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Abstract

Fine particulate matter (PM2.5) is a well-established risk factor for public health. To support both 

health risk assessment and epidemiological studies, data are needed on spatial and temporal 

patterns of PM2.5 exposures. This review article surveys publicly available exposure datasets for 

surface PM2.5 mass concentrations over the contiguous U.S., summarizes their applications and 

limitations, and provides suggestions on future research needs. The complex landscape of satellite 

instruments, model capabilities, monitor networks, and data synthesis methods offers opportunities 

for research development, but would benefit from guidance for new users. Guidance is provided to 

access publicly available PM2.5 datasets, to explain and compare different approaches for dataset 

generation, and to identify sources of uncertainties associated with various types of datasets. Three 

main sources used to create PM2.5 exposure data are: ground-based measurements (especially 

regulatory monitoring), satellite retrievals (especially aerosol optical depth, AOD), and 

atmospheric chemistry models. We find inconsistencies among several publicly available PM2.5 

estimates, highlighting uncertainties in the exposure datasets that are often overlooked in health 

effects analyses. Major differences among PM2.5 estimates emerge from the choice of data 

(ground-based, satellite, and/or model), the spatiotemporal resolutions, and the algorithms used to 

fuse data sources.
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Introduction

Particulate matter (PM) is a well-established health risk factor, with impacts on human 

morbidity and mortality through cardiovascular (Brook et al., 2010) and respiratory diseases 

(Dominici et al., 2006; Wu et al., 2018; Ni et al., 2015), lung cancer and cardiopulmonary 

mortality (Pope III et al., 2002; Hoek et al., 2013), premature births (Malley et al., 2017) and 

other types of diseases (Tian et al., 2017; Lin et al., 2017). Particulate matter is a 

combination of solid particles and liquid droplets that are suspended in the air, and are 

typically classified by size as PM10, particles that are 10 micrometers or smaller in 

aerodynamic diameter, and PM2.5, particles that are 2.5 micrometers or smaller in 

aerodynamic diameter (EPA, 2018a). Of these, PM2.5 poses a greater risk to human health, 

as it can penetrate further into the lungs and typically contains more toxic components than 

larger particles (Wilson and Suh, 1997). PM2.5 also has a lower rate of gravitational settling, 

so it can travel long distances in the atmosphere and affect regions far from the emission 

source, if not removed by precipitation (Ouyang et al., 2015). In this study, we focus on 
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PM2.5, although many of the methodological issues relevant to PM2.5 also relate to PM10 

and, in some cases, gas-phase pollutants as well.

Epidemiological and clinical studies have confirmed an association between both acute and 

long-term exposures to PM2.5 and adverse cardiorespiratory health effects (Dominici et al., 

2006; Peters et al., 2001; Pope and Dockery, 2006). PM2.5 was ranked the sixth highest risk 

factor in the Global Burden of Disease estimates of global premature mortality in 2016, and 

it was also ranked first among all outdoor air pollutants (State of Global Air, 2018). In recent 

years, PM2.5 data have been used for (1) epidemiological studies, which quantify 

relationships between PM2.5 exposure and adverse health outcomes, (2) health benefit 

assessments, which combine pollution concentrations, population data, baseline rates of 

adverse health outcomes, and concentration-response functions from previously conducted 

epidemiologic studies, to estimate the PM2.5-related health burden, and (3) tools to support 

public health interventions from episodic events such as wildfires and dust storms, including 

inexpensive, rapid-response health impact assessment tools (Anenberg et al., 2016).

In an annual trend analysis, the global and regional emissions of PM species are often found 

to be correlated with energy consumption (Klimont et al., 2017). In the U.S., anthropogenic 

emissions of PM2.5 from various sources (i.e., stationary, mobile and fire sources) are 

documented in the national emissions inventory report by EPA (EPA, 2017). One unique 

example of fine particulate matter emission on a short time scale is wildfires. In the U.S., 

69% of the population were exposed to PM2.5 above 0.2 μg/m3 due to seasonal wildfire 

events (Munoz-Alpizar et al., 2017). Inhalation of PM2.5 from wildfire smoke has been 

associated with increased cardiopulmonary and cerebrovascular hospital admissions and 

emergency department visits in affected communities (Gan et al. 2017; Rappold et al., 2011; 

Wettstein et al., 2018), and studies show that wildfire smoke may be a triggering factor for 

acute csoronary events (Haikerwal et al., 2015). Detailed evaluation has also been done to 

investigate the mutagenicity and lung toxicity of particulate matter from different fuel types 

and burning phases of fires (Kim et al., 2018). More research progress on wildfire health 

impact studies can be found in recent reviews (Stefanidou et al., 2008; Henderson and 

Johnston, 2012; Reid et al., 2016; Liu et al., 2015).

In the U.S., compliance with the annual and daily (24-hour) average PM2.5 from the 

Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) 

is solely determined by ground-based regulatory monitoring data. While PM2.5 is monitored 

in most large U.S. cities, many parts of the U.S. have no ground-based measurements of 

PM2.5 to assess health impacts (EPA, 2018b). Even in areas with multiple ground-based 

PM2.5 instruments, there are challenges in extrapolating point-based measurements to 

characterize regional air quality. Local emissions and variations in geography can lead to a 

high level of spatial heterogeneity in measurements, such that two monitors near each other 

may reflect very different PM2.5 levels. There is no consensus approach generalizing point-

based estimates to ascertain prevailing population-level PM2.5 exposure over a community 

or neighborhood. Furthermore, temporal variability, especially during episodic high 

exposure events such as wildfires, that leads to short-term health effects is an important 

public health concern (Gan et al., 2017).
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Satellite retrievals and atmospheric models have been used to complement ground-based 

monitoring data, and to estimate ambient PM2.5 levels in areas with no direct measurements. 

Satellite instruments can provide information on atmospheric or land use characteristics 

associated with air pollution levels but cannot measure near-surface PM2.5 in a manner 

directly comparable to measurements. Most satellite aerosol products are integrated values 

from the Earth’s surface to the top of the atmosphere. As a result, these instruments cannot 

directly provide near-surface PM2.5 but instead retrieve the “aerosol optical depth” (AOD), 

which is defined as the light extinction due to particles in the entire column of air.

The relationship between near-surface PM2.5 and satellite data AOD is spatially and 

temporally heterogeneous. Models that estimate the AOD-PM2.5 relationship may be 

categorized as geoscience-based or statistical: geoscience-based methods use atmospheric 

models to solve equations of physical and chemical processes, which is a forward approach 

to simulate the near-surface PM2.5 and AOD; statistical models extrapolate data based on 

empirical associations. In the case of PM2.5, both geoscience-based and statistical methods 

have evolved as valuable approaches to estimate ground-level concentrations in areas lacking 

direct measurements. Geoscience-based models, also referred to as chemical transport 

models, are used extensively to inform air quality management programs in addition to 

characterizing AOD-PM2.5 relationships. Here we review estimates of spatially continuous 

PM2.5 data for the contiguous United States, and how these estimates were constructed using 

one or more of these three data sources: measurements, satellite data, and models. Several 

previous articles have reviewed technical methods to generate surface PM2.5 data, including 

over regions with few monitors (Zhang et al., 2018), from remote sensing techniques (Hoff 

and Christopher, 2009; Chu et al., 2016), and data assimilation methods (Lynch et al., 2016). 

Here we focus instead on existing data sources that are publicly available and easily 

accessible by the health and air quality communities. The complex landscape of satellite 

instruments, model capabilities, monitor networks, and data synthesis methods offers 

opportunities at the spatial and temporal scales of relevance to address questions of interest. 

