally induced stomach ulcers
in rats, while treatment with dl-propargylglycine (PAG), which is a CSE inhibitor, has the opposite
effect [18,101]. Moreover, ABT-346, which is H2S-releasing naproxen, showed significantly less or even
the absence of gastrointestinal toxicity compared to naproxen in rats [102].

In the last few years, the molecular mechanism of the H2S effect on inflammation was widely
investigated. IκB/NF-κB (inhibitor of κB /Nuclear factor κ B) is an important molecular pathway that
is a key target of H2S. NaHS inhibits IκB-α degradation and, therefore, reduces NF-κB translocation
into the nucleus [103,104]. The first evidence was that LPS-induced NF-κB activation in cultured
mouse macrophages was inhibited by H2S [105]. Subsequently, other studies showed evidence that,
in different cell lines, H2S regulates the transcription, via NF-κB downregulation, of a plethora of
pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, IL-8, IL-18, inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX-2), and some adhesion molecules. Additionally, slow-releasing H2S
donors such as GYY4137 (morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate)
S-diclofenac, and S-propargyl-cysteine (SPRC) have similar effects [106–109]. Furthermore, H2S can
also promote cell survival via sulfhydration of the p65 subunit of NF-κB at Cys-38 leading to an
anti-apoptotic effect of NF-κB in response to pro-inflammatory agents such as TNF-α and LPS in
macrophages [110]. Although the effect of H2S on NF-kB is relevant in the inflammation, other
transduction mechanisms such as Akt/PKB and MAPK pathways, signal transducer and activator of
transcription 3 (STAT-3), and Nrf2 cannot be ruled out as mediator of the inflammatory response to
this gasotransmitter [56,60,106,111]. Additionally, it was recently demonstrated that H2S can induce
the activation of forkhead box P3 (FOXP3) and, consequently, the differentiation of T regulatory
cells. The functional enhancement of T regulatory cells by H2S highlights the role that this T-cell
population may have in the H2S regulatory network of autoimmune inflammation, i.e., inflammatory
arthritis [112].

Interestingly, the stage of inflammation is also relevant for the effect of H2S-releasing donors that
can be either pro- or anti-inflammatory.

In addition, lower plasma/serum H2S concentrations were also related to vascular inflammation
associated with childhood disorder Kawasaki disease (autoimmune blood vessel inflammation) [113]
and skin inflammation associated with psoriasis [114].

More studies are necessary to not only fully understand the complex role of H2S in inflammation,
but also to investigate further opportunities for the treatment of existing inflammatory diseases.
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4. H2S and Arthritic Diseases

The effect of H2S on joint inflammation was investigated in the last few years due to the
anti-inflammatory effect of the gasotransmitter. The beneficial effect of H2S seems to be dose-dependent;
in fact, different studies demonstrated opposite results. At low concentration, H2S exerts an
anti-inflammatory effect on tissue and cells, suggesting a potentially positive effect on arthritis.
The effect of H2S on the monocyte/macrophages compartment [69,76] seems particularly relevant due to
the central role that macrophages play in the pathogenesis of inflammatory arthritis. Pro-inflammatory
macrophages are vital APCs and can differentiate into osteoclasts, cells responsible for irreversible
bony erosions; furthermore, macrophages are one of the major sources of TNF-α.

In murine macrophages stimulated with LPS, H2S at low concentration inhibits the activation and
the synthesis of several pro-inflammatory mediators, i.e., NO, NF-κB, IL-6, and IL-1β; however, at higher
concentration, H2S stimulates the production of pro-inflammatory molecules by macrophages [107].
This dual effect was also demonstrated on RA FLS by Kloesch et al. [115] in two different experimental
stings, showing that short-term exposure to H2S induces IL-6 expression, while long-term exposure
has the opposite effect [115,116]. Interestingly, in RA synovial fluids, levels of H2S were found to
be higher than in patients with osteoarthritis (OA); furthermore, the levels detected were positively
correlated with disease activity and inflammation. In addition, H2S concentration in the bloodstream
was increased in patients with RA, and it was also associated with high numbers of circulating
leukocytes [13]. As further support of a possible pathogenic role in inflammation, d-penicillamine,
used in the past for the treatment of RA, resulted as a direct inhibitor of the synthesis of H2S and as
a direct inhibitor of CSE activity [117]. In particular circumstances, the pro-inflammatory effect of
H2S seems to be mediated by the induction of the expression of the intracellular adhesion molecule
(ICAM)1, which may increase cell migration into the inflamed tissues [118].

