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Abstract

Purpose: 5-hydroxymethylcytosine (5-hmC) is an epigenetic marker of open chromatin and 

active gene expression. We profiled 5-hmC with Nano-hmC-Seal technology using 10ng of plasma 

derived cell-free DNA (cfDNA) in blood samples from patients with neuroblastoma to determine 

its utility as a biomarker.

Experimental Design: For the Discovery cohort, one hundred 5-hmC profiles were generated 

from 34 well children and 32 patients (27 high-risk, 2 intermediate-risk, and 3 low-risk) at various 

time points during the course of their disease. An independent Validation cohort encompassed 5-

hmC cfDNA profiles (n = 29) generated from 21 patients (20 high-risk and 1 intermediate-risk). 

Metastatic burden was classified as high, moderate, low, or none per Curie 

Metaiodobenzylguanidine (MIBG) scores and percentage of tumor cells in bone marrow. Genes 

with differential 5-hmC levels between samples according to metastatic burden were identified 

using DESeq2.
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Results: Hierarchical clustering using 5-hmC levels of 347 genes identified from the Discovery 

cohort defined four clusters of samples that were confirmed in the Validation cohort and 

corresponded to high, high-moderate, moderate, and low/no metastatic burden. Samples from 

patients with increased metastatic burden had increased 5-hmC deposition on genes in neuronal 

stem cell maintenance and epigenetic regulatory pathways. Further, 5-hmC cfDNA profiles 

generated with 1,242 neuronal pathways genes were associated with subsequent relapse in the 

cluster of patients with predominantly low or no metastatic burden (sensitivity 65%, specificity 

75.6%).

Conclusions: cfDNA 5-hmC profiles in children with neuroblastoma correlate with metastatic 

burden and warrants development as a biomarker of treatment response and outcome.
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Introduction

5-hydroxymethylcytosine (5-hmC), a stable intermediate of cytosine demethylation, is a 

marker of open chromatin and active gene expression. The development of a highly sensitive 

and robust sequencing technology (Nano-hmC-Seal) has allowed for the genome-wide 

profiling of 5-hmC using less than 10 ng of DNA (1). Converse to 5-methylcytosine which is 

a marker of decreased gene expression, the levels of 5-hmC accumulation in promoters, gene 

bodies and gene regulatory elements correlate with active gene expression (2). In 

neuroblastoma, we have shown that 5-hmC profiles categorize tumors by phenotype, are 

associated with survival, and identify underlying molecular pathways that drive tumor 

biology (3). While Nano-hmC-Seal was designed for use with DNA from frozen tumors, it 

has recently been adapted for profiling tumor-derived circulating cell-free DNA (cfDNA) 

(1,4,5).

Neuroblastoma, the most common extra-cranial solid tumor of childhood, is clinically and 

biologically heterogeneous (6). At diagnosis, patients are stratified as low-risk (LR), 

intermediate-risk (IR) or high-risk (HR) based on age, histology, stage, ploidy, and the 

presence or absence of MYCN-amplification (6). Although survival has improved with 

modern treatments (6), even with intensive, multi-modality approaches, disease progression 

or relapse occurs in approximately 40% of HR patients within 3 years from diagnosis (7). 

Patients undergo serial tumor evaluations with imaging studies and bone marrow tests 

following different courses of therapy and after completion of treatment to measure response 

and diagnose relapse. While response to treatment has been strongly associated with 

outcome (8), some drawbacks of standard tumor evaluation studies are the need for sedation 

and radiation exposure, limiting the feasibility of assessing response at frequent intervals. 

Furthermore, current evaluation methods lack the sensitivity to detect minimal residual 

disease that may ultimately lead to recurrence in some patients (9). Clinicians face 

challenges using standard imaging techniques as it remains difficult to distinguish malignant 

soft tumor masses from disease that has differentiated into benign neuroblastic masses (10).
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cfDNA has increasingly been recognized as both a prognostic and predictive marker in 

cancer (11). In neuroblastoma, the quantity of cfDNA has been shown to correlate with 

tumor burden (12). Efforts to improve the precision of detecting neuroblastoma-derived 

cfDNA using somatic alterations have been described (13–15), but are limited by the low 

mutational burden in neuroblastoma (6) necessitating deep sequencing approaches or 

comparison to primary tumor. Nano-hmC-Seal has the potential to overcome these 

limitations by assessing 5-hmC genome-wide at low sequencing depth, independent of 

somatic alterations. Using genome-wide approaches are particularly important for evaluating 

pediatric tumors as it an imperative to maximize information from rare and precious samples 

