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Abstract

Ovarian cancer has few known risk factors, hampering identification of high-risk women. We 

assessed the association of pre-diagnostic plasma metabolites (N=420) with risk of epithelial 

ovarian cancer, including both borderline and invasive tumors. 252 cases and 252 matched controls 

from the Nurses’ Health Studies were included. Multivariable logistic regression was used to 

estimate odds ratios (OR) and 95% confidence intervals (CI) comparing the 90th-10th percentile in 

metabolite levels, using the permutation-based Westfall and Young approach to account for testing 

multiple correlated hypotheses. Weighted gene co-expression network analysis (WGCNA) 

modules (n=10 metabolite modules) and metabolite set enrichment analysis (MSEA; n=23 

metabolite classes) were also evaluated. An increase in pseudouridine levels from the 10th to the 

90th percentile was associated with a 2.5-fold increased risk of overall ovarian cancer (OR=2.56, 

95%CI=1.48-4.45; p=0.001/adjusted-p=0.15); a similar risk estimate was observed for serous/

poorly-differentiated tumors (n=176 cases; comparable OR=2.38, 95%CI=1.33-4.32, p=0.004/

adjusted-p=0.55. For non-serous tumors (n=34 cases), pseudouridine and C36:2 

phosphatidylcholine (PC) plasmalogen had the strongest statistical associations (comparable 

OR=9.84, 95%CI=2.89-37.82; p<0.001/adjusted-p=0.07; and OR=0.11, 95%CI=0.03-0.35; 

p<0.001/adjusted-p=0.06, respectively). Five WGCNA modules and 9 classes were associated 

with risk overall at FDR≤0.20. Triacylglycerols (TAGs) showed heterogeneity by tumor 

aggressiveness (case-only heterogeneity-p<0.0001). The TAG association with risk overall and 

serous tumors differed by acyl carbon content and saturation. In summary, this study suggests that 

pseudouridine may be a novel risk factor for ovarian cancer and that TAGs may also be important, 

particularly for rapidly fatal tumors, with associations differing by structural features.
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Introduction

Ovarian cancer is the fifth leading cause of female cancer death in the U.S. (1). However, 

there are few known risk factors, such that current risk prediction models have a modest 

predictive capability, necessitating the identification of new risk factors to identify women at 

high risk.

Advances in technology have led to precise measures of small molecule metabolites that are 

critical for growth and maintenance of cells in biologic fluids (2). Several studies have 

identified metabolites as biomarkers of cancer risk. For example, branched chain amino 

acids were strongly associated with risk of pancreatic cancer (3) and lipid metabolites were 

inversely associated with risk of aggressive prostate cancer (4). Further, prediagnostic serum 

concentrations of metabolites related to alcohol, vitamin E, and animal fats were modestly 

associated with ER+ breast cancer risk (5), while BMI-related metabolites were strongly 

related to increased risk (6). These findings support metabolomics profiling as a valuable 

strategy for identifying new cancer risk biomarkers.

Therefore, we used metabolomics assays to quantify several classes of circulating 

metabolites in plasma samples collected three to twenty-three years prior to ovarian cancer 

diagnosis within a nested case-control study, and, in an agnostic analysis, assessed their 

potential as biomarkers of ovarian cancer risk.

Materials and Methods

Study population

We conducted nested case-control studies within the Nurses Health Studies (NHS (7), 

NHSII (8)). The NHS was established in 1976 among 121,700 US female nurses aged 30–55 

years, and NHSII was established in 1989 among 116,429 female nurses aged 25–42 years. 

Participants have been followed biennially by questionnaire to update information on 

exposure status and disease diagnoses. Details are provided in the supplementary file.

Incident cases of epithelial ovarian cancer were identified through biennial questionnaires or 

linkage with the National Death Index, for whom we obtained related medical records and 

pathology reports or linked to the relevant cancer registry when medical records were 

unattainable. A gynecologic pathologist reviewed the records to confirm the diagnosis and 

abstract date of diagnosis, invasiveness, stage, and histotype (serous, poorly differentiated 

[PD], endometrioid, clear cell [CC], mucinous, other/unknown), which is highly concordant 

with centralized pathology review (9). Date of death was extracted from the death certificate.