Thus, a main goal of this work is to presents an array of options for estimating near-surface 

PM2.5 using publicly available datasets, and provide guidance to new users to access and 

assess these data. We extend a previous review by van Donkelaar et al. (2010) that addressed 

the relationship between AOD and measured PM2.5 (Engel-Cox et al., 2004; J. Wang and 

Christopher, 2003), meteorological factors (Gupta et al., 2006; Koelemeijer et al., 2006; Liu 

et al., 2005), and the synthesis of multiple data sources on a global basis. Specifically, we 

provide an overview of methods to develop spatially continuous PM2.5 estimates (Section 2); 

compare existing PM2.5 estimates for the contiguous U.S. that have been used or cited in 

past studies, discuss applications of satellite-derived data for wildfires and the global burden 

of disease (Section 3); and finally summarize the current status and future directions for 

PM2.5 estimates (Section 4).

Overview of Four Basic Types of PM2.5 Datasets

We describe the generation and applications of four types of PM2.5 datasets: 1) ground-

based monitor data; 2) ground-based monitor data merged with satellite data; 3) ground-

based monitor data merged with model data; 4) ground-based monitor data merged with 

satellite and model data. Indirect ground-based observations such as visibility (Li et al., 
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2016) are not discussed here, nor are short-term research field campaigns that offer extensive 

data for individual regions over a period of days to months.

2.1 Ground-based monitoring data

Over the U.S., extensive networks of ground-based instruments operated by state, local and 

Tribal agencies continuously monitor PM2.5. Measurements from these monitors are 

archived by the U.S. EPA (https://www.epa.gov/outdoor-air-quality-data) and are freely 

available, to support assessment at annual, daily, and often hourly time scales. Spatially 

continuous real-time maps can be viewed on the EPA AirNow website. These data are used 

by cities, counties, states and the EPA to determine compliance with the NAAQS, by 

atmospheric modelers for model evaluation, and by health researchers as input to 

epidemiological studies and risk assessments. PM2.5 data from ground monitors can be used 

to study correlations with adverse health impacts using area-wide averaging or nearest-

monitor exposure assignments, such as a previous study of correlation with daily mortality 

in six U.S. cities (Laden et al., 2000) and a study of the American Cancer Society that links 

particulate air pollution and mortality (Krewski et al., 2009). Alternatively, various 

interpolation methods can be employed to create spatially continuous data fields, such as 

Land Use Regression (LUR) modeling, ordinary kriging interpolation, and inverse distant 

weighted interpolation (Menut et al., 2013; Zhang et al., 2018). Relative to other sources, 

monitor data are often treated as the “gold standard,” but the spatial coverage of pollution 

monitors limits the application of these data for health assessment, and can subsequently 

introduce errors where point-based monitors are used to assess health over a wider domain 

(Zeger et al., 2000). In certain cases such as Keller and Peng (2019), spatial prediction 

models showed better accuracy than monitoring averaging for exposure assignment, 

although both methods have limitations.

Before 1999, all PM2.5 measurements were collected using a filter-based method at 24-hour 

or longer time averages. Since 1999, the EPA PM2.5 monitoring system has been providing 

daily, continuous mass measurements reported as hourly averages. Most PM2.5 monitors 

either use the Federal Reference Method (FRM) or the Federal Equivalent Methods (FEMs) 

(Noble et al., 2010). Many other types of ground-based monitors exist beyond FRM and 

FEMs with varying levels of measurement accuracy, and comparisons have been made of the 

measurements among various instruments (Turpin et al., 1994; Hering and Cass, 1999; Allen 

et al., 1997; Chow et al., 2008 and references therein). The aerosol water content in PM2.5 is 

operationally defined, with dependence on both the instrument and network. For example, 

filters collected by the U.S. EPA are equilibrated at 30%–40% (within ±5%) of relative 

humidity (RH) (Chow and Watson, 1998), while the European standard is 50% RH 

(European Committee for Standardization, 1998). Some instruments use heaters to evaporate 

aerosol water that also evaporates semi-volatile material. These different practices 

complicate comparison across ground monitors and networks.

Related networks include the EPA Chemical Speciation Monitoring Network (CSN, 

launched in 2000) and the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) program (Malm et al., 1994), which operates a network of ~170 PM monitors 

primarily in U.S. Wilderness Areas and National Parks. Both networks provide 24-hour 
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average PM2.5 concentrations, measured every three to six days, where a chemical analysis 

is performed to identify the elemental carbon, organic carbon, ammonium-sulfate, 

ammonium-nitrate, sea salt, soil, and other trace constituents. The field and laboratory 

approach is similar for both networks, despite differences in sampling and chemical analysis 

(Solomon et al., 2014).

In addition to the EPA monitors (typically located in highly populated areas) and IMPROVE 

monitors (located in rural background areas), temporary PM2.5 monitors are deployed as a 

part of the Wildland Fire Air Quality Response Program (WFAQRP, https://

wildlandfiresmoke.net/) during periods of wide-scale smoke impacts from wildfire. The 

temporary monitors are a mix of Environmental Beta Attenuation Monitors (EBAMs) and E-

Samplers manufactured by Met One, Inc. The monitors are not FRM monitors, but can 

provide real-time information about PM2.5 exposure. They are often deployed in remote, 

small towns where smoke impacts are heavy and other monitors do not exist. A web-based 

monitoring data tool merges data from these monitors with PM2.5 data from the EPA 

AirNowTech system, providing time-series graphs and data that are downloadable (see 

https://tools.airfire.org/monitoring).

2.2 Data merged from ground monitors and satellites

Satellite remote sensing of AOD generally offers more spatially extensive observational 

information than ground-based PM2.5 measurements (except for regions with perpetual 

issues due to cloud cover, snow cover, bright surface, viewing geometry, etc.). In this way, 

satellite data directly complement point-based estimates of PM2.5 from monitors. Several 

studies have developed linear regression models for estimating PM2.5 concentrations from 

remotely-sensed AOD (Wang and Christopher, 2003; Gupta et al., 2006; Gupta and 

Christopher, 2009; Al-Hamdan et al., 2009; Zhang et al., 2009), and others have added 

meteorological parameters to develop multiple regression models or generalized additive 

models for surface PM2.5 (Liu et al., 2007; Liu et al., 2005; Paciorek et al., 2008; Hu et al., 

2014a; Ma et al., 2014). Statistical approaches often incorporate ancillary data, such as 

meteorological fields, land use, and road density, to derive surface PM2.5 based on merged 

data from ground monitors and satellites. The relationships between satellite retrievals of 

AOD and PM2.5 measured by ground monitors are often evaluated by correlation 

coefficients (R), which are based on estimates and observed values in cross-validation 

exercise. The R values have been reported to be sensitive to various geographical locations 

and show large spatial and temporal variabilities (Hu, et al., 2014a; Kloog et al., 2014; 

Paciorek et al., 2008; Hu et al. 2014b). In fact, the performance of the derived PM2.5 in the 

statistical approach relies on the availability, quality and the consistency of both ground-

based observations and ancillary data, so past studies have typically been limited to a single 

county or a group of U.S. states, e.g., in the southeast (Hu et al., 2014a; Hu et al., 2014b; 

Lee et al., 2016; Bi et al., 2019) and northeast (Kloog et al., 2014) U.S.