(16). This technology has been shown to readily distinguish healthy adults from those with 

esophageal, gastric, hepatic, or colon cancer, even though cfDNA 5-hmC profiles 

significantly differ from 5-hmC profiles from prior tumor samples (1,4,5). Thus, we 

hypothesized that cfDNA-derived 5-hmC profiles would readily distinguish healthy children 

from those with neuroblastoma and also enable the evaluation of response to treatment over 

time. Furthermore, as 5-hmC is tightly associated with gene expression (3), we hypothesized 

that identification of genes with differential accumulation of this epigenetic mark would 

provide insight regarding the transcriptional and regulatory networks that drive aggressive 

tumor growth and treatment resistance.

Patients and Methods

Patients

The Discovery and Validation cohorts consisted of samples collected from children 

diagnosed with neuroblastoma between birth to 29 years old from the University of Chicago 

Comer Children’s Hospital and Lurie Children’s Hospital between August, 2016 through 

May, 2018, and March, 2019 through July, 2019, respectively. In addition, well child control 

samples were collected from children between birth to 10 years of age seen in the Comer 

Children’s General Pediatrics Clinic and were included in the Discovery cohort. Controls 

were excluded if they were acutely ill, had inflammatory or autoimmune conditions, or were 

taking inhaled or systemic steroids. Patient and tumor characteristics including date of 

diagnosis, stage, age, sex, ethnicity, MYCN-amplification status, treatment, date of relapse, 

and death were abstracted from electronic medical records and stored in a RedCap database. 

Clinical response to treatment was determined using the 2017 International Neuroblastoma 

Response Criteria (INRC) (17). Disease status (disease detected by standard imaging and/or 

bone marrow aspirate or biopsy versus no evidence of disease) at the time of blood sample 

collection was defined by the most recent preceding tumor evaluation. Metastatic disease 

burden at the time of collection was classified as high, moderate, low, or none according to 

the maximum amount of disease detected by Curie metaiodobenzylguanidine (MIBG) scores 

of metastatic bone or soft tissue sites and/or the percentage of neuroblastoma cells identified 

in bone marrow biopsies and aspirates. Curie scores of metastatic sites were classified as 

high (6–27), moderate (2–5), low (1), or none (0) (17,18). Bone marrow involvement was 

classified as high (> 10%), moderate (5–10%), low (1–4%), or none (0%) according to 

pathologist interpretation in the medical records (Table 1A) (17). Written informed consent 

was obtained from parents or guardians after the study was approved by the local 

Institutional Review Board according to the U.S. Common Rule ethical guidelines.

Applebaum et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2020 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Blood collection and isolation of cfDNA

For all samples, 6–10 ml of blood was collected in EDTA tubes. Control samples from 

healthy children were obtained during the well child visit. High-risk (HR) patients were 

treated with intensive multi-modality strategies (6), and blood was collected at one or more 

of the following time points: diagnosis, after 2 cycles of induction therapy, prior to post-

induction “bridge” therapy (19), prior to consolidation with myeloablative therapy and stem 

cell transplant, prior to immunotherapy, end of therapy, off therapy, at relapse, and during 

therapy for relapsed disease. For (low-risk) LR and (intermediate) IR patients, samples were 

collected at diagnosis, end of therapy, and/or off therapy (6). All blood samples were stored 

at 4°C and processed within two hours of collection. Plasma was obtained after centrifuging 

whole blood at 1350g for 12 minutes. Following centrifugation, the plasma layer was re-

centrifuged at 1350g for 12 minutes and then at 13,500g for 5 minutes, and stored at −80°C. 

cfDNA was isolated from 1–2 ml of plasma using the QIAamp Circulating Nucleic Acid Kit 

(Qiagen, Gaithersburg, MD) per manufacturer’s instructions with a final elution using 25 μl 

of IDTE pH 8.0 buffer.

Nano-hmC-Seal library preparation and sequencing

Nano-hmC-Seal libraries were constructed from 10 ng of cfDNA as described (2,20). 

