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INTRODUCTION

Glaucoma is a progressive optic neuropathy that is the leading cause of irreversible 

blindness worldwide.1 The number of people with glaucoma is predicted to increase by 74% 

from 2013 to 2040, and will disproportionally impact underserved regions of the world, such 

as Africa and Asia.2 Moreover, it is estimated that in developing countries up to 90% of 

glaucoma patients do not know they have the disease.3 Therefore, there is a pressing need 

for developing effective screening strategies that can be used for early detection of 

glaucoma.

The development of imaging technologies such as spectral-domain optical coherence 

tomography (SD OCT) has enabled accurate and reproducible quantification of early 

glaucomatous damage on optic nerve images.4, 5 However, although routinely used in 

clinical practice, SD OCT is too expensive to be used for widespread screening and requires 

experienced operators for image acquisition. Fundus photography is a low-cost and easy to 

acquire method to identify signs of glaucomatous damage to the optic nerve.6 However, 

detection of glaucoma on fundus photographs requires subjective grading by human experts, 

which can be laborious and costly. More importantly, previous studies have shown that 

human graders, even those with extensive clinical experience, tend to over- or underestimate 

glaucomatous damage when assessing fundus photographs.7 The requirement for subjective 

human grading of photos has thus resulted in poor reproducibility and accuracy, greatly 

limiting the use of fundus photos for glaucoma screening.8–12
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Artificial intelligence, by the use of deep learning (DL) convolutional neural networks 

(CNN), has recently become the state-of-the-art method for computer vision tasks, such as 

image classification, with performance that can sometimes even surpass those of humans.
13–15 In ophthalmology, DL algorithms have been successfully used to detect signs of 

diabetic retinopathy and age-related macular degeneration on fundus photographs.16, 17 DL 

algorithms have also been developed to detect signs of glaucomatous damage on 

photographs.18, 19 To provide the ground-truth or reference standard to train the deep-

learning network, these previous approaches have used human labeling of the same 

photographs. However, when a DL classifier is trained to replicate subjective human 

gradings, it is bound to make the same mistakes that humans do when attempting to detect 

glaucoma on fundus photos.

In a previous study, we proposed a new machine-to-machine (M2M) approach to train DL 

algorithms to detect glaucomatous damage on fundus photographs.20 Rather than using 

subjective human gradings as the reference label, we used objective SD OCT-derived 

measurements of retinal nerve fiber layer (RNFL) thickness for training the networks. We 

showed that the M2M algorithm was able to successfully predict RNFL thickness 

measurements from SD OCT by using simple color fundus photographs. Training a network 

with objective SD OCT data could eliminate the need to rely on subjective, error-prone 

photo labels by human graders.

In the present work, we compared the ability of the M2M DL algorithm to that of human 

graders in detecting eyes with glaucomatous visual field loss. We hypothesized that the SD 

OCT-trained M2M predictions would have a stronger correlation with visual field metrics 

than subjective gradings by human experts, thus providing an additional required validation 

of this approach as a method to screen for glaucomatous damage.

METHODS

This was a cross-sectional study with data drawn from the Duke Glaucoma Repository, a 

database of electronic medical and research records developed by the Vision, Imaging and 

Performance (VIP) Laboratory from the Duke Eye Center. The Duke Institutional Review 

Board approved this study. A waiver of informed consent was granted due to the 

retrospective nature of this work. All methods adhered to the tenets of the Declaration of 

Helsinki for research involving human subjects and were conducted in accordance with 

regulations of the Health Insurance Portability and Accountability Act.

The database contained information on comprehensive ophthalmologic examinations during 

follow-up, diagnoses, medical history, visual acuity, slit-lamp biomicroscopy, intraocular 

pressure measurements, results of gonioscopy, and dilated slit-lamp funduscopic 

examinations. In addition, the repository contained optic disc photographs (Nidek 3DX, 

Nidek, Japan), Spectralis SDOCT (Software version 5.4.7.0, Heidelberg Engineering, 

GmbH, Dossenheim, Germany) scans and standard automated perimetry (SAP) acquired 

with the 24–2 Swedish interactive threshold algorithm (Humphrey Field Analyzer II, Carl 

Zeiss Meditec, Inc., Dublin, CA). Visual fields were excluded if they had more than 33% 

fixation losses or more than 15% false-positive errors.
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Spectral-Domain Optical Coherence Tomography

Images of the peripapillary RNFL were acquired using the Spectralis SD OCT. The device 

has been previously described in detail,5 and employs a dual-beam SD OCT and a confocal 

laser-scanning ophthalmoscope with a super luminescent diode light (center wavelength of 