Despite the value of satellite data in providing spatial coverage to complement information 

from point-based monitors, satellite data have several limitations. In terms of temporal 

coverage, the polar-orbiting satellites (e.g., MODIS, MISR, VIIRS, etc.) can only sample 

AOD at overpass times, once or twice a day or fewer (e.g., not over cloudy or snow-covered 
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regions). Only a few studies have used instruments aboard geostationary satellites to 

examine surface PM2.5, such as the Geostationary Operational Environmental Satellite 

(GOES) aerosol/smoke product (GASP) (Liu et al., 2009) and the Korean Geostationary 

Ocean Color Imager (GOCI) AOD product (Xiao et al., 2016; Lennartson et al., 2018; Xu et 

al., 2015). There are also issues with missing data in satellite observations, particularly over 

clouds (Kokhanovsky et al., 2007) or other bright surfaces such as desert and coastline 

(Remer et al., 2005). The fact that the missing AOD data is not random poses challenges for 

identifying the most impacted communities in health studies. Further complicating the 

integration of AOD and surface PM2.5 is the choice of satellite instruments (e.g., MODIS, 

MISR, SeaWiFS, VIIRS, CALIOP, etc.) and their AOD retrieval algorithms (e.g., Dark 

Target and MAIAC products for MODIS, Deep Blue for MODIS and SeaWiFS, etc.). In 

addition, the relative humidity of the atmospheric column, the chemical composition, 

hygroscopicity and size distribution of PM in the column, and the vertical distribution of PM 

all affect the total uncertainty of the daily satellite-derived ground-level PM2.5 (Ford and 

Heald, 2013; Jin et al., 2019a).

2.3 Data merged from ground monitors and model simulations

Numerical models of atmospheric chemistry and transport offer another powerful option for 

estimating near-surface PM2.5. These models may be run at the global or regional scale, 

often referred to as atmospheric chemical transport models (CTMs) or photochemical grid 

models. These models estimate the distribution of PM2.5 on grids whose horizontal 

resolution ranges from a few km (regionally) (Vaughan et al., 2004; McMillan et al., 2010) 

to 100’s of km (globally). Examples of regional CTMs include the EPA Community 

Multiscale Air Quality (CMAQ; www.epa.gov/cmaq) model and the Ramboll 

Comprehensive Air Quality Model with Extensions (CAMx; www.camx.com). Examples of 

global CTMs include the GEOS-Chem model (Bey et al., 2001) and the TM5 global 

chemistry transport model (Huijnen et al., 2010; Van Dingenen et al., 2018). CTMs are used 

extensively in applications requiring predictions for policy scenarios that cannot be directly 

monitored due to their hypothetical nature.

Models calculate pollution concentrations over a continuous spatial domain and time period, 

which are free from spatiotemporal coverage limitations in monitor and satellite data. Fusing 

model and observational data can help to leverage the accuracy of observational data as well 

as the spatial and temporal coverage of models.

The EPA Fused Air Quality Surfaces Using Downscaling (FAQSD) (EPA, 2016a) is one 

example of the model-measurement data fusion. FAQSD constructs a surface of spatially-

varying regression coefficients by comparing monitor data with modeled PM2.5 from the 

CMAQ model. This surface of regression coefficients is then interpolated spatially between 

monitors and used to create a fused daily surface PM2.5 exposure map (Berrocal et al., 

2010a; Berrocal et al., 2012; Berrocal et al., 2010b). FAQSD has been shown to provide 

more accurate exposure estimates (e.g., monitors withheld from the data fusion process) than 

ordinary kriging of the observations alone (Berrocal et al., 2010a; Berrocal et al., 2012). In 

collaboration with EPA, the Centers for Disease Control and Prevention (CDC) National 

Environmental Public Health Tracking Network (EPHTN) has extended the methods used 
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for FAQSD to generate continuous model-based estimates of surface PM2.5. The EPHTN 

dataset (Centers for Disease Control and Prevention, 2018) is available at the census tract 

and county-level for the contiguous U.S. In addition to the publicly available data, numerous 

previous studies developed fusion algorithms that combine surface measurements and 

regional modeling (CMAQ) (Friberg et al., 2016; Friberg et al., 2017; Huang et al., 2018) to 

estimate speciated PM2.5 concentrations at regional to national scales within the U.S.

As necessarily simplified versions of the physical atmosphere, models only represent spatial 

gradients on scales larger than the model grid (i.e., 12 km for the FAQSD). Areas with few 

or no monitoring sites are more sensitive to the model and fusion method, potentially 

leading to inaccuracies in the derived PM2.5 concentrations (Berrocal et al., 2012).

2.4 Data merged from ground monitors, satellite data, and model simulations

Since there are strengths and shortcomings associated with ground monitors, satellite data, 

and model simulations, one method to estimate ground-level PM2.5 is to combine all three of 

these sources to leverage the strengths of each one. The incorporation of model data informs 

the vertical distribution of aerosols in the atmosphere, and the hygroscopicity and chemical 

speciation of ambient PM, both key issues supporting the fusion of satellite AOD (column) 

with monitor data (surface). For example, high AOD may be indicative of either high levels 

of surface PM, or high levels of PM aloft. In this example, AOD could not distinguish 

between these two scenarios. The integration of model data would address this problem, 

with the accuracy of the surface products tied to the model simulations of aerosol vertical 

profiles. This approach provides a basis for estimating surface PM2.5 from satellites, even in 

regions with few or no ground-based monitors (van Donkelaar et al., 2010).

Due to the incomplete spatiotemporal coverage in both monitor-based PM2.5 and satellite 

AOD observations, various approaches have been developed to fill in the missing gaps. 

Some of them are individual methods such as kriging interpolation and land-use regression 

models, while other approaches are hybrid of multiple individual methods, combining model 

simulations and/or satellite AOD with monitor data. Two hybrid approaches are widely used 

– the statistical and the geoscience-based approaches. The Bayesian statistical downscaling 

method is a typical statistical modeling method that regresses PM2.5-AOD relationships and 

downscales the coarser resolution grid-mean values to locations at higher solutions (Berrocal 

et al., 2012; Shaddick et al., 2018a; Shaddicket al., 2018b). The statistical modeling 

approach typically has lower computation cost and the ability to provide probabilistic 

uncertainty measures for subsequent health effect and impact studies.

The geoscience-based (also known as process-based) approach predicts PM2.5 estimates 

based on monitor data, satellite AOD, as well as PM2.5-AOD relationships from model 

simulations. Such approach is more computationally expensive, but usually provides higher-

resolution datasets (e.g., 1 km in Dalhousie data) than the Bayesian statistical downscaling 

method (e.g., 12 km in EPA FAQSD). A widely used global estimate of ground-level PM2.5 

incorporating data from monitors, satellites, and an atmospheric model was developed by 

van Donkelaar et al. (2016). This dataset was developed by combining AOD from multiple 

satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and 

MODIS MAIAC). A GEOS-Chem simulation of atmospheric aerosols provides relationships 
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between AOD and ground-level PM2.5, which are further adjusted by a statistical distribution 

based on simulated aerosol speciation, elevation, and land-use information.

Another example of data assimilation of ground monitor and satellite data into global 

modeling of PM2.5 is the Modern-Era Retrospective Analysis for Research and Applications, 

version 2 (MERRA-2), the latest reanalysis using the Goddard Earth Observing System, 

version 5 (GEOS-5) (Buchard et al., 2017). MERRA-2 data assimilate AOD from bias-

corrected MODIS data, non-bias corrected MISR data and sunphotometer measurements 

from Aerosol Robotic Network (AERONET). In addition, the Navy Aerosol Analysis and 

Prediction System (NAAPS) has been used by the Naval Research Laboratory (NRL) to 

generate an 11-yr offline aerosol reanalysis by assimilating quality-assured and controlled 

MODIS and MISR AOD (Lynch et al., 2016). Other studies have developed regionally 

specific algorithms to calculate near-surface PM2.5. For example, Reid et al. (2015) used 

machine learning to evaluate how various combinations of monitoring data, AOD, model 

estimates, and auxiliary datasets (land-use, traffic, and meteorology) can be used to improve 

the estimations of surface PM2.5 in Northern California. Di et al. (2016) used a hybrid model 

based on neural network to assess PM2.5 exposures over the U.S., and Beckerman et al. 

(2013) estimated the spatiotemporal variability of PM2.5 in the U.S. using a land-use 

regression model.