Confirmed cases were diagnosed with ovarian cancer three years after blood collection until 

June 1, 2012 (NHS), or June 1, 2013 (NHSII): two hundred fifty-two cases of invasive and 

borderline epithelial ovarian cancer (212 in NHS and 40 in NHSII). We excluded cases 
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diagnosed within three years of blood collection (N=46) as most ovarian cancer cases are 

diagnosed at a late stage, with evidence suggesting preclinical disease up to 3 years before 

diagnosis (10). Cases were matched to one control on: cohort (NHS, NHSII); menopausal 

status and hormone therapy use at blood draw (premenopausal, postmenopausal/ hormone 

therapy use, postmenopausal/ no hormone therapy use, missing/ unknown); menopausal 

status at diagnosis (premenopausal, postmenopausal, or unknown); age (±1 year), date of 

blood collection (±1 month); time of day of blood draw (±2 hours); and fasting status (>8 

hours or ≤8 hours); women in NHSII who gave a luteal sample were matched on the luteal 

date (date of the next period minus date of blood draw, ±1 day).

Completion of the questionnaire was considered to imply informed consent when the study 

protocol was approved in 1976 (NHS) and 1989 (NHSII) by the institutional review boards 

of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and 

those of participating registries as required. The studies were conducted in accordance with 

recognized ethical guidelines (Declaration of Helsinki).

Metabolite profiling

Plasma metabolites were profiled at the Broad Institute of MIT and Harvard (Cambridge, 

MA) using three complimentary liquid chromatography tandem mass spectrometry (LC-

MS/MS) methods designed to measure polar metabolites and lipids as well as free fatty 

acids. Details are provided in the supplementary file.

In total, 608 known metabolites were measured. Metabolites with a coefficient of variation 

(CV) >25% or an intraclass correlation coefficient (ICC) <0.4 among blinded QC samples 

were excluded (N=132, Supplementary Table 1). Furthermore, metabolites with poor 

stability due to delayed processing (11) were excluded (N=56, Supplementary Table 1). 

Included metabolites (e.g., amino acids, amino acids derivatives, amines, lipids, fatty acids, 

bile acids; N=420 [69%]; Supplementary Table 1) exhibited good reproducibility within 

person over one year (11) and over 10 years. 197 metabolites had no missing values among 

participant samples.

Statistical analysis

Identification of individual metabolites associated with risk—Missing values for 

metabolites (N=211) with <10% missingness were imputed with 1/2 of the minimum value 

measured for that metabolite. We included a missing value indicator for metabolites (N=12) 

with more than 10% missingness. Continuous metabolite values were transformed to probit 

scores to reduce the influence of skewed distributions and heavy tails on the results and to 

scale the measured metabolite values to the same range. Conditional logistic regression was 

used to evaluate metabolite associations, modeled continuously (with an additional indicator 

if >10% missingness), with risk of overall ovarian cancer. We present the odds ratios (OR) 

and 95% confidence intervals (95% CI) for an increase from the 10th to 90th percentile in 

metabolite levels or the indicator variable.

We compared conditional logistic regression to unconditional logistic regression adjusting 

for the matching factors and found similar results (Supplementary Table 1.1). Thus, 
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subsequent analyses by histotype, rapidly fatal status, time between blood collection and 

diagnosis, and sensitivity analyses were conducted using the latter approach, allowing the 

use of all controls.

We conducted stratified analyses restricting to serous/poorly differentiated (PD) tumors 

(cases=176/controls=252), endometrioid/clear cell (CC) tumors (cases=34/controls=252), 

rapidly fatal invasive cases (death occurring <3 years after diagnosis; cases=86/

controls=252), and less aggressive invasive tumors (all other cases; cases=138/

controls=252), as well as premenopausal (cases=82/controls=82) and postmenopausal 

women (cases=137/controls=137) at blood collection and those diagnosed 3–11 years 

(cases=121/controls=252) and 12–23 years after blood collection (cases=131/controls=252 ). 

Models were adjusted for matching factors, duration of oral contraceptive use (none or <3 

months, 3 months to 3 years, 3 to 5 years, >5 years), tubal ligation (yes/no) and parity (none, 

1, 2, 3, 4+ children). We calculated heterogeneity by histotype, time to diagnosis and tumor 

aggressiveness using case-only analyses and by menopausal status at blood collection by 

introducing an interaction term between the metabolite and menopausal status.

We conducted sensitivity analyses excluding borderline tumors (N=25), known low-grade 

serous cases (N=4), samples processed >24 hours after collection (N=13 cases, N=6 

controls), cases with a diagnosis of a prior cancer (N=17), or women with a diagnosis of 

another cancer after their matched case’s diagnosis (N=35 controls).