870 nm) as well as an infrared scan to provide simultaneous images of ocular 

microstructures. The global RNFL thickness measurement from a peripapillary 12-degree 

circular optic nerve head (ONH) scan with 100 averaged consecutive circular B-scans 

(diameter of 3.45 mm, 1536 A-scans) was used for this study. The center of rotation for the 

B-scans was the center of the ONH as it appeared within the infrared fundus image acquired 

at the time of SD OCT B-scan relative to the angle between the fovea and the center of 

Bruch’s membrane opening. Corneal curvature and axial length measurements were entered 

into the instrument’s software to ensure accurate scaling of all measurements. In addition, 

the device’s eye-tracking capability was used during image acquisition to adjust for eye 

movements. All images that had a quality score lower than 15 or that were inverted or 

clipped were excluded.

The M2M DL Algorithm

A previously described SD OCT-trained DL algorithm was used to predict RNFL global 

thickness from fundus photos.20 In brief, the dataset consisted of 32,820 pairs of fundus 

photos and SD OCT scans from 2,312 eyes of 1,198 subjects. As multiple pairs of SD OCT 

and disc photos were available for each subject, the whole dataset was randomly split at the 

patient level into a training plus validation (80%) and test (20%) sample. This was important 

to ensure that no data for a given patient was present in both the training and the test samples 

in order to prevent leakage and biased estimates of test performance.

All of the available optic disc photographs were matched to the closest SD OCT RNFL scan 

acquired within 6 months from the photo date. The optic disc photographs were initially 

downsampled to 256 × 256 pixels and pixel values were scaled to range from 0 to 1. To 

increase the heterogeneity of the photographs and reduce overfitting, data augmentation 

(random lighting, random rotation, and random flips) was performed.

The Residual deep neural Network architecture (ResNet34), pre-trained on the ImageNet 

dataset,21 was further tuned with the pairs of fundus photos and SD OCT scans from the 

training sample, where the average RNFL thickness value given by the SD OCT was used as 

a label (target) for each photo. As the task of the present work largely differs from that of 

ImageNet, further training was performed by initially unfreezing the last 2 layers. 

Subsequently, all layers were unfrozen, and the network was fine-tuned with training 

performed using differential learning rates, so that a lower rate is used in the earlier layers 

and the rate is gradually increased in later layers. Minibatches of size 64 and Adam 

optimizer were used to train the network22, 23 and the best learning rate was found using the 

cyclical learning method with stochastic gradient descent with restarts.24 Further details on 

the development and validation of the algorithm can be found elsewhere.20
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Human grading of fundus photos

For the present study, a subset of 490 monoscopic fundus photographs was randomly drawn 

from the test sample to form the “grading sample”. These images were presented to two 

independent glaucoma specialists. Both graders were masked to all patient clinical 

information and to the grades assigned by the other evaluator. Human graders were asked to 

assign an integer from 0 to 10 to each fundus photograph according to an ascending 

probability of glaucomatous optic neuropathy (GON), i.e., 0 if an optic disc was unlikely to 

have GON and 10 if GON was likely. The scores were later transformed to a percentage 

scale for analysis. Features such as enlarged cup-to-disc ratio (C/D), localized RNFL defects 

or rim thinning, and the presence of disc hemorrhages in the fundus photos were used as 

indicators of glaucomatous damage. Graders were also asked to estimate the vertical and 

horizontal C/D. For each metric, the scores from the two graders were averaged to give the 

final score for each eye.

Repeatable glaucomatous visual field loss

In order to compare the discriminatory ability of human graders and the M2M DL algorithm 

to detect perimetric glaucoma, we defined the presence of reproducible glaucomatous 

defects using SAP as the reference outcome. An additional four reliable SAP tests (two 

preceding and two following the photo-matched SAP) were extracted from the repository for 

each eye and manually reviewed by two graders who reached a consensus agreement when 

there were disagreements. Eyes with clear patterns of glaucomatous visual field loss (e.g., 

arcuate scotomas, nasal steps) consistently present throughout the visual field series were 

marked as eyes with repeatable glaucomatous field defects. Functional loss on SAP was 

used as the sole reference for a glaucoma diagnosis since definitions of the disease based on 

assessment of structural losses (e.g., presence of GON or loss of RNFL) would potentially 

favor predictions from the human graders or DL algorithm, respectively. Therefore, this 

classification targeted primarily to discriminate between eyes with and without repeatable 

glaucomatous visual field loss. Due to the lack of a perfect independent reference in 

diagnosing glaucoma, it is possible however, that some eyes with pre-perimetric glaucoma 

may have been included in the normal visual field group (see Discussion).