However, H2S was found elevated in inflammatory models, and it can represent an attempt
at increasing synthesis, to reduce the local inflammation. Various studies demonstrated numerous
anti-inflammatory properties of H2S mainly explained by the reduced expression of pro-inflammatory
mediators and adhesion molecules. In animal models, the administration of H2S donors reduced the
leukocyte adherence and infiltration and repressed carrageenan-induced paw edema.

The inhibition of endogenous H2S synthesis had the opposite effect, enhancing leukocyte
migration [118]. Notably, chondrocytes and mesenchymal stem cells which differentiate in chondrocytes
express CBS and CSE, responsible for the synthesis of H2S, most probably used as a preserving
mechanism [119]. H2S showed a protective effect on cartilage damage in OA patients in different
studies [120,121]. This effect seems mediated by the inhibition of matrix metalloproteinases and the
production of extracellular matrix proteins induced by H2S-releasing compounds, which reverted the
catabolic effect of IL-1β [122,123]. In addition, H2S was demonstrated to reduce the IL-1β-induced
expression of IL-6, IL-8, MMP-2, and MMP-14 in OA FLS [124]. Remarkably, H2S can also inhibit TNF-α
activity, an essential cytokine in inflammatory arthritis pathogenesis, by binding the zinc-proteinase
TNF-α-converting enzyme (TACE), as demonstrated by Li et al. [121]. This inhibitory activity
may account for the potential anti-inflammatory effect of H2S in inflammatory arthritis. Moreover,
the NF-κB pathway was inhibited by H2S in different experimental studies [117,125]. Hence, the
anti-inflammatory role is highly probably secondary to the inhibition of the transcription factor
NF-κB, which has a key role in the pathogenesis of inflammatory arthritis as described above (see
Figures 2 and 3) [126,127]; furthermore, it can induce the synthesis of the anti-inflammatory cytokine
IL-10 [106]. The inhibition of NF-κB activity by H2S is, therefore, able to reduce the production
of the pro-inflammatory cytokines, mediating the anti-inflammatory effect of the gas in an animal
model of sepsis [128], however it may also play a role in joint inflammation. Moreover, NF-κB is a
key factor also for the differentiation and maturation of osteoclasts, responsible for bone erosions in
arthritis [119]. Interestingly, H2S conjugated to the non-steroidal anti-inflammatory drug (NSAID)
diclofenac inhibited mature osteoclasts and osteoclastogenesis, thus preventing osteolysis in an animal
model of breast cancer metastasis; the inhibitory effect was demonstrated to be dependent on IκB
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kinase (IKK)/NF-κB [129,130]. This result is particularly interesting, because it may represent a
relevant added value to drugs currently used for inflammatory arthritis, not only because H2S has a
pleiotropic anti-inflammatory profile, but also because it may potentially act on bone erosion, the main
long-term target in the treatment of arthritis. Moreover, as described above, H2S can directly inhibit
the migration and adhesion of leukocytes to endothelial cells (see Figure 1) and the infiltration of
neutrophils and lymphocytes [78]. Therefore, defective H2S compensatory production can contribute
to the pathogenesis of joint inflammation in immune-mediated arthritis.