A permutation test (N=5000) was used to control the family-wise error rate (i.e. account for 

multiple testing) while accounting for the correlation structure of metabolites using the 

stepdown min P approach by Westfall and Young (12). Details are in the supplemental file. 

We report unadjusted and multiple comparison adjusted p-values and discuss individual 

metabolites associated with ovarian cancer risk at unadjusted p-values≤0.01 given the 

hypothesis generating nature of the study.

Identification of groups of metabolites associated with risk—Metabolite Set 

Enrichment Analysis (MSEA) (13) was used to identify groups of molecularly or 

biologically similar metabolites that were enriched among the metabolites associated with 

risk of overall ovarian cancer and histotypes and Weighted Gene Co-expression Network 

Analysis (WGCNA) (14) was used to identify metabolite modules and their association with 

ovarian cancer risk; details are in the supplemental file. We report nominal p-values and 

false discovery rates (FDR) (15) for all metabolite groups and modules, discussing those at 

FDR≤0.2. All analyses were performed using the statistical computing language R, version 

3.5.0 (16).

Results

Study population

Of the 252 cases, 176 cases were diagnosed with serous/PD tumors, while 34 were classified 

as endometrioid/CC; 86 represented rapidly fatal tumors with death within 3 years of 

diagnosis (Table 1). Mean follow-up was 12.3 years. Distributions of ovarian cancer risk 

factors were generally in the expected directions.
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Measured metabolites and their association with ovarian cancer risk

Of the 420 metabolites passing our QC filtering criteria, there were 159 lipids; 158 amino 

acids, amino acids derivatives amines and cationic metabolites; and 103 free fatty acids, bile 

acids and lipid mediators. Eight metabolites were associated with risk of overall ovarian 

cancer at a nominal p-value ≤0.01 (Table 2A, Figure 1 and Supplementary Table 1). Odds 

ratios for an increase from the 10th to the 90th percentile of levels ranged between 0.49 and 

2.56. The top three metabolites associated with risk were pseudouridine (OR=2.56, 95% 

CI=1.48–4.45; p-value=0.001), C18:0 sphingomyelin (SM) (OR=2.10, 95% CI=1.26–3.49; 

p-value=0.004) and 4-acetamidobutanoate (OR=2.10, 95% CI=1.24–3.56; p-value=0.006). 

Pseudouridine had an adjusted-p=0.15 (accounting for all tested metabolites and their 

correlation structure); all other metabolites had adjusted-p>0.5. The test of the global null 

hypothesis that no metabolite was associated with risk had p=0.15. Results did not change in 

sensitivity analyses excluding specific case and control populations (Supplementary Table 

1.1-1.5).

Five metabolites were associated with risk of serous/PD tumors at a nominal p-value ≤0.01 

(Table 2B, Figure 1 and Supplementary Table 2). Odds ratios for an increase from the 10th to 

the 90th percentile of metabolites levels for these metabolites ranged between 1.99 and 2.38. 

The top three metabolites were pseudouridine (OR=2.38, 95% CI=1.33–4.32; p-

value=0.004), C52:5 triacylglycerol (TAG) (OR=2.09, 95% CI=1.23–3.59; p-value=0.007) 

and C52:4 TAG (OR=2.03, 95% CI=1.21–3.47; p=0.008). However, none of the metabolites 

remained significant after accounting for multiple comparisons via permutation (adjusted p-

value >0.55). The test of the global null hypothesis that no metabolite was associated with 

risk had p=0.55. Results did not change in sensitivity analyses in which we excluded low-

grade serous cases (Supplementary Table 2.1).

Thirty metabolites were associated with risk of endometrioid/CC tumors at a nominal p-

value ≤0.01 (Table 2C, Figure 1 and Supplementary Table 2). Odds ratios for an increase 

from 10th to the 90th percentile of metabolites levels for these metabolites ranged between 

0.11 and 0.24 for inverse associations, and between 3.85 and 9.84 for positive associations. 

The top three metabolites positively associated with risk were pseudouridine (OR=9.84, 

95% CI=2.89–37.82; p=0.0003), C2 carnitine (OR=7.4, 95% CI=2.37–25.35; p=0.001) and 

C56:7 TAG (OR=5.85, 95% CI=2.04–18.02; p=0.001). The top three metabolites inversely 

associated with risk were C36:2 phosphatidylcholines (PC) plasmalogen (OR=0.11, 95% 

CI=0.03–0.35), p=0.0003), C34:1 PC plasmalogen-A (OR=0.18, 95% CI=0.05–0.54, 

p=0.003), C22:0 lysophosphatidylethanolamine (LPE) (OR=0.21, 95% CI=0.07–0.59; 

p=0.004). C36:2 PC plasmalogen and pseudouridine had an adjusted-p=0.06 and 0.07, 

respectively (accounting for all tested metabolites and their correlation structure). All other 

metabolites had adjusted-p≥0.14. The test of the global null hypothesis that no metabolite 

was associated with risk had p=0.06.