Statistical Analyses

We evaluated the ability of the human graders versus the DL algorithm to detect GON on 

fundus photos by comparing their outputs (i.e. probability of GON and C/D ratios by human 

graders vs. DL-predicted RNFL thickness) with visual field loss. The Spearman correlation 

coefficient was used to evaluate the correlations of human gradings and DL-predictions with 

both SAP mean deviation (MD) and pattern standard deviation (PSD). The SAP date was 

matched to within six months of the date of the fundus photograph acquisition. A test of 

hypothesis was conducted for the equality of correlation coefficients.25 Generalized 

estimating equations (GEE) were used to account for the fact that both eyes from the same 

patient could be included in the sample.

The area under the receiver operating characteristic (ROC) curve (AUC) was used to 

evaluate the performance of the human graders and the M2M DL algorithm in order to 

discriminate eyes with perimetric glaucoma versus eyes with normal fields. ROC curves 
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were plotted to demonstrate the tradeoff between the sensitivity and 1 – specificity. The 

AUC was used to assess the diagnostic accuracy of each parameter, with 1.0 representing 

perfect discrimination and 0.5 representing chance discrimination. In addition, the partial 

AUC (pAUC) of the DL algorithm and human gradings were calculated to evaluate 

performance of human and machine outputs in the region of 85–100% specificity,26, 27 

which would be clinically relevant for screening. As the dataset included multiple images 

from the same eye and, in some cases, both eyes of the same subject, a bootstrap resampling 

procedure was used to derive 95% confidence intervals (CI) and P-values, where the patient 

level was considered as the unit of resampling to account for the presence of multiple 

correlated measurements within the same subject.28 The difference in the AUC of two 

curves was compared using a Wald test based on the bootstrap covariance.29Additionally, to 

account for any possible unbalanced distribution of eyes with and without repeatable 

glaucomatous visual field loss, we also plotted precision-recall (PR) curves.30 PR curves 

evaluate the fraction of true positives among positive predictions by presenting the positive 

predictive power (precision, i.e., ratio of the number of true positives divided by the sum of 

the true positives and false positive) in function of sensitivity (recall). This approach avoids 

any overly optimistic assessment of the model’s performance in unbalanced data.31 

Similarly to the AUC for ROC curves, values for an area under the PR curve (AUPR) closer 

to 1 represent perfect discrimination.

DL models were implemented using Keras (version 2.1.4), an open-source Python library. 

All statistical analyses were completed in Stata (version 15, StataCorp LP, College Station, 

TX). The alpha level (type 1 error) was set at 0.05.

RESULTS

The M2M DL algorithm was able to estimate RNFL thickness from the fundus photos with a 

mean absolute error (MAE) of 7.39 μm. There was a strong correlation between the 

predicted and the observed RNFL thickness values (Pearson’s r = 0.832; P<0.001). Further 

details on the performance and validation of the algorithm can be found in our previous 

work.20 Results are presented below for the performance of the algorithm in the grading 

sample.

The grading sample consisted of 490 fundus photographs acquired from 490 eyes of 370 

subjects, randomly drawn from the testing sample. Table 1 shows a summary of the 

demographic and clinical characteristics of the grading sample overall and stratified by the 

presence or absence of a repeatable glaucomatous visual field defect (i.e., perimetric 

glaucoma). While there was no statistically significant difference in age, race, or sex 

between the two groups (all P > 0.05), those with perimetric glaucoma had a significantly 

more negative SAP MD (−8.59 ± 7.10 vs. −1.12 ± 1.69, P < 0.001). In addition, presence of 

perimetric glaucoma was associated with a greater probability of GON according to human 

graders (69.4 ± 25.9 % vs. 40.3 ± 22.0 %, P < 0.001), and thinner predicted global RNFL 

thickness according to the DL algorithm (76.4 ± 15.0 % vs. 91.6 ± 9.7 %, P < 0.001).

There was a significant correlation between the M2M DL-predicted global RNFL thickness 

and the mean probability of GON given by the human graders (absolute Spearman’s rho = 
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0.65, P < 0.001; Figure 1). Lower predicted RNFL thickness was associated with higher 

probability of GON given by human graders. However, the correlation with SAP MD was 

significantly stronger for the M2M DL model predictions than for the probability of GON 

given by human graders (absolute Spearman’s rho = 0.54 vs. 0.48, respectively; P < 0.001; 

Supplemental Figure 2, available at AJO.com). With SAP PSD, correlations were also 

stronger for the M2M DL predictions (absolute Spearman’s rho = 0.52 vs. 0.45, 

respectively; P = 0.001; Table 2).