Two sources of error exist when inferring surface mass abundance of PM2.5 from columnar 

AOD: uncertainties in satellite observed AOD, and uncertainties in modeled relationships 

between simulated PM2.5 and AOD. Ford and Heald (2016) estimated the contribution of the 

these values to uncertainties in the annual premature deaths associated with long-term PM2.5 

to be 20% for the modeled PM2.5 - AOD relationship, and 10% for errors in the AOD 

retrieved from satellite instruments, based on MODIS AOD Collection 6 and 0.5°×0.667° 

GEOS-Chem simulations over the U.S. and China. When assimilating of AOD into model 

simulations, the lack of information regarding aerosol speciation and aerosol vertical 

distributions may lead to degraded model performance (Buchard et al., 2017). The added 

value of satellite data may depend on the number of existing monitors, such as the case 

study of Lassman et al. (2017) during the 2012 wildfire season in Washington State, which 

found marginal improvements by incorporating satellite data and model simulations when 

numerous ground monitors are present, compared with substantial improvements when 

fewer monitors exist.

U.S. PM2.5 Surfaces and Health Applications

Using the methods and data discussed above, multiple research groups and agencies have 

developed PM2.5 exposure estimates. A comparison among several frequently used, publicly 

available surface PM2.5 datasets will be discussed, and examples will be given on how they 

have been used for air quality and health applications.

3.1 Major PM2.5 exposure datasets

Table 1 shows several datasets providing spatially continuous PM2.5 fields over the U.S. Not 

all of these data are directly comparable, as they may be available for different years or 

regions. We conduct an intercomparison of PM2.5 among four datasets for the overlapping 
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year of 2011: CDC WONDER (Wide-ranging Online Data for Epidemiologic Research), 

CDC National Environmental Public Health Tracking Network (EPHTN, also mentioned 

above), Dalhousie University’s Atmospheric Composition Analysis group data (hereby 

referred to as the Dalhousie data for brevity), and the ground-based monitor data (AQS + 

IMPROVE). The goal of this section is to provide examples on the existing large spatial 

variabilities in publicly available PM2.5 products. In fact, even though ground-based monitor 

data have been fused in CDC WONDER, EPHTN and Dalhousie data, there are still large 

differences among these datasets. We chose to intercompare their county-mean values at 

geocoded-address level for consistency among methods, since CDC fields were only 

available at the county-level.

The CDC WONDER data (Figure 1a) were developed by Al-Hamdan et al. (Al-Hamdan et 

al., 2014; Al-Hamdan et al., 2009) using satellite AOD from MODIS and PM2.5 from EPA 

monitors, and were made available through the CDC WONDER website (http://

wonder.cdc.gov/). CDC WONDER data were generated based on a regression model that 

derives surface PM2.5 from satellite-based columnar AOD, and a B-spline smoothing model 

that generates 10-km resolution, daily, spatially continuous PM2.5 surfaces for the 

contiguous U.S. by using combined AQS monitor PM2.5 measurements and bias-corrected 

MODIS satellite-estimated PM2.5 (Al-Hamdan et al., 2014; Al-Hamdan et al., 2009). This 

dataset provides daily PM2.5 data at the county scale for the continental U.S in 2003–2011, 

easily accessible from a menu-driven online system operated by the CDC. The CDC 

WONDER data have been used to study associations between PM2.5 air pollution and 

several adverse health effects, such as risk of sepsis hospitalization (Sarmiento et al., 2018), 

risk of stroke (McClure et al., 2017), incident coronary heart disease (Loop et al., 2018), 

cancer incidence of respiratory system (Al-Hamdan et al., 2017), cardiovascular disease 

mortality (Al-Hamdan et al., 2018a), and risk of autism spectrum disorder (Al-Hamdan et 

al., 2018b). Evaluation of the PM2.5 estimates from CDC WONDER found a much stronger 

correlation with ground-based PM over the eastern and the midwestern United States than 

those over the western United States (Al-Hamdan et al., 2014). This same pattern is evident 

in comparing CDC WONDER for 2011 in Figure 1a with county-average monitoring data in 

Figure 1d. A potential cause for the performance limitations in CDC WONDER data is the 

B-spline smoothing method, which results in relatively higher predicted values particularly 

when ground monitors are sparse. When using a different smoothing method – the Inverse 

Distance Weighted (IWD) method, PM2.5 surface estimates in California showed lower 

maximum values at county-level than the B-spline method (personal communication with 

Mohammad Al-Hamdan).

Figure 1b shows surface PM2.5 from the CDC EPHTN, produced by the National 

Environmental Public Health Tracking Program in collaboration with EPA (EPHTP, also 

known as the Tracking Program), and based on Bayesian space-time downscaling (Berrocal 

et al., 2010a; Berrocal et al., 2012; Berrocal et al., 2010b). The EPHTN PM2.5 data were 

previously used in epidemiology studies that track associations between PM2.5 

concentrations and a series of adverse health outcomes, including asthma-related emergency 

department visits, respiratory emergency department visits (Strosnider et al., 2019), 

exacerbation of existing asthma (Mirabelli et al., 2016), cardiovascular chronic diseases 

(Weber et al., 2016), chronic kidney disease and end stage renal disease (Bowe et al., 2018). 
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In addition, the PM2.5 estimates from EPHTN data were incorporated in a distributed lag 

nonlinear model when assessing the association between extreme heat and hospitalizations 

(Vaidyanathan et al., 2019). Although satellite data have not been incorporated into the 

EPHTN data, the Tracking Program partnered with NASA and Emory University to enhance 

spatial coverage of PM2.5 in the southeast U.S. (Hu et al., 2014a), and evaluated various 

satellite-based data products for characterizing adverse health impacts resulting from 

wildfire smoke PM2.5 (Gan et al., 2017). One feature of the EPHTN data is the relatively 

high concentrations in the western U.S. compared with the Dalhousie and AQS+IMPROVE 

fields in Figure 1. This difference is likely because EPHTN data used AQS monitors but not 

IMPROVE monitors in the fitting. PM2.5 concentrations in the rural areas may be 

overestimated when rural, low-concentration measurements from the IMPROVE network are 

not used, and the predictions are based on interpolation of fits from AQS monitors in urban 

areas.

Figure 1c shows 2011 surface PM2.5 fields from the Dalhousie data, which are based on 

models, satellites, and ground monitors. The data shown in Figure 1c are from V4.NA.02, 

and the data products are continually updated. Van Donkelaar et al. (2010) describe the first 

global satellite-derived PM2.5 dataset (V1.01), with subsequent datasets including additional 

satellite products (V2.01 (van Donkelaar et al., 2013)) and extending the time period of data 

availability (V3.01 (van Donkelaar et al., 2015)). The version shown in Figure 1c was 

developed for North America using AOD retrievals from multiple satellite products, 

combined with a GEOS-Chem simulation at 0.5°×0.67° resolution, and incorporation of 

local ground-based monitors through statistical fusion (V4.NA.02; (van Donkelaar et al., 

2019)). This regional version builds upon updates made during development of the global 

product (V4.GL.02 (van Donkelaar et al., 2016)) that combine AOD from multiple satellite 

products based upon their relative uncertainties. The resultant 1-km PM2.5 estimates are 

highly consistent (the spatial coefficient of determination (R2) = 0.81) with global out-of-

sample cross-validated PM2.5 concentrations from ground-based monitors. A variant of these 

data is also available (with similar performance) for the year 2014 (Shaddick et al., 2018b) 

as used in the GBD (Cohen et al., 2017). These datasets are currently being updated with 

newer satellite products, updated models, and new monitoring networks (Snider et al., 2015). 