5. H2S-Donors as Potential Anti-Arthritis Drugs

H2S-donors acquired great therapeutic potential for widely diffused pathologies, such as
cardiovascular [131,132], neurodegenerative [133–136], and gastrointestinal diseases [137,138]. Their
H2S release can also be prolonged and potentiated by biological thiols that are normally present in
biological systems such as protein thiol groups, cysteine, and glutathione (GSH). Furthermore, one of
the speculated mechanisms is that H2S donors can induce the synthesis of glutathione by increasing
the metabolic pathways and enzymes leading to its production [139].

As discussed above, recent evidence of the anti-inflammatory properties and the tissue repair
effects of H2S increased the interest in its therapeutic potential in arthritis. The research on human
species was developed mainly for OA patients, but that on inflammatory arthritis is also promising.
Several non-steroidal anti-inflammatory drugs (NSAIDs) were conjugated with H2S (Table 1), allowing
a slow release of the gasotransmitter into the target tissues. The molecular structures of H2S donors that
are under study for clinical applications are shown in Figure 4. In animal models, NSAIDs conjugated to
H2S, i.e., naproxen and celecoxib, demonstrated a strong protective effect on gastrointestinal epithelium
compared to the toxic effect of the parent drug [102]. For example, the H2S-releasing naproxen,
called ATB-346, which releases H2S via a hydrolytic mechanism [102], was demonstrated to have a
greater anti-inflammatory and chondro-protective effect on osteoarthritic joints in animal models,
reducing leukocyte migration and reducing TNF-α and NF-κB expression, and less gastrointestinal
toxicity [102,140,141]. Recently, a phase II clinical trial investigating 244 healthy subjects demonstrated
a drastic reduction of gastric ulcer investigated with endoscopy when treated with ATB-346 (42.2%
vs. 2.5% ulcer development with naproxen and ATB-346, respectively). This effect was associated
with an increased suppression of COX activity [141]. The efficacy of ATB-346 was recently evaluated
in patients with OA, demonstrating that ATB-346 can reduce joint pain, possibly to a greater extent
than other standard NSAIDs, such as naproxen or celecoxib [142]. Another derivative drug-releasing
H2S is S-mesalamine (ATB-429) (Figure 4), used for the treatment of inflammatory colitis. ATB-429
exerted a protective role to the gastrointestinal mucosa and higher anti-inflammatory properties than
the parent drug [75]. Therefore, ATB-429 could be a good candidate for reducing inflammation in
arthritis. Moreover, the synthesis of other compounds able to release both NO and H2S recently led to
the development of new potential drugs for the treatment of inflammatory arthritis, such as NOSH
(nitric oxide and hydrogen sulfide)- sulindac (AVT-18A) and NOSH-aspirin (NBS-1120) (see Table 1).
NOSH-sulindac was similar to sulindac in inhibiting the inflammatory response and demonstrating
safety in the carrageenan-induced arthritis animal model, but with a larger effect on the reduction of
circulating TNF-α level [143]. Similarly, NBS-1120 had a better safety profile in an animal model of
systemic and local inflammation when compared to aspirin [144].
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indomethacin, and naproxen linked to a hydrogen sulfide-releasing moiety. ATB-346 is naproxen 
covalently linked to 4-hydroxythiobenzamide (TBZ). ACS-14 is aspirin linked to H2S donors, ACS-21 
is deacetylated aspirin linked to H2S donors, and NBS1120 is a NO H2S-releasing derivative of aspirin. 
GYY4137—morpholin-4-ium 4 methoxyphenyl phosphinodithioate; DAS—diallyl sulfide. 
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Two main approaches able to improve tissue repair and regeneration were investigated: the 
injection of stem cells (scaffold-less approach) and of three-dimensional (3D) scaffolds. In the 
scaffold-less approach, mesenchymal stem cells (MSCs) are the most used kind of cells showing a 
multipotent property [152,153]. MSCs, under appropriate differentiation stimuli, are able to express 
chondrogenic potential and improve the repair of cartilage [152,154,155].  