On the individual metabolite level, histograms and QQ-plots of the nominal p-values 

(Supplementary Figure 1) together with the results of the permutation-based approach to 

account for testing multiple correlated metabolites (Westfall and Young’s stepdown min p 

approach) suggest the existence of a metabolomic signal for overall ovarian cancer and non-

serous tumors.
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Metabolite groups associated with risk of ovarian cancer

In the MSEA analysis, nine metabolite groups were enriched among metabolites associated 

with risk of ovarian cancer overall at an FDR ≤0.2 (Figure 2 and Supplementary Table 3). 

The top five groups were organic acids and derivatives; PE plasmalogens; TAGs; cholesteryl 

esters; and PC plasmalogens. Nine metabolite groups were associated with risk of serous/PD 

tumors with FDR ≤0.20 (Figure 2 and Supplementary Table 3). The top five were: 

nucleosides, nucleotides and analogues; TAGs; carnitines; sphingomyelins; and alkaloids 

and derivatives. Finally, eleven metabolite groups were associated with risk of 

endometrioid/CC tumors at FDR ≤0.20 (Figure 2 and Supplementary Table 3). The top five 

associated metabolite groups were TAGs, DAGs, fatty acyls, lysophosphatidylserines (LPS), 

and carnitines. TAGs were enriched in the above at FDR≤0.05. Notably, we observed 

differential associations by acyl carbon number and double bond content with risk of ovarian 

cancer overall (Supplementary Figure 2) and serous/PD tumors (Supplementary Figure 3, 

but not with endometrioid/CC tumors (Supplementary Figure 4). Specifically, TAGs with 

higher number of acyl carbon atoms and double bonds were associated with increased risk, 

while TAGs with lower number of acyl carbon atoms and double bonds were associated with 

decreased risk. We did not observe similar patterns for other lipid classes (Supplementary 

Figures 2-4).

Metabolite modules associated with risk of ovarian cancer

WGCNA identified seven metabolite modules associated with risk of ovarian cancer with 

FDR ≤0.20 (Table 3 and Figure 3, panels A-D). Module 1 (M1, characterized by steroids 

and steroid derivatives, organic acids and derivatives, and organonitrogen compounds 

[Supplementary Figures 5-7, Supplementary Table 4]), M2 (characterized by TAGs, PCs, 

PE, LPCs, and LPEs), M6 (characterized by TAGs, LPEs and CEs), and M7 (characterized 

by TAGs, DAGs, ceramides and CEs) were associated with increased risk of ovarian cancer 

overall, OR, increase from 10th to 90th percentile=1.99 (p=0.013/FDR=0.072), 1.62 

(p=0.093/FDR=0.186), 1.56 (p=0.081/FDR=0.186) and 1.8 (p=0.015/FDR=0.072), 

respectively. M4 (characterized by carnitines, pseudouridine [inversely weighted], and 

organic acids and derivatives) was associated with decreased risk (OR=0.5, p=0.022/

FDR=0.072). M7 was associated with increased risk of serous/PD tumors (OR=1.97; 

p=0.012/FDR=0.117). Finally, four modules were associated with risk of endometrioid/CC 

tumors: M2 (OR=6.14; p=0.002/FDR=0.011), M4 (OR=0.17; p=0.003/FDR=0.011), M5 

(PC and PE plasmalogens; OR=0.35; p=0.041/FDR=0.072), and M8 (fatty acyls, OR=0.22; 

p=0.007/FDR=0.017).