The Dalhousie V4.NA.02 data for 2011 shown in Figure 1c capture the spatial gradients of 

the county-level monitoring data in Figure 1d. The Dalhousie data seem to show the best 

agreement with the AQS+IMPROVE data in the remote areas of the western U.S. and New 

England, which is consistent with another comparison study (Jin et al., 2019b). This feature 

indicates that incorporating satellite data can be valuable for improving estimation of PM2.5 

concentrations in remote areas where monitor coverage is sparse.

For comparison, Figure 1d shows a fusion of EPA AQS PM2.5 and IMPROVE PM2.5 

allocated to the county scale (i.e., data within the same county are averaged to a single 

county-mean value). The two datasets were combined to provide a more comprehensive 

representation of both urban and rural areas in the United States. For EPA AQS PM2.5, only 

counties with PM2.5 concentrations collected over four complete quarters in 2011 were 

chosen, and averaged to estimate an annual value. For IMPROVE PM2.5, monitor locations 

were matched with county Federal Information Processing Standards (FIPS) code and 

county mean values were calculated. Then, the EPA AQS PM2.5 and IMPROVE PM2.5 were 
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fused, that is, when both AQS and IMPROVE monitors occurred within a county, 

measurements from these two networks were averaged to derive the county mean. The 

agreement between the fused data fields (Figures 1a–c) with AQS-IMPROVE fused data 

(Figure 1d) may relate to the weight given to local data in the data fusion algorithm, and/or 

to the representativeness of a PM2.5 monitor for a county average. Nevertheless, 

comparisons with observations can be useful for identifying differences among datasets 

based on quantitative evaluation metrics.

Figure 3a compares the frequency distributions of the three datasets with respect to the AQS-

IMPROVE fused data. CDC WONDER consistently shows higher values than the other 

datasets. The Dalhousie dataset exhibits lower values of PM2.5 overall with the widest 

frequency distribution (largest standard deviation in Figure 3b).

Results from our analyses of county-mean PM2.5 estimates in 2011 are summarized in Table 

2. The minimum annual county-level mass concentrations of PM2.5 for CDC WONDER, 

EPHTN and Dalhousie are 7.2 μg/m3, 4.4 μg/m3 and 3.3 μg/m3, respectively, with the CDC 

WONDER’s minimum being the highest. Maximum values in each of the three datasets are 

similar (CDC WONDER: 14.9 μg/m3; EPHTN: 16 μg/m3; Dalhousie: 13.4 μg/m3). R2 and 

the normalized mean bias based on standard formula (EPA, 2018c) are calculated. Figure 2 

shows the linear regression slope and intercept values. CDC WONDER exhibited the lowest 

R2, 0.106, out of all the three datasets to averaged county-level AQS-IMPROVE fused data 

during a county-mean to county-mean comparison, and the highest normalized mean bias of 

33.3%. CDC EPHTN demonstrated an R2 of 0.649 and normalized mean bias of 12.2%. The 

Dalhousie dataset shows R2 of 0.693 and normalized mean bias of 1.6% if the satellite-based 

data are sampled coincidentally at monitor locations from both the EPA AQS and IMPROVE 

networks before averaging by county and comparing, but degrades to an R2 of 0.647 and 

normalized mean bias of −3.3% if county level averages are taken before comparing with the 

in situ monitor data, and degrades still further to an R2 of 0.527 and normalized mean bias of 

−9.2% if county level averages are taken before comparing with the in situ monitor data and 

if the IMPROVE data are also excluded. The reduced agreement implies caution when using 

a limited number of primarily urban ground-based monitors to represent county averages, 

and motivates consideration of more spatially representative information such as from 

satellite and models as reviewed here. When further restricting the linear regression analyses 

to PM2.5 < 15 μg m−3 only, the R2 values for CDC WONDER and Dalhousie data only 

increase slightly, while the R2 value for EPHTN remains the same.

This comparison highlights the importance of methodology in estimating PM2.5 surfaces. 

All three datasets used data from the EPA AQS; two used satellite AOD from the MODIS 

instrument; and two used advanced computer models. However, the results among these vary 

widely, and can be sensitive to assumptions about the spatial scale represented by individual 

PM2.5 monitors. This comparison is limited to county averages of annual mean for 2011 and 

to only those counties with data availability over four complete quarters; so more extensive 

inter-comparison of PM2.5 surfaces (including daily, grid-level and county-level 

comparisons for more counties and years) in future studies would provide helpful 

information to health and air quality organizations in selecting the appropriate data set for 

new applications.
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3.2 PM2.5 concentrations in global-scale estimates

The highest profile application of satellite-derived PM2.5 fields has been the Global Burden 

of Diseases, Injuries, and Risk Factors Study (GBD). The GBD project continually evaluate 

PM2.5 exposure using a consistent, globally applicable method representing the current 

state-of-the-science of data fusion of satellite, model, and monitor data.

For the 2010 GBD results reported in Lim et al. (2012), the PM2.5 concentration estimates 

are described in Brauer et al. (2012) who used an average of satellite-derived PM2.5 (van 

Donkelaar et al., 2010) and model (Van Dingenen et al., 2018) estimates that were 

recalibrated to align with in situ monitor data. For the 2013 GBD outcomes reported in 

Forouzanfar et al. (2015), PM2.5 estimates from Brauer et al. (2016) were used that were 

based on a broader blend of satellites, a different modeling approach (van Donkelaar et al., 

2015; Van Dingenen et al., 2018) and calibration against global monitoring data. More 

recently, the GBD 2015 results reported in Cohen et al. (2017) and Forouzanfar et al. (2016) 

used PM2.5 concentrations estimated using significant methodological advances (van 

Donkelaar et al., 2016; Shaddick et al., 2018b). Rather than relying on a single global 

function to combine information from the different data sources (satellite derived product, 

model, and in situ monitor data), a Bayesian hierarchical model was used to combine 

multiple streams of information with calibration coefficients defined at the country-specific 

scale (where possible). This allowed the final estimate to more heavily weigh the data source 

that yielded the most accurate PM2.5 estimates (as evaluated through out-of-sample cross 

validation) in different regions of the world.

The GBD 2016 results reported in Gakidou et al. (2017) continue to use a Bayesian 

hierarchical model to fuse geophysical satellite-derived PM2.5 estimates (V4.GL.02.NoGWR 

(van Donkelaar et al., 2016)) with in situ PM2.5 and PM10 monitor data, using predictors, 

modeled aerosols from the global GEOS-Chem model, a factor related to elevation and 

urban proximity, and random effects and correlations across these terms (Shaddick et al., 

2018a). Overall, the R2 compared to out-of-sample cross validation measurement increased 

from 0.64 to 0.91, and the root mean square error (RMSE) estimates reduced from 23 μg/m3 

to 12 μg/m3, compared to GBD 2013 estimates (Shaddick et al., 2018a).

Besides differences of PM2.5 estimates in different studies, the estimates of global exposure 

mortality can be affected by other factors such as causes of death being considered, regions 

being considered, and whether part of the PM2.5 impact is being categorized as from indoor 

or outdoor PM2.5 sources. For example, compared with the GBD studies, Burnett et al. 

(2018) used a different model – the Global Exposure Mortality Model (GEMM) to estimate 

association between outdoor PM2.5 and non-accidental mortality, and predicted 8.9 million 

[95% confidence interval (CI): 7.5–10.3] deaths globally in 2015, which is 2.2 times of the 

prediction in the GBD (4.0 million; 95% CI: 3.3–4.8) (Forouzanfar et al., 2016).