Briefly, after ligation with sequencing adapters using the KAPA Hyper Prep Kit (KAPA 

Biosciences), cfDNA 5-hmC marks were subjected to T4 beta-glucosyltransferase enzymatic 

modification with UDP-N3-glucose, followed by subsequent chemical modification with 

biotin-PEG4-dibenzocyclooctyne (DBCO). Biotin-labeled cfDNA fragments were then 

pulled down using streptavidin M270 Dynabeads (Invitrogen), and PCR amplified to 

construct sequencing libraries which were purified with AMPure XP beads (Beckman 

Coulter) to construct libraries. Fifty base-pair, paired-end libraries were sequenced on an 

Illumina NextSeq 500. FASTQC v0.11.5 was used to assess sequence quality (21). Raw 

reads were processed with Trimmomatic (22) and aligned to hg19 with Bowtie2 v2.3.0 (23) 

using default settings. Aligned reads with Mapping Quality Score ≥10 were counted using 

featureCounts (24) of Subread using the gene flag and the gencode.v27lift37.annotation.gtf 

file from GENCODE (25).

Identification of genes with differential levels of 5-hmC modifications

Read counts of 5-hmC for the entire gene body were loaded into the DESeq2 v1.20.0 (26) 

package in R v3.6.0 with a differential 5-hmC model that adjusted for sex, batch and cohort. 

A False Discovery Rate (FDR) < 0.05 and ranking in the top or bottom 1% of fold-change 

differences was considered significant. To assess the robustness of differential 5-hmC levels 

in the complete Discovery cohort, we performed 10-fold cross validation by randomly 

selecting 80% of the samples from the Discovery cohort and repeating differential the 5-

hmC analysis including data normalization steps performed by the DESeq function in 

DESeq2. For each loop of cross validation, we determined the percent of genes, using FDR 

< 0.05 and cutoffs of both 1 and 2% of top or bottom fold-change that were also found in the 

analysis of complete cohort. Principal component analysis of all samples was performed 

using FactoMineR v1.41 (27). ComplexHeatmap v1.20.0 was used to determine the distance 

matrix between samples for hierarchical clustering (28).
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Generation of a model to confirm 5-hmC profiles correlate with metastatic burden

A model was trained on the Discovery cohort using elastic net regularization (5) limited to 

the top 347 genes with differential levels of 5-hmC identified to predict high/moderate or 

low/no metastatic burden. Feature selection using differential genes prior to model training 

was previously shown to increase the disease relevance of model trained of cfDNA 5-hmC 

profiles (1,5,29). Elastic net was implemented in the caret package v6.0–80 (30). 

Normalized batch- and gender-corrected read counts of the Discovery cohort for each of the 

347 genes were treated as a feature in the model were tested on the independently processed 

Validation cohort. Models were trained with 10-fold cross validation across a range of alpha 

and lambda values from 0–1 optimized for area under the curve, where alpha controls for the 

relative proportion between the Ridge and Lasso penalty, and lambda controls for the overall 

strength of penalty.

Differential 5-hmC deposition gene set enrichment analysis

Differential 5-hmC deposition pre-ranked gene set enrichment analysis (GSEA) was 

performed with fgsea (31). For samples from patients with or without detectable disease, 

genes with significant differential 5-hmC enrichment regardless of fold change were ranked 

by p-value magnitude and 5-hmC effect sign, resulting in gene lists with 5-hmC upregulated 

genes at the top and downregulated genes at the bottom. An ‘ad hoc’ collection of gene sets 

was created from different sources, by prioritizing the inclusion of predicted and known 

human transcription factor (TF) targets (Supplementary Table 1). Gene sets were tested for 

significant extreme ranking in the sorted gene lists of genes with differential 5-hmC. 

Significance was assessed by n = 100,000 permutations of random gene sets, size matched to 

the actual gene set. In total, n = 34,823 non-redundant gene sets were partitioned into two 

main categories tested separately, named “miscellaneous” and “TF ChIP-Seq”. Partition 

criteria were based on their dissimilar mean gene set size. The “miscellaneous” gene set 

collection comprises n = 32,065 gene sets related to disease, drug, hormone and 

immunological processes categories, among others. Its mean gene set size is ~108 genes. 

The “TF ChIP-Seq” gene set collection comprises n = 2,758 gene sets corresponding to TF 

binding ChIP-Seq experiments across cell types and treatments (32). Its median gene set size 

is ~8,500 genes and there are between one and 184 experiments for 428 unique transcription 

factors. Significance was determined by FDR < 0.01. For each TF, the percent of TF ChIP-

Seq gene sets reaching significance was determined for all TFs with at least five ChIP-Seq 

experiments in ENCODE. Visualization of enriched pathways present in MSigDB 

collections H, c1, c3, c5, c6, or c7 (33) was performed using EnrichmentMap v3.2 (34).