Metabolites associated with ovarian cancer risk by menopausal status at blood collection

C22:0 LPS isomer was suggestively associated with increased risk among postmenopausal 

women (OR=1.83, 95%CI=0.92–3.63; p=0.085) and decreased risk among premenopausal 

women (OR=0.44, 95%CI=0.17–1.08; p=0.074), with a heterogeneity p=0.004 

(Supplementary Table 5). C38:4 PC plasmalogen was suggestively associated with increased 

risk among postmenopausal women (OR=1.92, 95%CI=0.96–3.85; p=0.066) and decreased 

risk among premenopausal women (OR=0.16, 95%CI=0.05–0.51; p=0.002), with a 

heterogeneity p=0.005. Among premenopausal women, 14/22 (63%) metabolites associated 
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with risk at p≤0.1 were inversely related, but among premenopausal women only 15/98 

(15%) metabolites showed inverse associations. Pseudouridine did not show heterogeneity 

by menopausal status (heterogeneity p=0.32).

Metabolites associated with ovarian cancer risk by time between blood collection and 
diagnosis

Hydroxyvitamin D3 was associated with increased risk among participants with blood 

collection 12–23 years before diagnosis (OR=1.84, 95%CI=1.02–3.37; p=0.044) but not 

among participants with blood collection 3–11 years before diagnosis (OR=0.64, 

95%CI=0.36–1.15; p=0.141), with a heterogeneity p=0.002 (Supplementary Table 6). C40:6 

phosphatidylserine (PS) was associated with decreased risk among participants with blood 

collection 12–23 years before diagnosis (OR=0.55, 95%CI=0.3–0.99; p=0.049) but not 

among participants with blood collection 3–11 years before diagnosis (OR=1.41, 

95%CI=0.79–2.51; p=0.245), with a heterogeneity p=0.008. Pseudouridine showed 

suggestively stronger associations (heterogeneity p=0.066) among women for whom sample 

collection was 3–11 years before diagnosis (OR=4.48, 95%CI=2.25–9.24; p≤0.001) 

compared to participants with samples collection 12–23 years before diagnosis (OR=2.00, 

95%CI=1.06–3.85; p=0.035).

Metabolites associated with ovarian cancer risk by tumor aggressiveness

Fifty-three lipid-related metabolites (26 TAGs, 7 PCs, 6 LPEs, 3 PEs, 3 LPC, 4DAGs, 2 

LPSs, and 2 PSs) showed differences by tumor aggressiveness at heterogeneity p≤0.01 

(Supplementary Table 7). Seven metabolites (6 TAGs and 1 PS) were associated with 

increased risk of rapidly fatal disease with ORs ranging between 2.56 and 3.07 at p≤0.008, 

but not with less aggressive tumors (p>0.62), with heterogeneity p≤0.001. Several lipid-

related metabolite classes (DAGs, LPCs, LPEs, PCs, PEs, PSs, and TAGs with high acyl 

carbon content and saturation) were overrepresented in rapidly fatal tumors versus controls, 

while carnitines were overrepresented in less aggressive tumors (Supplementary Figure 8, 

panels A and B). TAGs with lower acyl carbon content and saturation were inversely 

associated with less aggressive tumors. Pseudouridine did not show heterogeneity by tumor 

aggressiveness (heterogeneity p=0.13).

Discussion

We conducted the first large-scale agnostic analysis of metabolomics and risk of ovarian 

cancer. We identified a potential novel risk factor, plasma pseudouridine, which was 

associated with an increased risk of ovarian cancer overall and non-serous tumors and 

suggestively for serous/PD disease. Stronger associations for pseudouridine were observed 

among cases diagnosed within 3–11 years after blood collection. We identified several 

metabolite groups and metabolite modules associated with risk of ovarian cancer risk, as 

well as multiple subtype-specific associations, that open up new opportunities for assessing 

novel metabolite pathways involved in ovarian cancer development.
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Pseudouridine

Pseudouridine is the most abundant post-transcriptionally modified nucleoside, and is an 

isomer of uridine. It is produced by pseudouridine synthase by isomerizing uridines from 

transfer RNA, which is involved in in protein translation, or spliceosomal snRNA, which 

plays a role in pre-mRNA splicing. Pseudouridine was nominally associated with risk 

overall and for both histotypes, with no significant heterogeneity (p=0.16) by histotype. This 

suggests that pseudouridine may represent a common etiologic mechanism underlying 

different histotypes of ovarian cancer, which has been observed for other risk factors, such as 

aspirin and CRP. In retrospective studies, pseudouridine was elevated in urine (17) and 

plasma (18) from epithelial ovarian cancer patients versus healthy controls. This, in 

combination with our finding that pseudouridine had a stronger association when assessed 