3.3 Species and source-specific exposure estimates

Recently, an interest in identifying characteristics of PM2.5 associated with health risks 

beyond total mass concentration has surged in the health and air quality fields, but progress 

is limited by robust evidence for the impact of PM2.5 composition or emission sector on 
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health outcomes (Kioumourtzoglou et al., 2015). A challenge in identifying such 

relationships has been the limited availability of species and source-specific exposure 

estimates. A review of Bates et al. (2019) summarized the recent progress for particle-bound 

reactive oxygen species (ROS) and oxidative potential (OP) measurements techniques. They 

discussed the compositional impacts on OP as well as health effects and highlighted the 

importance of specific emission sources including metals, organic carbon, vehicles, and 

biomass burning to OP. When there is a lack of measurements of OP at various times and 

locations, modeling approaches such as land-use regression and source impact regressions 

are often used (Yang et al., 2016; Bates et al., 2015; Fang et al., 2016). While models can be 

used to estimate species and sector-specific PM2.5 exposures, model biases, limited 

resolution, and other uncertainties still limit the accuracy in model-based exposure 

estimates.

A number of different research groups have fused models with satellite and/or ground-based 

measurements, as discussed above. This same approach can be extended to the chemical 

speciation of aerosols available in models. For example, Ivey et al. (Ivey et al., 2017; Ivey et 

al., 2015) used a combination of model sensitivity analysis and receptor modeling at monitor 

locations to estimate source contributions to total PM2.5 from 20 different sources, including 

contributions from inorganic aerosol species and metals. Zhai et al. (2016) investigated 

mobile source contributions to air pollution concentration fields including PM2.5 at 250-m 

fine resolution using a calibrated dispersion model and ground monitor data. Their results 

were applied to the estimation of prenatal exposure (Pennington et al., 2017) and childhood 

asthma outcomes (Pennington et al., 2018) due to traffic air pollution. Lee et al. (2015) used 

a combination of global adjoint sensitivity modeling and satellite-derived PM2.5 

concentrations to estimate the emitted species contributing to the global total premature 

deaths associated with long-term exposure to PM2.5. Rundel et al. (2015) fused monitoring 

data and CMAQ output and provided summaries of five major PM2.5 species for the 

continental U.S., including sulfate, nitrate, total carbonaceous matter, ammonium and fine 

soil/crustal material. Li et al. (2017) used a combination of global modeling (GEOS-Chem) 

and satellite-derived PM2.5 concentrations to estimate trends in population-weighted 

speciated PM2.5 concentrations worldwide. The species considered were sulfate, nitrate, 

ammonium, organic aerosol, black carbon, dust, and sea-salt, and these were evaluated in 

comparison to speciated in situ ground monitor measurements in the U.S. The relative trends 

agreed to within a few percent in terms of the relative trends for most species, with the 

largest differences being those for natural components (sea salt and dust). Similarly, Di et al. 

(2016) calibrated GEOS-chem model simulations using ground monitoring data and 

predicted 1 km × 1 km resolution PM2.5 speciation data on daily basis in northeastern U.S. 

Additionally, van Donkelaar et al. (2019) directly extend the Dalhousie University satellite-

derived PM2.5 methodology to include estimates of chemical composition. Across all 

species, the agreement with speciated measurements in North America had an R2 that 

ranged from 0.57 to 0.96, and a slope from 0.85 to 1.05, with generally the best agreement 

for sulfate, ammonium and nitrate (R2 between 0.86 – 0.96, slope between 0.99 and 1.01).

The upcoming MAIA (Multi-Angle Imager for Aerosols, preformulation ~2021) satellite-

based remote sensing instrument will make radiometric and polarimetric measurements to 

better derive aerosol composition from space, helping to provide additional records of 
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species and source-specific PM2.5 to health researchers in several major urban areas 

worldwide (Diner et al., 2018).

Improved species and source-specific PM2.5 surfaces will be of value for several reasons. 

For example, they can assist in the refinement of concentration-response relationships for 

epidemiological studies of the health impacts posed by particulate exposure. In addition, 

they can assist in identifying the PM2.5 components or the emission sectors (e.g., 

transportation versus power generation) most responsible for PM2.5’s toxicity.

3.4 Data assimilation and forecasting for episodic air pollution events

To date, most of the applications of data fusion among ground-based monitors, satellites, 

and/or model simulations were to support public health assessment retrospectively, since the 

measurements are only available for the past. To project future air quality, a conventional 

method is the “relative response factor” approach (EPA, 2018d), which multiplies a base 

year’s fused concentration field by the ratio of the CMAQ model predictions between the 

future and base years. Such method has been applied to system development for meeting the 

NAAQS (Kelly et al., 2019) as well as impact analysis (EPA, 2012). However, there is clear 

potential to extend data fusion approaches to air quality forecasting, using satellite and 

ground-based data as initial conditions assimilated into the models. Health-based PM 

forecasts tracking smoke from wildland fires are one example of the application of data 

assimilation.

Wildfires are becoming increasingly important sources for PM2.5 pollution hazards due to 

the large quantity of emissions (Larkin et al., 2014), the acute episodic nature of the events, 

the difficulties associated with controlling them, and impacts of a changing climate 

(Spracklen et al., 2009). In particular, for the Northwest U.S., a positive trend was found in 

the 98th percentiles of PM2.5 due to the increasing total areas burned by wildfires. This is in 

contrast to the decreasing trend of PM2.5 in the other areas in the contiguous U.S. (McClure 

and Jaffe, 2018). Several previous studies examined the adverse health effects from exposure 

to wildfire smoke in previous years based on observations and simulations. Rappold et al. 

(2017) used CMAQ model simulations with and without wildland and prescribed fires from 

2008 to 2012 to quantify contribution of fire emissions to the ambient PM2.5 levels. Their 

results showed that 30.5 million people in the U.S. lived in the areas where fire-emitted 

PM2.5 is a large component of annual average value. Similarly, Fann et al. (2018) used 

CMAQ model simulations to assess the health impacts and economic value of wildland fire 

episodes in the U.S. from 2008–2012.

Compared with the retrospective analysis, the future-oriented forecasts for PM2.5 emission 

from wildfire are even more challenging. Because of the episodic nature of wildfire 

emission, the forecasts would require daily or even hourly PM2.5 estimates, rather than the 

annual exposure fields used in health studies like the GBD. In addition, fires typically occur 

in regions away from major cities where ground-based monitoring data are not always 

available, which imposes challenges on data assimilation.

There are multiple smoke forecasting systems in the U.S., all of which use models to provide 

future estimates of ground-level PM2.5. Currently satellite data are used in these systems to 
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inform the location, timing, and characteristics of fire. Fire detection characteristics are 

combined with land cover data to calculate emissions into the model, and satellite AOD is 

used to evaluate model performance (Schroeder et al., 2008; Larkin et al., 2009; Stein et al., 

2015; Draxler and Hess, 1998; Vaughan et al., 2004; Chen et al., 2008; Herron-Thorpe et al., 

2012).

Among these smoke forecasting systems, the most direct integration of satellite AOD and 

wildland smoke prediction is performed by the Wildland Fire Air Quality Response Program 

(WFAQRP), which has been developed to address smoke issues from wildfires, bringing the 

latest in fire emissions and smoke transport science to Incident Management Teams, health 

and air quality agencies, and ultimately the public. This program provides smoke forecasting 

expertise, deploys temporary PM2.5 monitors to augments existing monitoring systems, and 

communicates information on how to protect oneself from smoke. A daily Smoke Outlook is 

produced, forecasting expected smoke behavior and level of impact in the region of the fire 

(Figure 4). These smoke outlooks are initialized with a statistical model incorporating 

MODIS AOD and surface PM2.5 monitoring data to forecast the AQI for the next day 

(Marsha and Larkin, 2018).