Results

Patient cohorts, blood sample collection, and cfDNA extraction

The Discovery cohort consisted of 35 healthy children and 32 children with neuroblastoma 

with blood samples collected between August, 2016 and May, 2018. The Validation cohort 

consisted of 21 children with neuroblastoma who had blood samples obtained between 

March, 2019 and July, 2019. As the primary goal of the study was to explore 5-hmC profiles 

at the sample level across batches collected and processed at different times, seven children 

were included in both the Discovery and Validation cohorts. 133 blood samples were 
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collected in total, and cfDNA was successfully extracted from all but four samples from 

children in the Discovery cohort (one well child and three neuroblastoma patients who had 

serial sampling). The remaining 129 cfDNA samples were sequenced and passed quality 

control (library concentration and fragment analysis). The final Discovery cohort included 

32 patients with LR (n = 3), IR (n = 2), and HR (n = 27) neuroblastoma at diagnosis and 34 

well child controls (Table 1B; Supplementary Table 2). The final Validation cohort included 

21 patients with IR (n = 1) and HR (n = 20) neuroblastoma. The 100 samples from patients 

in the Discovery cohort were comprised of one sample from each of the 34 controls and 66 

samples from the 32 neuroblastoma patients. The Validation cohort was comprised of 29 

samples from 21 neuroblastoma patients. Twenty-three patients had samples collected at 

more than one time point including diagnosis, during treatment, and follow up.

cfDNA 5-hmC profiles are associated with disease burden and disease status

5-hmC levels of each gene from the 100 cfDNA samples from the Discovery cohort were 

adjusted for patient sex, batch, and cohort and normalized with variance stabilizing 

transformation prior to principal component analysis (PCA). Principal component 1, which 

was significantly associated with metastatic disease burden (p = 7e-7 by one-way ANOVA; 

Table 1A), explained 84% of the variance among samples (Supplementary Figure 1). 

Samples from neuroblastoma patients with low or no detectable disease generally grouped 

closely with the healthy controls in principal component space.

The 66 samples from neuroblastoma patients in the Discovery cohort were reprocessed 

without the well controls, and re-normalized with variance stabilizing transformation. 

Nineteen cfDNA samples collected from neuroblastoma patients with disease detected 

clinically were compared to 47 samples from neuroblastoma patients who had no evidence 

of disease, identifying 347 genes with significantly different 5-hmC levels. Cross validation 

supported the robustness of this gene set (Supplementary Figures 2A, 2B). Using the Π1 

statistic (3), we estimated that 92.6% of the 347 genes identified in the Discovery cohort also 

had significantly different 5-hmC levels between patients with or without evidence of 

disease in the 29 sample Validation cohort, which had been processed an analyzed 

independently. To further validate that 5-hmC levels on these genes inform metastatic burden 

in patients, we created a model based-classifier that applied elastic net regularization on 

differential gene lists as has been described (1,5,29). Using levels of 5-hmC deposition of 

these 347 genes from Discovery cohort samples, the model predicted metastatic burden in 

the Validation cohort (high/moderate versus low/no) with an AUC of 0.77, sensitivity of 

70%, and specificity of 89.5%, again demonstrating the robustness of the identified genes. 

Of the 347 genes with differential 5-hmC levels in the Discovery cohort, those with 

increased 5-hmC deposition in samples with active disease were enriched for pathways of 

neuronal function (Supplementary Table 3). Genes with increased accumulation of 5-hmC 

from samples without active disease were enriched for pathways of peripheral blood 

monocyte function, presumably as the cfDNA was representative of non-tumor derived 

cfDNA.

Using the 347 identified genes with differential 5-hmC levels, hierarchical clustering of 

samples from neuroblastoma patients in the Discovery cohort revealed four primary clusters 
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that grouped samples according to metastatic disease burden and timepoint of sample 

collection (i.e., at diagnosis, during treatment, off therapy, and relapse) (Figure 1A). The 

same four clusters were also identified in the independently processed and analyzed 

Validation cohort using the same gene set (Figure 1B) and when all 95 samples from 

neuroblastoma patients were processed by cohort, but clustered together using the same 

parameters (Supplementary Figure 3).