Intriguingly, the MSC-based approach has the potential to solve some symptoms related to 
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Figure 4. Molecular structures of slow H2S-releasing agents with potential anti-inflammatory
properties for the treatment of arthritis. ADT-OH (5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione)
and ATB-429 ([4-(5-sulfanylidenedithiol-3-yl) phenyl] 5-amino-2-hydroxybenzoate) are H2S-releasing
derivatives of mesalamine. ATB-337, ATB- 343, and ATB-345 are respectively diclofenac, indomethacin,
and naproxen linked to a hydrogen sulfide-releasing moiety. ATB-346 is naproxen covalently
linked to 4-hydroxythiobenzamide (TBZ). ACS-14 is aspirin linked to H2S donors, ACS-21 is
deacetylated aspirin linked to H2S donors, and NBS1120 is a NO H2S-releasing derivative of aspirin.
GYY4137—morpholin-4-ium 4 methoxyphenyl phosphinodithioate; DAS—diallyl sulfide.

Another potential candidate drug for clinical trials in inflammatory diseases is the slow-releasing
H2S donor, GYY4137, as discussed above. This compound was demonstrated to directly inhibit joint
inflammation in a mouse animal model by reducing the production of pro-inflammatory cytokines in
macrophages [107]. In particular, GYY4137 inhibits several inflammatory molecules such as IL-1β,
IL-6, and TNF-α, in LPS-challenged macrophages in culture [107]; moreover, GYY4137 is able to reduce
LPS-evoked septic shock [106] and knee-joint edema in response to intra-articular injection of Freund’s
adjuvant [122]. The administration of GYY4137 leads to an anti-inflammatory effect on knee-joint
swelling and might be used for clinical applications [82].

Moreover, the endogenous metabolism of natural organosulfur compounds (OSCs) derived
from garlic can also lead to the slow-releasing production of H2S [126,145] and, consequently, to an
antioxidant and anti-inflammatory action [146] with organ/tissue protection. Therefore, OSCs can be
considered as potential natural drugs for arthritis. The effects of diallyl sulfide (DAS) on arthritis were
investigated in a model of crystal-induced arthritis, human synoviocytes and chondrocytes. DAS was
able to inhibit the inflammatory response both ex vivo and in rat with induced joint inflammation [147].
In a recent study, the efficacy of diallyl disulfide (DADS) in controlling joint inflammation was evaluated
in an animal model of Freund’s adjuvant-induced arthritis. DADS was demonstrated to be effective in
reducing paw edema and joint and cartilage destruction [148]. These studies highlight the therapeutic
potential of natural H2S donors for the treatment of inflammatory arthritis; however, more in vivo
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studies are needed to confirm the efficacy of these natural H2S donors, their safety profile, and their
potential application in inflammatory arthritis.

Table 1. H2S-releasing drugs as potential anti-inflammatory drugs in arthritis.

H2S-Derivative Drug Drug Company Clinical Phase Clinical Applications References

AVT-18A Sulindac Sulfidris Preclinical Cancer, inflammation [143]
NBS-1120 Aspirin Preclinical Cancer, inflammation [144]

ACS-14 Aspirin CTG Ph. Preclinical Inflammation, cardiac injury,
Arthritis [149]

ACS-21 Aspirin CTG Ph. Preclinical Inflammation, cardiac injury,
Osteoarthritis [149]

ACS-6 Ketorolac CTG Ph. Preclinical Arthritis
Antioxidant [149,150]

ATB-337/ACS-15 Diclofenac Antibe T. Preclinical Arthritis, inflammation [149]

ATB-343 Naproxen Antibe T. Preclinical Inflammatory diseases,
Alzheimer’s disease [149]

ATB-346 Naproxen Antibe T. Phase II Osteoarthritis, inflammation [102,141,149]
ATB-345 Naproxen Antibe T. Preclinical Inflammatory diseases [102]

ATB-429 Meselamine Antibe T. Preclinical Cancer, inflammatory
diseases, colitis [75]