Discussion and Conclusion

4.1 Remaining barriers for obtaining and applying PM2.5 exposure for health applications

This review discusses the methods, sources, and application of spatially continuous PM2.5 

datasets derived from combinations of ground-based data, satellites, and/or atmospheric 

models. The data fusion products leverage the benefits of each data source, providing PM2.5 

exposure estimates over continuous spatial scales. This new resource for air quality data has 

already been used for health assessments, and has potential for application to research, 

public outreach, and environmental management. Nevertheless, several challenges remain in 

obtaining and applying PM2.5 exposure for health applications. For example, missing data 

coverage in both ground monitors and satellite observations requires additional efforts for 

merging multiple data sources or interpolating data in space and time. When choosing the 

methods for data fusion or interpolation, users often need to weigh between the advantages 

and disadvantages of different methods. One may choose the efficient calculation of the 

Bayesian statistical downscaling method for lower spatial resolution (such as 12 km 

resolution in Wang et al. (2018)), while others may choose the more computational 

expensive methods that combine CTM, satellite and ground monitors (van Donkelaar et al., 

2019), or machine learning techniques (Hu et al., 2017; Reid et al., 2015; Di et al., 2019). 

Methods that incorporate dispersion modeling may also be useful in some applications 

(Scheffe et al., 2016; Ahangar et al., 2019). Depending on the methods being used in data 

fusion, assimilating the ground monitor data does not guarantee similar output of surface 

PM2.5, as demonstrated in our case study of four datasets in Section 3.1. Such variability 

among publicly available datasets calls for more intercomparison studies to contrast and 

explain their differences. Future intercomparison studies are recommended to isolate 

individual factors contributing to comparison results, including but not limited to 

spatiotemporal variabilities of surface PM2.5 (e.g., seasonal variability, topography, eastern 

versus western U.S.), data sources being used (model, satellite and/or monitors), regression 
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of AOD – PM2.5 relationships, representativeness of ground monitor data (e.g., weighting 

functions of monitors over a larger scale), spatial and temporal resolutions, etc. As end users 

of these PM2.5 datasets, researchers in public health should be mindful that the agreement 

between fused PM2.5 data and monitored PM2.5 evaluated by R or R2 are affected by 

multiple factors and assumptions being used in such evaluation (e.g., representativeness of 

monitor data, spatiotemporal interpolation, data resolutions, etc.). Varying sampling 

schedules for networks (i.e., higher frequency in urban areas versus lower frequency in rural 

areas) create another challenge when using ground monitor data as the gold standard, 

particularly for developing daily concentration fields. On days without rural sampling, 

predicted concentrations in rural areas might be overestimated because they are based on fits 

to predominantly urban monitoring. One way to combat this is to perform fusion on longer 

term monitor averages (monthly, quarterly, etc.). We recommend that researchers from both 

communities (i.e., data development and public health sectors) work together when applying 

the PM2.5 estimates into health impacts assessments and/or air quality management actions. 

One example is to guide the model evaluations by the usage of PM2.5 fields in health studies, 

which may be focused on a specific concentration range (e.g., lower concentrations in the 

rural areas versus higher concentrations in the urban areas), or a specific population. These 

specific targets may not be thoroughly tested by national or regional cross-validation.

4.2 Web-based Tools for PM2.5 Exposure Analyses

Despite the benefits of these data and the rapidly advancing research in this area, there are 

several key steps towards wider utilization of these data. One key step is to downsize 

spatially continuous data based on the types of applications. Although research groups may 

provide global or national data, most users require a small subset of data over a particular 

region and time period. Online mapping tools and options that allow users to subset data 

prior to download can significantly reduce the data management burden on users. Another 

key step is to maintain and foster training tutorials and seminars on specialized mapping 

software. For instance, the NASA Applied Remote Sensing Training (ARSET) program has 

been providing in-person and online tutorials for these purposes since 2009 (NASA, 2019).

Several web-based tools are available for analyzing and predicting PM2.5 exposure. The EPA 

Remote Sensing Information Gateway (RSIG), developed by U.S. EPA in collaboration with 

NASA, allows rapid retrieval and subsetting of satellite, model and ground-based data 

relevant to air quality. The RSIG website can be accessed at: https://www.epa.gov/hesc/

remote-sensing-information-gateway, which provides multi-source, daily PM2.5 data at up to 

12-km horizontal resolution. Users can select only the subset of data needed for a particular 

application to be downloaded. RSIG can also combine multiple variables to simplify the 

burden of data analysis on the user. For example, if one is interested in comparing CMAQ-

modeled PM2.5 with AQS observations, the AQS observations can be subsetted and 

regridded to the model grid by specifying the model configuration (e.g., domain range, 

projection, resolution) (EPA RSIG, 2019). As of April 2018, multiple PM2.5 datasets are 

available from RSIG, including the EPA AQS in-situ monitor data, standard CMAQ model 

simulations over the continental U.S. conducted by the U.S. EPA, the FAQSD, and the 

combination of ground-based monitor and model data used by the CDC EPHTN. In 

addition, RSIG also provides up-to-date NASA MODIS AOD, and the National 
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Environmental Satellite, Data and Information Service (NESDIS) Biomass Burning 

Emissions Data.

The University of California Berkeley’s Earth Air Quality Map (http://berkeleyearth.org/air-

quality-real-time-map/) provides near-real-time maps of AQI values for PM2.5 

concentrations in the U.S. and several countries and regions outside of U.S. (e.g., China, 

Canada, Europe, etc.) at 0.1 degree resolution. As specified on the website, preliminary data 

from surface station measurements are being used with automated quality control procedure, 

and interpolated based on Kriging method. Daily maps of PM2.5 AQI values are available to 

download from June 2016 to March 2017.

When data are mapped through a web application, it can significantly reduce the burden of 

creating a map or plot. However, users often want the ability to create maps in a standard 

software platform to integrate with other aspects of their work. Currently, the netCDF is the 

most common format for atmospheric data, including PM2.5 surfaces. Many programming 

languages, such as Python, the Interface Definition Language (IDL), MatLab, and the free 

National Center for Atmospheric Research (NCAR) Command Language (NCL) support 

netCDF data. ArcView GIS also supports netCDF, but users may have difficulty plotting 

large netCDF files in GIS. Because GIS platforms are so widely used among health, land 

planners, and policy communities, we recommend that data providers also include the 

standard release of GIS shapefiles as a distributed data format. Typically, shapefiles provide 

data in political or geographic spatial domains (e.g., U.S. counties or census tracts) rather 

than the grid format, which is typically used in atmospheric research.

4.3 Ongoing and future research efforts

Besides providing more guidance on the tools to potential users, improved utilization of 

PM2.5 exposure datasets can be supported by increased validation. Because ground-based 

monitors, satellites, and models are often combined to estimated surface PM2.5, there are 

few independent data sources for validation. A recent study over New York State uses 

independent ground-based observations from the New York City Community Air Quality 

Survey (NYCCAS) Program and the Saint Regis Mohawk Tribe Air Quality Program to 

evaluate seven PM2.5 products (Jin et al., 2019b). Jin et al. suggest inclusion of satellite 

remote sensing improves the estimate of surface PM2.5 in the remote area, but little gains 

over urban area. One of the networks with continuous efforts to evaluate satellite-derived 

PM2.5 estimates is the publicly available Surface Particulate Matter Network SPARTAN 

(www.spartan-network.org) (Snider et al., 2016; Snider et al., 2015), which measures fine 

particle aerosol concentrations and composition continuously over multi-year periods at 

international sites where AOD is also measured by ground-based instruments. When 

validating PM2.5 exposure data with ground-based observations, one caution is that the 

agreement between the fused data fields and in situ monitor data is related to the weight 

given to monitor data in the data fusion algorithm and the spatial and temporal scales that 

the in situ monitor data are assigned to represent. Certain criterion for data quality control 

may also cause a sampling bias.