3–11 years before diagnosis, suggests that this modified nucleotide may be important in 

progression of preclinical lesions to fully overt invasive disease, which for high-grade serous 

ovarian cancer appears to be about 7–9 years (19). Increasing evidence suggests that 

pseudouridylation plays a role in cancer-associated splicing distributions, which are more 

variable than in normal tissues. Notably, tissue-specific alternative splicing reverts to a 

default cancer pattern that directly contributes to cellular transformation and cancer 

progression (20). This has been observed in serous carcinomas, which have highly 

dysregulated splicing compared to normal tissue (21). Further, aberrant pseudouridylation 

may lead to altered and reduced translational fidelity of p53 (22), which is mutated in nearly 

all high-grade serous tumors (23). Another potential mechanism is via circular RNA activity, 

which is altered due to isomerization of uridine to pseudouridine, and has been shown to be 

dysregulated in ovarian cancer (24). Interestingly, pseudouridine is associated with the 

estimated glomerular filtration rate, a marker of kidney function (25). While kidney function 

alters the immune response, potentially contributing to the development of cancer (26), 

associations with cancer incidence are mixed, although a recent study observed that thiazide 

diuretics, which can affect kidney function, are associated with a higher risk of ovarian 

cancer (27). Additional research should explore the potential role of pseudouridine in 

precursor lesions to ovarian cancer, the relation between circulating pseudouridine to ovarian 

and fallopian tube tissue levels, and if kidney function plays a role in the initiation or 

development of ovarian cancer.

Triacylglycerides

Notably, several individual TAGs were nominally related to risk and showed significantly 

stronger associations with rapidly fatal tumors. Evidence suggests that established ovarian 

cancer risk factors vary by tumor aggressiveness (28). As high grade serous ovarian cancer 

was the predominant histotype among rapidly fatal as well as less aggressive tumors, our 

data suggest that there are potential differences between the metabolic profiles of these two 

groups of tumors independent of histotype. TAGs as a group were enriched in the MSEA 

analysis, and 3 of 7 WCGNA modules related to risk were characterized by TAGs. Long 

chain fatty acids, a main source of energy in the human body, are stored and transported 

from the small intestine and liver to peripheral cells as TAGs (29). Lipid synthesis and 

metabolism that releases free fatty acids from TAGs are dysregulated in ovarian tumors, 

increasing cell migration and invasive potential (30). Further, several human studies reported 

suggestive associations of ovarian cancer risk with total cholesterol (31) (positive) or HDL 
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(inverse) (32). Additionally, ovarian cancer metastasizes preferentially to the adipose-rich 

omentum (33). Omental fat possesses a distinct lipidomic signature with several lipid 

groups, including TAGs, DAGs, and SMs, showing differences when compared to 

subcutaneous fat (34). Finally, plasma TAGs represent known risk factors for cardiovascular 

disease and coronary heart disease. A recent study identified that TAGs at the extremes of 

carbon atoms and saturation had differential associations with diabetes risk (35). We also 

observed differential associations by TAG fatty acids length and saturation, with higher 

number of carbon atoms and double bonds related to an increased risk and lower number of 

carbon atoms and double bonds related to decreased risk, particularly for serous/PD tumors. 

A similar pattern was observed in a retrospective study of serum samples from high-grade 

serous ovarian cancer cases and controls (36). Together with our results, these findings 

suggest that circulating TAG levels may be a risk biomarker for ovarian cancer, particularly 

for rapidly fatal tumors. Additional prospective studies are needed to validate these 

associations in different populations and assess the potential differential role of various TAG 

species in ovarian carcinogenesis.

Other metabolite groups

A number of metabolite groups and classes were associated with ovarian cancer risk, 

including organic acids and derivatives, and SMs, the latter of which was hypothesized a 

priori as a potential risk biomarker and is discussed elsewhere (37). A metabolite module 

driven by carnitines, organic acids and derivatives, carboxylic acids and derivatives, which 

included pseudouridine (highly negatively weighted), was associated with decreased risk of 

overall ovarian cancer and non-serous tumors. This module includes asymmetric 

dimethylarginine (ADMA), which has been related to risk of cardiovascular disease (38), 

and inhibits nitric oxide synthesis and may have antiproliferative properties (39) including in 

ovarian tumors (40). LPEs were also represented in WCGNA modules associated with 

increased risk of overall and endometrioid/CC ovarian cancers. LPEs have been shown to 

increase migration in response to chemotherapy as well as have invasive potential in ovarian 

cancer cell lines (41). In MSEA analyses, several metabolite classes had a significant 

negative enrichment score, including PE plasmalogens, PC plasmalogens and cholesteryl 

esters, independent of subtype.