Cluster 1 was comprised of cfDNA collected from 11 samples from 11 patients with high 

metastatic disease burden (7 newly diagnosed and 4 at the time of relapse, Table 1A, 

Supplementary Table 4) and one sample from a patient who was in a complete remission but 

developed progressive disease within a month of sample collection. Clusters 2 and 3 were 

comprised of cfDNA samples from patients with high (n = 11), moderate (n = 5), or low (n = 

1), or no (n = 5) disease burden. Samples from patients classified as high or moderate 

metastatic disease burden in Clusters 2 and 3 primarily comprised of recently diagnosed 

patients during induction therapy, newly identified recurrent disease with few metastases or, 

widely metastatic recurrence on therapy. Cluster 4 samples were predominantly from 

patients with low (n = 6) or no (n = 43) metastatic disease burden, though 12 samples were 

from patients with moderate or high metastatic disease burden (Supplementary Table 5).

Because Cluster 4 included samples from patients of low/no metastatic disease burden as 

well as some from patients with moderate/high metastatic burden, we next sought to 

determine if pathway analysis of the cfDNA 5-hmC profiles could be used to further stratify 

Cluster 4 samples according to outcome. Based on the finding that samples from patients 

with high metastatic burden had increased 5-hmC deposition on genes of neuronal pathways, 

we performed hierarchical clustering of the 61 samples in Cluster 4 using genes from several 

GO pathways of neural development (Supplementary Table 6). Samples from the Discovery 

and Validation cohorts were processed together to remove batch effect as that signal was 

stronger than that from any small amount of neuroblastoma derived cfDNA. The 1,242 gene 

neural tube development pathway had the highest combined sensitivity and specificity for 

delineating these samples into two distinct subsets, Clusters 4A and 4B, according to 

subsequent event status (Figure 2). Of the 20 Cluster 4A samples, 13 (65%) were from 

patients who had a subsequent event. In contrast, 31 (75.6%) of the 41 Cluster 4B samples 

were collected from patients who did not have a subsequent event (sensitivity 65.0%, 95% 

CI: 40.8–84.6%, specificity 75.6%, 95% CI: 59.7–87.3%).

Serial 5-hmC profiles associate with clinical response to treatment in neuroblastoma 
patients

We next investigated changes in 5-hmC profiles over the course of treatment. More than one 

cfDNA sample was collected from twenty-three neuroblastoma patients, twenty-two of 

whom were classified as HR at diagnosis. For each patient, the serial 5-hmC profile cluster 

assignments changed over time and paralleled changes in metastatic disease burden and 

response to therapy (Figure 3). Samples collected at the time of diagnosis from six HR 

patients all grouped in Cluster 1, whereas the one diagnostic sample from an IR patient with 

localized disease was in Cluster 4B. After two cycles of induction therapy, all seven HR 
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patients had profiles assigned to Cluster 2, 3, 4A, or 4B, suggesting patients had less 

metastatic disease burden and were responding to therapy.

5-hmC profiles from patients at the end of induction therapy appear to have prognostic 

potential. Of the 14 patients who had cfDNA for analysis at the end of induction, 4 were in 

Cluster 4A, 9 were in 4B, and one had progressive disease and was in Cluster 2. Two of the 

4 patients stratified to Cluster 4A subsequently relapsed, suggesting that the 4A epigenomic 

cfDNA profile reflects aggressive residual disease. In contrast, the 5-hmC profile that 

defines Cluster 4B likely reflects little to no residual neuroblastoma, as eight of the nine 

patients grouped in Cluster 4B continue to survive without an event.

Patient 13’s 5-hmC profile pattern is one illustrative example of the potential for 5-hmC to 

detect relapse early in patients who are being monitored off of therapy. Samples obtained at 

six months and one month prior to relapse, which occurred a year off therapy, assigned 

Patient 13 into Cluster 2, even though the child was in a clinical complete response (CR) per 

the INRC (17).

Increased 5-hmC levels observed at known oncogenic drivers in cfDNA

To further refine the ability of Nano-hmC-Seal to identify minimal amounts of residual 

disease, we next focused on the MYCN, TERT, and ALK genes, established oncogenic 

drivers in neuroblastoma (35,36). High levels of 5-hmC deposition on MYCN were detected 

in Cluster 1, 2, and 3 samples from patients with tumors known to have MYCN 
amplification or gain (Figure 4A). Of note, there were two samples from Cluster 4B which 

had high 5-hmC levels on MYCN, both of which were from patients who subsequently 

relapsed. Patient 13 presented with non-MYCN amplified disease but had increased 5-hmC 

deposition on MYCN detected at relapse (Figure 4B). While rare, discordant MYCN status 

in relapsed and diagnostic tumors has been described (37) and clinical sequencing of 

relapsed tumor tissue from this patient confirmed somatic acquisition of MYCN-

amplification. All but one Cluster 1, 2, or 3 samples from patients with non-MYCN 
amplified disease had higher 5-hmC levels on TERT and/or ALK, providing further evidence 

that incorporating the 5-hmC status of known oncogenes may improve the sensitivity and 

specificity of Nano-hmC-Seal to identify patients with residual disease who are at high risk 

of relapse.