Linking satellite observations of AOD with ground-level PM2.5 estimates requires accurately 

understanding the relationship between aerosol extinction and aerosol mass abundance, 
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which depends on multiple factors such as aerosol size distribution, hygroscopic growth 

(Ziemba et al., 2013; Brock et al., 2016a) and ambient relative humidity (Brock et al., 

2016b). Targeted research efforts have been underway to advance understanding of these 

issues (Jin et al., 2019a). For example, the NASA DISCOVER-AQ aircraft campaign took 

place over four urban areas in the U.S. from 2011–2014, and provides extensive profiling of 

aerosol optical, chemical and microphysical properties at locations coincident with ground-

based PM2.5 sites. This multi-platform suite of observations is ideal for analyzing the 

relationship between satellite column AOD and ground-level PM2.5 abundances 

(Crumeyrolle et al., 2014; Jin et al., 2019a).

While we have focused our discussion here on AOD, the most widely used metric for 

ambient particulates, there are other remote sensing instruments that can expand the value of 

satellite-based information (some of these are already in use in the data products presented 

here). For example, instruments aboard the Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations (CALIPSO) provide vertical profiles of aerosol extinction with 

limited spatial coverage, which can be used to detect aerosols present above the surface 

(Ford and Heald, 2013), and to correct model biases in the vertical profiles of aerosol 

extinction when quality controlled retrievals are available (Geng et al., 2015; van Donkelaar 

et al., 2013; van Donkelaar et al., 2016; Li et al., 2015).

Ongoing research efforts have great potential to benefit spatially continuous PM2.5 data 

fusion efforts. New geostationary satellites will provide improved temporal coverage, as they 

orbit with Earth, and can track the evolution of weather systems, wildfire smoke, urban 

pollution and other factors affect ground-level PM2.5. For example, the GOES-16 satellite 

provides AOD at a 2-km horizontal resolution every 5 minutes over the continental U.S. and 

other areas in its field of view. Improvements in these data, and other upcoming satellites, 

hold the potential to revolutionize the role of satellite data in estimating ground-level PM2.5. 

Ongoing improvement in numerical modeling of the atmosphere, supported by decreasing 

computational cost, will also improve these data fusion products, allowing for higher 

resolution model simulations. The rapid rise in low-cost PM monitors also offer 

opportunities for obtaining surface PM2.5 information around the world, if low-cost monitors 

can be reliably calibrated.

Publicly available datasets are already supporting a wide range of air quality and health 

applications benefiting from spatially continuous PM2.5 data. With the increased 

transparency of data products and methods, improved dissemination of data to support GIS 

mapping software, and plain-language communication of complex ideas have the potential 

to vastly expand the relevance of emerging data for health and air quality. As new users 

explore and evaluate these tools, their feedback to the research community can inform and 

improve future activities. A two-way dialogue between researchers and stakeholders, e.g., 

the NASA Health and Air Quality Applied Sciences Team (HAQAST, 2019) and the NASA 

ARSET training program (NASA, 2019), can be very helpful in defining research priorities 

and ensuring outcomes to serve wider needs.
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Figure 1. 
County-level maps of annual mean PM2.5 in 2011 using: (a) CDC WONDER, (b) EPHTN, 

(c) Dalhousie data (V4.NA.02), and (d) EPA AQS and IMPROVE fused data. White spots on 

the map represent “no data available”.
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Figure 2. 
Scatter plots of publicly available surface PM2.5 datasets – (a) CDC WONDER, (b) EPHTN, 

and (c) Dalhousie (V4.NA.02) versus AQS+IMPROVE fused data. All data represent 

county-average 2011 annual mean. Two linear regressions are calculated: one for all data 

(top text box, red solid line showing this fit) and one for PM2.5 < 15 μg m-3 only (bottom 

text box). Black solid line stands for 1:1 line. The value of a and b represent intercept and 

slope of the linear regression, respectively. The ±1σ stands for ± one standard deviation. The 
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number of samples used for linear regression in (a), (b) and (c) are 543, 544 and 544, 

respectively.
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Figure 3. 
(a) Frequency distributions of the county-average 2011 annual mean PM2.5 mass 

concentrations for the four data sets shown in Figure 1. (b) Mean (triangles), median 

(horizontal bar in the middle), 25 and 75 percentiles (bottom and top of the box, 

respectively) for the four data sets. Black dots represent outliers.
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Figure 4. 
An example of forecasting smoke conditions in local communities, using Smoke Outlook, 

for Ranch Fire and River Fire in Sacramento Valley area, California in August 9–10, 2018.
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Table 1.

A summary of the publicly available PM2.5 exposure datasets

Source of 
Dataset Region Time 

Period
Spatial 

Resolution
Temporal 
Resolution Monitor Model Satellite Reference

1 GBD Global 1990 – 2013 *0.1°× 0.1° Annual X X X Brauer et al. 
(2016)

2
Dalhousie 

Dataset 
V4.GL.02

Global 1998 – 2016 1 km2 Annual X X X (1)

3 GBD Global 2014 *0.1°× 0.1° Annual X X X Shaddick et al., 
(2018a)

4 Berkeley Earth Global 2016 – 2017 *0.1°× 0.1° Daily X X (2)

5
Dalhousie 

Dataset 
V4.NA.02

CONUS 2000 – 2016 1 km2 Annual X X X (1)

6 EPA AirData CONUS 1999 – 2018

Point data; also 
available when 

averaged on 
county scale

Daily X (3)

7 EST 2013 CONUS 2001 – 2006 8.9 km2 Monthly X X X Beckerman et 
al. (2013)

8 CDC EPHTN CONUS 2001 – 2015 County and 
Census tract Daily X X (4)

9 EPA FAQSD CONUS 2002 – 2015 12 km2 Daily X X (5)

10 CDC 
WONDER CONUS 2003 – 2011 County Daily X X (6)

11 AQAH 2018 NC, USA 2006 – 2008 12 km2 Monthly & 
Annual X X Huang et al. 

(2018)

Table 1 shows spatially continuous PM2.5 exposure datasets that are publicly available and free on individual websites or publications. The URLs 

of the datasets are listed below.

*
At mid-latitudes, 1° is approximately 100 km.

(1).
Dalhousie University Datasets: http://fizz.phys.dal.ca/~atmos/martin/?page_id=140

(2).
Berkeley Earth Air Quality Map: http://berkeleyearth.org/air-quality-real-time-map/

(3).
AirData Dataset: https://www.epa.gov/outdoor-air-quality-data/download-daily-data

(4).
CDC EPHTN: https://ephtracking.cdc.gov/DataExplorer/#/

(5).
EPA FAQSD Dataset: https://www.epa.gov/hesc/rsig-related-downloadable-data-files

(6).
CDC WONDER: https://wonder.cdc.gov/nasa-pm.html
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Table 2.

Summary of county-average 2011 annual mean PM2.5 estimates of AQS+IMPROVE fused data, CDC 

WONDER, EPHTN and Dalhousie data in contiguous U.S.

PM2.5 data AQS+IMPROVE CDC WONDER EPHTN Dalhousie

Minimum PM2.5 value (μg/m3) 1.7 7.2 4.4 3.3

Maximum PM2.5 value (μg/m3) 20.4 14.9 16.0 13.4

R2 * 0.106** 0.649 0.647

R2 * for PM2.5 < 15 μg m−3 only 0.136** 0.649 0.662

Normalized mean bias * 33.3%** 12.2% −3.3%

Number of samples used in analysis 544 3102 3104 3104

*
R2 and normalized mean bias are calculated based on county-mean to county-mean comparison with respect to AQS+IMPROVE data of 2011 

annual mean.

**
This is based on county-mean to county-mean comparison, but as for the grid-level validation, the surfacing algorithm that was used to create the 

CDC WONDER dataset was also validated on the grid level for the Southeastern US that showed an R2 of 0.88 and RMSE of 1.6 μg/m3 (Al-
Hamdan et al., 2009).
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