Little work has examined these markers in ovarian cancer development or etiology. 

Sphingolipids ([SL]; including SMs, PCs, PEs, LPCs, LPEs, cholesteryl esters, 

acylcarnitines) are associated with a series of conditions that may be related to ovarian 

cancer, including thrombosis in a mouse study (42), myocardial infraction among 

symptomatic coronary artery disease patients (43), type 1 and type 2 diabetes in human 

studies (44), diabetic kidney disease in mice (45, 46) and airway inflammation and asthma in 

mouse and human studies (47-49). Notably, patients with ovarian cancer have the highest 

incidence of venous thromboembolism (VTE) of all solid tumor types (50), which is 

significantly related to higher mortality (51). Coagulation activation by tumors promotes 

development of VTE which in turn favors cancer progression through tumor growth, 

angiogenesis, invasion, immune evasion, and metastasis (52). Further, cholesterol-lowering 

statins have anti-inflammatory, anti-proliferative, apoptotic and anti-invasive qualities 

(53-57), and can lower SMs (58). Data on ovarian cancer risk reduction by statins have been 
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mixed. A meta-analysis of existing studies suggested a lower risk for ovarian cancer 

associated with statin use (59) while post-diagnostic statin use was inversely associated with 

overall survival and ovarian cancer specific mortality (60-62). Additional work should 

evaluate whether these conditions and medications associated with the identified metabolites 

represent novel risk factors for ovarian cancer, preferably using large consortia to ensure 

power.

Our study has several strengths and limitations. Importantly, this is a prospective study of 

ovarian cancer risk with coverage of multiple different metabolite classes. Additional 

strengths include the long follow-up time and detailed covariate information. Our cohort 

consisted of registered nurses, a group that are not representative of the general population 

(e.g. social economic status), although established risk factor associations in these cohorts 

are similar to those in other more representative studies (63). While we had over 250 ovarian 

cancer cases and controls, we had more limited sample sizes for specific histotypes, which 

have been shown to have different associations for known risk factors (64). We used medical 

records and pathology reports to confirm diagnosis and extract histotype and cannot rule out 

the possibility of histotype misclassification, although we previously showed high 

concordance to centralized slide review (9). To maximize power, borderline and tumors of 

unknown morphology were included. We did not include information on family history of 

ovarian cancer. However, only 2 cases were diagnosed before age 45 suggesting that early 

onset disease, likely due to high risk mutations, does not play a role in this study. We also 

applied stringent QC criteria to limit identification of spurious associations. Another 

limitation is that we only analyzed blood samples collected at one point in time; however, 

we demonstrate that the majority of the measured metabolites have a high within person 

stability over time (11). Further, we do not have an independent validation dataset. As this 

type of data becomes more common, further population studies are needed to validate the 

results discussed here, while experimental studies are required to understand the biological 

mechanisms underlying these associations.

In summary, circulating levels of plasma pseudouridine were associated with higher risk of 

ovarian cancer 3–23 years before diagnosis, with stronger associations among participants 

with samples collected closer to diagnosis. Additionally, several metabolite groups and 

metabolite modules were associated with risk of disease overall and by subtype. While 

independent prospective studies are needed for validation, our results highlight some 

potentially important novel metabolites that may play a role in the etiology of ovarian 

cancer. Potential experimental studies to understand the biological mechanisms of these risk 

biomarkers could examine their role in carcinogenic tendencies in ovarian and fallopian tube 

cancer cell lines (with and without p53 mutations), mouse models of early and late ovarian 

lesions leading to ovarian cancer as well as xenograft mouse models in which pseudouridine 

production has been impaired or enhanced. Adding these new risk biomarkers to current risk 

prediction models may help the identification of high-risk women.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance: Pseudouridine represents a potential novel risk factor for 

ovarian cancer and triglycerides may be important particularly in rapidly fatal ovarian 

tumors.
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Figure 1: Beta coefficients of the association between metabolites and overall OC, serous/poorly 
differentiated OC (Serous/PD OC) and endometrioid/clear cell OC (Endo/CC OC).
Coefficients with a p-value ≤0.01 in any of the analyses are shown. Shades of red represent 

positive coefficients while shades of blue indicate negative coefficients. Significance of the 

association (using unadjusted p-values) is overlaid on the heat map and marked as follows: * 

p-values≤0.1, ** p-values≤0.01, *** p-values≤0.001; all other p-values are >0.1. Based on 

the Westfall and Young stepdown min p approach for multiple comparisons, only 

pseudouridine for overall OC and endo/CC OC as well as C36:2 PC plasmalogen and C2 

carnitine had an adjusted p-value<0.2. ^ preliminary ID
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Figure 2: MSEA results. Enriched metabolite groups associated with risk of overall OC, serous/
poorly differentiated OC (Serous/PD OC) and endometrioid/clear cell OC (Endo/CC OC).
Significance of the association is overlaid on the heat map and marked as follows: * FDR 