Biologic profiling of genes with 5-hmC enrichment in cfDNA

To discover 5-hmC-profile derived biological pathways in neuroblastoma, we next examined 

all genes (n = 11,446) with significantly different 5-hmC levels between samples from 

patients with or without any clinically detectable disease in the Discovery cohort. Of the 

34,823 pathways evaluated, ranked fGSEA analysis showed significant enrichment of 1,974 

pathways at FDR < 0.01 (Figure 5, Supplementary Table 7), whereas no pathways were 

enriched when the ranking of each gene was randomized. In the analysis, we incorporated 

target genes from publicly available transcription factor (TF) ChIP data (32). This revealed 

that in samples from patients with clinically detectable disease, 5-hmC was enriched on 

target genes of three informative groups of transcription factors; 1) stem cell maintenance, 2) 

CTCF and the cohesin complex, 3) PRC2 complex (Supplementary Table 8).
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Discussion

Utilizing highly sensitive Nano-hmC-Seal technology to map whole genome 5-hmC in 

circulating cfDNA collected from healthy children and neuroblastoma patients at the time of 

initial diagnosis, during treatment, off-therapy, and/or after relapse, we identified distinct 

and consistent profiles in both Discovery and Validation cohorts that correlated with 

metastatic disease burden. PCA demonstrated patterns of 5-hmC deposition on cfDNA 

collected from patients with high metastatic disease was distinct from cfDNA profiles from 

healthy children, whereas the profiles identified in samples from patients with low or no 

metastatic disease clustered more closely with those from healthy children. Although robust 

diagnostic cancer-associated 5-hmC signatures have previously been identified in cfDNA 

from patients with colorectal, gastric, pancreatic, liver or thyroid cancer, to our knowledge, 

this is the first study in which Nano-hmC-Seal has been used to assess metastatic disease 

burden and determine changes in 5-hmC profiles over time.

Response to therapy is clearly one of the most important prognostic indicators in all 

malignancies, and the presence of minimal residual disease after initial treatment has been 

incorporated into risk stratification and therapeutic decision making for multiple cancers 

(38–40). Several groups have evaluated techniques to improve sensitivity for detecting 

minimal disease including immune profiling, expression panels from blood and bone 

marrow, and cell free nucleotides (41,42). These studies do not report sensitivity and 

specificity for detecting minimal disease status making direct comparisons to the present 

findings difficult. Additionally, limitations of sample stability and generalizability have 

hindered the application of these methods in the clinic. Although more patients need to be 

evaluated, our studies suggest that 5-hmC profiles of cfDNA collected at the end of 

induction are prognostic of outcome.

Real time patient monitoring of disease response during the course of treatment may be 

possible by serially collecting blood samples for cfDNA 5-hmC profiles. We identified two 

patients with no evidence of disease using standard clinical tests who had detectable 

circulating tumor DNA prior and subsequently relapsed, suggesting Nano-hmC-Seal could 

also be developed as a non-invasive test to monitor for recurrent neuroblastoma. 5-hmC 

profiles may also be able to distinguish malignant soft tumor masses from disease that has 

differentiated into benign neuroblastic masses (10). While validation with a prospective 

patient cohort is needed to confirm these findings, profiling of 5-hmC in cfDNA could be an 

informative addition to clinical disease evaluation and has the potential to decrease the 

frequency of imaging evaluations and the need for invasive procedures during follow-up.