GYY4137
DAS/DADS

National Uni.
of Singapore

Preclinical
Preclinical

Inflammatory diseases, cancer,
hypertension, arthritis

Cancer, arthritis

[82,107,122,151]
[147,148]

6. Tissue Regeneration as a Therapeutic Approach in Arthritis

The chronic inflammatory process of arthritis leads to the disruption of the cartilaginous tissue,
which ultimately contributes to subchondral bone erosions, articular deformities, and impaired quality
of life. Physiologically, the cartilage tissue is avascular, aneural, and hypocellular; therefore, there
is no self-reparation. A potential therapeutic approach for arthritis is to facilitate its regeneration
and/or repair. Linked to the above-cited properties of H2S, H2S donors could be used as biochemical
factors able to induce cartilage and bone repair in the context of arthritis. Therefore, the possibility of
fabricating systems conditioned with H2S-releasing agents able to improve the repair/regeneration of
cartilage and bone in degenerative diseases, as well as RA, is currently being investigated.

Two main approaches able to improve tissue repair and regeneration were investigated: the
injection of stem cells (scaffold-less approach) and of three-dimensional (3D) scaffolds. In the scaffold-less
approach, mesenchymal stem cells (MSCs) are the most used kind of cells showing a multipotent
property [152,153]. MSCs, under appropriate differentiation stimuli, are able to express chondrogenic
potential and improve the repair of cartilage [152,154,155].

Intriguingly, the MSC-based approach has the potential to solve some symptoms related to
osteoarticular loss; however, it presents various problems such as cell senescence, de-differentiation,
and expression of the hypertrophic phenotype. Some of these problems could be solved using the
pre-conditioning of MSCs with H2S donors. Recently, it was demonstrated that the pretreatment of
MSCs with H2S provided protection of MSCs upon exposure to hypoxia–ischemic insult whether
in vitro or in vivo [156].

The lack of mechanical support in joint repair strategies led to relatively poor results in the clinical
application of the scaffold-less approach. Consequently, substances and polymeric supports (both
natural or synthetic) were designed with the aim of providing a scaffolding structure and, finally,
promoting tissue regeneration more efficiently.

Many synthetic polymers with chondrogenic properties were studied, such as polylactic acid
(PLA), polyethylene glycol (PEG), and polycaprolactone (PCL), but only some of them are now
commercially available for clinical use [152,157–159].

One of these is a poly (l-lactide) (PLLA) scaffold with fibrin gel [157], available in trade under the
name PLA-based, is made of a porous microstructure with fibrin which results in an excellent combination
of mechanical stability, resistance to mechanical stress, and retention of the cellular component. The high
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level of hydration of the gel is an important requirement for having a homogeneous cellular distribution
and excellent values of cell viability.

Injectable gels, based on alginate and hyaluronic acid (HA–MA) were produced to induce
cartilage repair [160,161]. Alginate hydrogel showed a highly organized structure with uniform pores,
which demonstrated the stimulation of a gradual increase in the cell population and an increase in
type II collagen production, which is the principal ECM component of articular cartilage, even if a
downregulation of collagen X was observed [160]. The polymerization of this material was obtained
directly in situ using an argon laser at 512 nm, and its mechanical properties were easily modulated by
the chemical composition.

Another PEG-based hydrogel scaffold with three-layer composition was also synthetized [158],
showing significant effects on cartilage repair. In this scaffold, chondroitin sulfate (CS) and matrix
metalloproteinase-sensitive peptides (MMP-pep) were in the upper layer, while CS was in the middle
layer, and hyaluronic acid was in the lower layer. This multi-layer composition mimicked the
structure of native articular cartilage with mechanical and biochemical properties that change in space.
Furthermore, it was seen that this structural variability can stimulate tissue regeneration, leading to an
increased production of both collagen II and X.