≤0.2, ** FDR ≤0.05; all other FDR >0.2.
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Figure 3: METhattan plots.
Manhattan plots of metabolites by metabolite groups, with each group being shown in a 

different color. A Overall ovarian cancer. B Serous/poorly differentiated ovarian cancer. C 
Endometrioid/clear cell ovarian cancer. D Topological Overlap Matrix (TOM). Metabolites 

in the rows and columns are sorted by the clustering tree. Light yellow shades represent low 

topological overlap (low similarity). Darker red shades represent higher overlap and 

similarity. Metabolite modules correspond to the squares along the diagonal.
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Table 2:

Odds ratio (OR) for an increase from the 10th to the 90th percentile of metabolite levels 
and 95% confidence intervals (CI) of associations with risk of overall, serous/poorly 
differentiated and endometrioid/clear cell ovarian cancer.

Results with p-values ≤0.01 are shown for overall and serous/poorly differentiated ovarian cancer. The top 10 

(out of 30) metabolites with p-values ≤0.01 are shown for endometrioid/clear cell tumors. Complete results are 

available in Supplementary Tables 1-2.

A Overall Ovarian Cancer (N = 252 cases and 252 controls)

HMDB ID Metabolite OR (95% CI) P-value Adjusted P-value

HMDB00767 pseudouridine 2.56 (1.48-4.45) 0.001 0.150

HMDB01348 C18:0 SM 2.10 (1.26-3.49) 0.004 0.570

HMDB03681 4-acetamidobutanoate 2.10 (1.24-3.56) 0.006 0.672

HMDB05398* C56:4 TAG 2.03 (1.21-3.39) 0.007 0.722

HMDB05380* C52:5 TAG 1.96 (1.20-3.20) 0.007 0.733

HMDB05923 N4-acetylcytidine 1.88 (1.18-3.02) 0.008 0.772

HMDB10169 C16:0 SM
1

2.06 (1.19-3.56) 0.009 0.807

-- armillane
2

0.49 (0.28-0.85) 0.010 0.824

B Serous/Poorly differentiated ovarian cancer (N = 176 cases and 252 controls)

HMDB ID Metabolite OR (95% CI) P-value Adjusted P-value

HMDB00767 pseudouridine 2.38 (1.33-4.32) 0.004 0.552

HMDB05380* C52:5 TAG 2.09 (1.23-3.59) 0.007 0.745

HMDB05363* C52:4 TAG 2.03 (1.21-3.47) 0.008 0.809

HMDB05391* C54:6 TAG-A 1.99 (1.18-3.38) 0.010 0.862

HMDB05385* C54:5 TAG 1.99 (1.19-3.39) 0.010 0.851

C Endometrioid/Clear cell ovarian cancer (N = 34 cases and 252 controls)

HMDB ID Metabolite OR (95% CI) P-value Adjusted P-value

HMDB11243* C36:2 PC plasmalogen 0.11 (0.03-0.35) 0.0003 0.056

HMDB00767 pseudouridine 9.84 (2.89-37.82) 0.0004 0.072

HMDB05462* C56:7 TAG 5.85 (2.04-18.02) 0.001 0.236

HMDB00201 C2 carnitine 7.4 (2.37-25.35) 0.001 0.143

HMDB05392* C56:8 TAG 5.75 (2.00-17.72) 0.002 0.260

HMDB01999 eicosapentaenoate 6.25 (2.05-20.65) 0.002 0.286

HMDB11208* C34:1 PC plasmalogen-A 0.18 (0.05-0.54) 0.003 0.468

HMDB07103* C34:2 DAG 4.46 (1.64-12.85) 0.004 0.577

HMDB11520 C22:0 LPE 0.21 (0.07-0.59) 0.004 0.517

HMDB02183 docosahexaenoate 5.49 (1.74-18.72) 0.005 0.617

*
representative ID

--
HMBD ID not available

1
significantly associated with risk in our analysis of lipid-related metabolites and risk of ovarian cancer (manuscript in revision)
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