Chromosomal copy number alterations are commonly detected in neuroblastoma and 

patterns of chromosomal aberrations are prognostic of survival (6). Others have identified 

MYCN-amplification in cfDNA collected from patients with neuroblastoma, measured at 

diagnosis or relapse (13,14). In our study, all Cluster 1, 2, and 3 samples from patients with 

MYCN-amplified tumors had high levels of 5-hmC readily identifiable on MYCN. Further, 

evaluation of 5-hmC accumulation on MYCN in cfDNA may provide additional prognostic 

information. As 5-hmC levels correlate with gene expression (3,20) the elevated 5-hmC on 

Applebaum et al. Page 9

Clin Cancer Res. Author manuscript; available in PMC 2020 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TERT and ALK from Clusters 1, 2, and 3, but not Cluster 4 demonstrate the ability to 

identify aggressive tumor biology (35,36) using cfDNA.

An additional strength of this approach is the broad applicability of 5-hmC profiles to 

identify tumor biology and the ability to use cfDNA to detect metastatic disease without the 

need for prior knowledge of a patient’s tumor genomics. We were able to incorporate 

functional gene pathways to further delineate patients with residual tumor burden with 

subsequent risk for relapse from those with no detectable disease with a sensitivity of 65% 

and specificity of 70%. We expect significant improvement of the sensitivity and specificity 

of this approach by analyzing additional patient samples with advanced feature selection 

tools such as elastic net (1,4). Furthermore, these results demonstrate an increase in 5-hmC 

on genes in neuronal networks which is consistent with expression profiling of independent 

neuroblastoma tumors examined with RNAseq and Nano-hmC-Seal (3,43–45). Larger 

numbers of samples will also be needed to explore differences in 5-hmC profiles between 

different biologic subsets of neuroblastoma and between newly diagnosed and relapsed 

patients.

These findings also highlight the role of epigenetic regulators in neuroblastoma biology, as 

cfDNA from patients with active disease had 5-hmC accumulation on genes regulated by 

PRC2 and CTCF/cohesin complexes, which has not been previously demonstrated in other 

malignancies using the same technology (1,2,5,46). CTCF/cohesin has been shown to 

regulate topologically associated domains (TADs) for organizing larger scale chromatin 

structures (47) and have a direct interaction with both trimethylation of histone 3 at lysine 27 

(H3K27me3), 5-mC, and 5-hmC (48,49). BORIS, a germ-cell-specific paralogue of CTCF 

was recently shown to be a regulator of resistance to ALK inhibition in neuroblastoma (50). 

Additional studies are needed to elucidate if these findings are unique to neuroblastoma or 

are more generalizable to 5-hmC profiling from multiple tumor types.

Although this study is limited by the number of samples evaluated and its retrospective 

design, we demonstrate that Nano-hmC-Seal can be used to profile 5-hmC in cfDNA 

collected from children with neuroblastoma. The technology is highly sensitive, using a 

cost-effective sequencing approach that requires < 10 ng of DNA input and no specialized 

biospecimen handling. We identified and validated that 5-hmC cfDNA profiles correlate 

with disease burden and sequential samples can inform response to treatment and detect 

early relapse. Further, whole genome analysis of 5-hmC provides insight regarding tumor 

biology and transcriptomic networks. If these results are confirmed in prospective studies, 

this methodology has the potential for being rapidly integrated into the clinic as cfDNA 5-

hmC is a stable marker allowing for patients to be profiled at any time point during 

treatment without prior knowledge of the primary tumor’s biology or genomics. Efforts are 

underway to test the ability of cfDNA 5-hmC profiles to monitor treatment response in a 

prospective clinical trial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

We investigated the prognostic value of the DNA modification 5-hydroxymethylcytosine 

(5-hmC) in neuroblastoma using Nano-hmC-Seal, a revolutionary, low-cost, genome-

wide technology that requires minimal input DNA, to serially profile 5-hmC in cell-free 

DNA (cfDNA) collected from Discovery (n = 32) and Validation (n = 21) cohorts of 

neuroblastoma patients and 34 well child controls. In this study, cfDNA 5-hmC profiles 

correlated with metastatic disease burden independent of underlying tumor biology. We 

were also able to use these profiles to distinguish patients with low or no appreciable 

metastatic disease using standard tumor imaging and bone marrow studies, who 

subsequently relapsed from those who remained in remission. Analysis of transcriptional 

networks regulated by these epigenomic modifications may lead to a deeper 

understanding of the pathways that drive resistance to treatment. Efforts are underway to 

test the ability of cfDNA 5-hmC profiles to monitor treatment response in a prospective 

clinical trial.
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Figure 1: cfDNA 5-hmC profiles are associated with disease burden and disease status in both 
the Discovery and Validation cohorts.
A) Hierarchical clustering of the Discovery cohort using 347 genes identified in the 

Discovery cohort with differential 5-hmC between samples from those with or without 

active disease. B) Hierarchical clustering of the Validation cohort using the same gene set 

and clustering parameters. Cluster 1 is enriched for patients with high metastatic disease 

burden. Clusters 2 and 3 are enriched for patients with moderate to high metastatic disease 

burden. Cluster 4 is enriched for patients with low or no metastatic disease burden.
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Figure 2: Cluster 4 samples are subdivided into those with minimal disease burden and those 
without.
1,242 genes from the GO pathway of neuronal systems processes distinguishes Cluster 4 

patients with some metastatic disease burden (Cluster 4A) from those without (Cluster 4B). 