Another cell-free product that had excellent results for cartilage repair is Gelrin C, a hydrogel
scaffold made of PEG–fibrinogen [162,163]. It was demonstrated to effectively induce cartilage repair
measured with the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score
(84.4 out of 100 MOCART score after 24 months). At the moment, Gelrin C is in clinical phase II for
cartilage repair.

All these biomaterials can be functionalized with H2S-donors in order to improve their potential
in tissue repair and regeneration. PEG–fibrinogen was, in fact, functionalized by embedding
albumin microbubbles able to catalyze the production of H2S [164]. This functionalization improved
the proliferation of human cardiac progenitor stem cells, promoting their spindled morphology
and suggesting a potential application in repair for other biological tissues, such as human
cartilage. H2S-releasing biomaterials can have several protective actions, including antioxidant and
anti-inflammatory effects, angiogenesis, and vasodilation, thus improving the regenerative capacity of
polymers. At the moment, there are few in vitro and in vivo studies on scaffolds able to release H2S.
Scaffolds based on PCL and PLA were produced using an electrospinning technique, and they were
respectively functionalized with N-benzoyl thio-benzamide (NSHD1) and phosphonamidothioate
templates that generate H2S in a pH-controlled manner, as well as slow-releasing H2S donors extracted
from garlic (GaOS and DADS) [159,165,166]. These three scaffolds showed protective effects on the
oxidative damage of ROS and the ability to improve cell viability. A sponge H2S-releasing silk fibroin
(SF) was also doped with GYY4137 [167], resulting in a scaffold with the same mechanical properties,
which was able to induce a significant increase in differentiation to mature osteoblasts (OBs) and
expression of osteogenic genes after three weeks of growth in a 3D culture of human MSCs. Table 2
summarizes scaffolds and H2S-releasing scaffolds that are currently under investigation for tissue
repair. The H2S-releasing scaffolds could have a potential therapeutic application in the degenerative
stages of inflammatory arthritis.
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Table 2. Scaffolds and H2S-releasing scaffolds for potential applications in the therapy of arthritis.

Scaffold Characteristics and Effects Type of Cells Commercial Product Phase of Study References

PLLA/fibrin
1PLLA/chondrocyte/atelocollagen

Improved cell proliferation and expression of type I and type II
collagen Chondrocytes

PLA-based
BioSeedR-C (BioTissue,

AG, Zurich, Switzerland)
In vitro [157]

PEG dyacrylate systems
PEG/chitosan
PEG/albumin

In situ photopolymerization and potential modulation of its
mechanical properties, increasing of the expression of type I

and II collagen and the amount of sulfated GAG
MSCs In vitro [158]

Alginate Increase in chondrocyte viability Chondrocytes In vivo (SCID mice) [160]

Hyaluronic acid/fibrin
Hyaluronic acid/collagen type I

In situ photopolymerization, potential modulation of its
mechanical properties, stimulation of ECM production and
proteoglycan synthesis, and improved chondrocyte growth

Chondrocytes

Hyaluronic-based
HyalograftR C autograft

(Anika Therapeutics, Inc.,
Bedford, MA, USA)

In vivo (human) [161]

PEG-DA/denatured human
fibrinogen (DHF)

In situ photopolymerization, potential modulation of its
mechanical properties, gradual resorption by the body being

replaced by new cartilage tissue
Cell free GelrinC

(Regentis, Haifa, Israel) Phase II [163,164]

H2S-releasing scaffolds

PCL/NSHD1
Significant decrease in apoptosis in a model of tissue

transplantation, protection from ROS damage, and increase in
expression of collagen type I and type III

3T3 In vivo [154]

PFM/GaOS or DADS Improved MSC proliferation and anti-microbial activity and
protective effect against oxidative damage hMSCs In vitro [166]

TSTMBs-PFHy
In situ photopolymerization, potential modulation of its

mechanical properties, induced spindled morphology of cells
and cell proliferation

HFFs
hCPCs In vitro [164]