The sensitivity and specificity for identifying patients who subsequently relapsed was 65% 

(95% CI: 40.8–84.6%) and 75.6% (95% CI: 59.7–87.3%), respectively.
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Figure 3: 5-hmC profiling matches clinical response by INRC.
Each patient with two or more samples in the Discovery and Validation cohorts are shown. 

5-hmC Cluster assignments are highlighted in the box and the INRC response classification 

at that time point is written. All cfDNA was collected at the beginning of the timepoint. 

Clinical response was determined using the 2017 INRC comparing each timepoint to 

diagnosis or prior assessment for relapsed patients. Abbreviations: Tx; Therapy, Dx; 

Diagnosis, Ind; Induction, Brid; Bridge therapy per ANBL1221, Con; first consolidative 

transplant, Con2; second consolidative transplant Imm; Immunotherapy, Fu; follow up, SD; 

Stable Disease, MR; Minor Response, PR; Partial Response, CR: Complete Response, PD; 

Progressive Disease, HR; high-risk, IR; intermediate-risk, NA; Not applicable.

Applebaum et al. Page 17

Clin Cancer Res. Author manuscript; available in PMC 2020 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Candidate gene analysis of 5-hmC on MYCN, TERT, and ALK.
A) Ranking of 95 samples according to normalized 5-hmC levels of these three genes. B) 

Normalized 5-hmC for MYCN over time for 5 patients with tumors having MYCN-
amplification or gain and more than one sample collected.
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Figure 5: Pathway clusters with significant enrichment of genes with differential 5-hmC in blood 
from patients with active disease compared to those without.
Each node represents an MSigDB pathway with FDR < 0.01. Pathways enriched in patients 

with clinically detectable disease are shown in red and those from those without detectable 

disease in blue. Edge similarity cutoff of 0.375.
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Table 1A:

Classification of metastatic disease burden. Curie score excludes measurement of primary soft tissue disease.

Curie Score Bone marrow involvement (%) Classification

0 0 None

1 0–4 Low

0 1–4 Low

2–5 0–10 Moderate

0–1 5–10 Moderate

> 5 0–100 High

0–27 > 10 High
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Table 1B:

Patient and Tumor Characteristics

Feature Discovery cohort
(n = 32), %

Validation cohort

(n = 21
a
), %

Healthy Controls
(n = 34), %

Median age at diagnosis 36.0 months 48.0 months 18.5 months

Age at diagnosis

 ≤ 18 mo 25 14.3 50

 18 mo - 5 yr 43.8 38.1 26.5

 > 5 yr 31.2 47.6 23.5

Sex

 Male 50 52.4 50

 Female 50 47.6 50

Race

 White 81.2 76.2 38.2

 Black 6.3 23.8 44.1

 Asian 3.1 0 5.9

 Unknown 9.4 0 11.8

Ethnicity

 Non-Hispanic 78.1 95.2 85.3

 Hispanic 12.5 4.8 2.9

 Unknown 9.4 0 11.8

Sample collection time

 Diagnosis 28.1 4.8

 During Therapy 21.9 38.1

 End or Off Therapy 25 19

 Relapse or progression 25 38.1

INSS Stage

 4 71.9 61.9

 4S 3.1 0

 3 12.5 33.3

 2 9.4 4.8

 1 3.1 0

Risk

 High 84.3 95.2

 Intermediate 6.3 4.8

 Low 9.4 0

MYCN

 Non-Amplified 71.9 66.7

 Gain 3.1 0

 Amplified 18.7 19
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Feature Discovery cohort
(n = 32), %

Validation cohort

(n = 21
a
), %

Healthy Controls
(n = 34), %

 Unknown 6.3 14.3

Abbreviations: INSS, International Neuroblastoma Staging System.

a
7 of these patients had samples in the Discovery cohort.
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