ALG-CHO/2-aminopyridine-5-
thiocarboxamide/tetraaniline

Increase in ejection fraction value, reduction of the myocardial
infarct size in rats ADSCs In vivo [168]

SATO/CaCl2 Decrease in intimal hyperplasia in human veins Endothelial cells In vivo [169]

SF/GYY4137 Significant increase in osteogenic differentiation of stem cells,
upregulation of osteogenic and angiogenic genes and integrins OBs, hMSC In vitro [167]

HA or PCL/JK1
H2S release in pH-dependent manner, improved cell

proliferation. tissue regeneration, re-epithelialization, collagen
deposition, angiogenesis

Raw 264.7 In vivo (mouse Male
C57BL) [165]

1PLLA—poly (l-lactide); PEG—polyethylene glycol; PCL—polycaprolactone; NSHD1—N-benzoyl thio-benzamide; GaOS—garlic oil soluble extracts; DADS—diallyl disulfide; SF—silk
fibroin; HA—hyaluronic acid; ECM—extracellular matrix; MSC—mesenchymal stem cell; HFF—human foreskin fibroblasts; CPC—cardiac progenitor cell; ADSC—adipose-derived stem
cell; OB—osteoblast. TSTMBs-PFHy— fibrinogen hydrogel incorporating albumin microbubbles functionalized with thiosulfate:cyanide sulfurtransferase; ALG-CHO—Partially Oxidized
Alginate; PFM poly(lactic) acid fibrous; SATO aromatic peptide amphiphile and the H2S moiety, S-aroylthiooxime; PEG-DA—polyethylene glycol diacrylate; JK1—H2S donor synthesized
from phenylphosphonothioic dichloride.
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7. Conclusions

Currently, the interest in the pathological and therapeutic role of H2S in inflammatory diseases
is growing. Recently, the evidence of the anti-inflammatory properties of H2S at physiological
concentrations increased. As a gasotransmitter, H2S is involved in the regulation of production and
release of several cytokines, as well as in the differentiation of adaptative and innate immune cells.
Moreover, H2S plays a role as a radical scavenger in hypoxic conditions, frequently associated with
inflammatory arthritis, and as a promoter of tissue repair.

Due to the growing evidence, several therapeutic approaches were investigated in different
inflammatory diseases. In the context of inflammatory arthritis, the most interesting approaches result
in the conjugation of anti-inflammatory compounds with H2S and the induction of tissue repair.

The first therapeutic approach aims to target the early stages of the inflammatory process or active
inflammation. Despite the recent advances in the approach to inflammatory joint diseases, a significant
number of patients need multi-therapeutic strategies with not always successfully outcomes. In this
context, the use of H2S-conjugated drugs may be a potential add-on treatment. NSAIDs conjugated
with H2S were already demonstrated to be effective in managing pain in OA patients with significantly
reduced toxicity.

The modern treatments for inflammatory arthritis are able to target the active inflammation;
however, strategies to treat established bone and cartilage damage are currently lacking. Scaffolds and
H2S-functionalized scaffolds, with or without cell deliveries, are opening a completely new therapeutic
approach in the arthritis field. Currently, a surgical approach is the most used in advanced cases;
however, it can have its limitations in elderly patients and with contraindications, and this treatment
is not always indicated in patients with mild joint damage. The possibility to induce tissue repair
in a damaged joint with the associated anti-inflammatory effect of H2S represents a very promising
new potential approach. H2S-functionalized scaffolds are still in early clinical studies as most of the
studies applied them in vitro or in animal models. It will be promising to combine injectable hydrogel
scaffolds that stimulate cartilage repair, such as Gelrin C (Regentis, Haifa, Israel), which is in a phase II
clinical trial for early OA, with H2S-donors and MSCs for further potential clinical applications in both
OA and inflammatory arthritis.

Clearly, more work is needed to improve the sensitivity and specificity of H2S assays, as well as to
improve the patient selection in studies assessing the efficacy of this new promising treatment strategy.
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Abbreviations

ADSCs adipose-derived stem cells
ADT-OH 5-(4-hydroxyphenyl)-3H-1:2-dithiole-3-thione
ATB-429 4-(5-sulfanylidenedithiol-3-yl) phenyl 5-amino-2-hydroxybenzoate
ALG-CHO partially oxidized alginate
anti CCP anti-cyclic citrullinated peptide
ARE antioxidant response element
APCs antigen-presenting cells
bFGF basic fibroblast growth factor
cAMP cyclic adenosine monophosphate
CAT cysteine aminotransferase
CAT catalase
CD cluster of differentiation
cGMP cyclic guanosine monophosphate
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COX 2 cyclooxygenase 2
CS chondroitin sulfate
CBS cystathionine beta-synthase
CSE cystathionine gamma lyase
DAS diallyl sulfide
DCs dendritic cells
EC endothelial cells
ECM extracellular matrix
eIF2a eukaryotic translation initiation factor 2
ErK extracellular signal-regulated kinase
FLS fibroblast like synoviocytes
FOXP3 forkhead box P3
GaOS garlic oil soluble extracts
GM-CSF granulocyte macrophage colony stimulating factor
GPx glutathione peroxidase
GR glutathione reductase
GSH glutathione
GSSH glutathione persulfide
GST glutathione-S-transferase
HA hyaluronic acid
hCPCs human cardiac progenitor cells
HER 2 human epidermal growth factor receptor 2
HFFs human foreskin fibroblasts
HO1 heme oxygenase 1
ICAM 1 intercellular Adhesion Molecule 1
IDO 1 indoleamine-pyrrole 2:3- dioxygenase 1
IGF 1 insulin-like growth factor 1
IκB/NF-κB inhibitor of κB /Nuclear factor κ B
IKK IκB kinase
IL interleukin
iNOS inducible nitric oxide synthase
JK1 H2S donors synthesized from phenylphosphonothioic dichloride
Keap 1 Kelch-like ECH-associated protein 1
LPS lipopolysaccharides
M1 macrophages M1
M2 macrophages M2
MAPK mitogen-activated protein kinase
MBs-PFHy fibrinogen hydrogel incorporating albumin microbubbles
MHC-I major histocompatibility complex
MMP matrix metalloproteinase
MMP pepmatrix metalloproteinase-sensitive peptides
MOCART magnetic resonance observation of cartilage repair tissue
MSCs mesenchymal stem cells
MST 3-mercaptopyruvate sulfotransferase
NFκB nuclear factor kappa beta
NOSH nitric oxide and hydrogen sulfide
Nrf2 nuclear erythroid factor 2-related factor 2
NSHD 1 N-benzoyl thio-benzamide
OA osteoarthritis
OBs osteoblast cell
OCs osteoclasts cell
OSC organosulfur compounds
PAG propargylglycine
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PCL polycaprolactone
PDE phosphodiesterases
PEG polyethylene glycol
PERK protein kinase RNA-like endoplasmic reticulum kinase
PFM poly(lactic) acid fibrous
PKB protein kinase B
PLA polylactic acid
PLLA poly (l-lactide)
PsA psoriatic arthritis
PTPs protein tyrosine phosphatases
QR quinone reductase
RA rheumatoid arthritis
RANTES regulated upon activation, normal T Cell expressed and presumably secreted
RAW 264.7 murine monocyte/macrophage-like lineage
RNS reactive nitrogen species
ROS reactive oxygen species
SATO S-aroylthiooxime
SELENBP1 selenium-binding protein 1
SF silk fibroin
SOD superoxide dismutase
SpA spondyloarthritis
STAT 3 signal transducer and activator of transcription 3
TBZ 4-hydroxythiobenzamide
TGF-β1 transforming growth factor beta 1
Th T helper cells
TNF α tumor necrosis factor-α
TST thiosulfate sulfurtransferase
VCAM 1 vascular cell adhesion molecule 1
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