We compared the ability of the human graders and the M2M DL algorithm to discriminate 

reproducible glaucomatous visual field loss from no visual field loss by plotting the ROC 

and PR curves for each method (Figure 3). The overall AUC for the M2M DL-predicted 

RNFL thickness was similar to that of the probability of GON given by human graders 

[AUC = 0.801 (95% CI: 0.757, 0.845) versus 0.775 (95% CI: 0.728, 0.823), respectively; P 
= 0.222], and both of them performed significantly better than the vertical C/D [AUC = 

0.732 (95% CI: 0.680, 0.784)] or horizontal C/D ratio [AUC = 0.683 (95% CI: 0.628, 

0.739); all comparisons P < 0.05]. The performance of the M2M algorithm was also similar 

to the probability of GON by human graders in the PR curves [AUPR = 0.810 (95% CI: 

0.765, 0.851) vs. 0.761 (95% CI: 0.703, 0.819), respectively]. In the region of clinically 

meaningful specificity (85–100%), the pAUC for the M2M DL algorithm was significantly 

higher than the probability of GON by human graders (pAUC = 0.529 vs. 0.411, 

respectively; P = 0.016).

Figure 4 provides several examples of fundus photographs from the grading dataset, with the 

corresponding SAP, probability of GON and C/D given by the human graders and the M2M 

DL-predicted RNFL thickness.

DISCUSSION

In this study, we compared the performance of an objective DL algorithm to that of 

subjective human gradings in detecting glaucomatous damage on fundus photographs. We 

showed that predictions from the M2M DL algorithm had a significantly stronger correlation 

with visual field metrics than human gradings. In addition, in the range of clinically relevant 

specificity, the M2M DL predictions performed significantly better than human gradings in 

discriminating eyes with visual field loss from those with normal fields. Hence, our findings 

suggest that an automated objective method to quantify neural damage may perform at least 

as good as, if not better than, subjective human gradings in detecting signs of glaucomatous 

damage on fundus photographs.

The motivation for the development of the M2M model came from the realization that 

subjective gradings of optic disc photographs by human experts may have a limited accuracy 

in detecting glaucomatous damage. In a previous study, we have shown that cross-sectional 

human grading of photographs, even by fellowship-trained glaucoma specialists, had a poor 

accuracy in predicting risk of future visual field loss.32 Another study showed that glaucoma 

specialists tend to frequently under- or overestimate signs of glaucoma damage when 

assessing photographs.7 Eyes with large physiologic cups, for example, are frequently 

diagnosed as having glaucoma, whereas eyes with small optic discs but showing significant 
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rim loss may go undetected.7, 33 A fundamental aspect of the development of a deep learning 

network is establishing a reliable “ground-truth” or reference label that can be used to train 

the algorithm. If the reference standard is biased, the same biases will be learned by the 

network. Therefore, training a DL network to learn to replicate subjective gradings by 

humans may lead to an algorithm that will have limited applicability in clinical practice or in 

screening situations.

In contrast to subjective human gradings, SD OCT can provide reliable quantitative 

measurements of neural loss in glaucoma. A previous study has shown that RNFL thickness 

measurements by SD OCT may be able to detect signs of glaucomatous damage 5 to 6 years 

before the earliest visual field defect.34 In addition, for eyes with moderate or severe 

glaucoma, SD OCT has been shown to have excellent diagnostic accuracy.35, 36 Our M2M 

DL model was trained to predict RNFL thickness measurements using simple color 

photographs. The predictions showed excellent correlation with actual SD OCT 

measurements, with r of 0.832 and MAE of only 7.39 μm. In the present work, we expanded 

our observations by showing that such predictions outperformed glaucoma specialists’ 

gradings in detecting eyes with glaucomatous visual field loss in our sample. The M2M 

model had stronger correlations with visual field metrics and in greater diagnostic accuracy 

in the region of high specificity compared to an overall probability of glaucoma given by the 

average score from human graders. In a disease with a relatively low prevalence such as 

glaucoma, a screening test should have a high specificity to avoid an overwhelming number 

of normal subjects being referred with a diagnosis of glaucoma.

We observed that the estimation of the C/D ratio by human graders had the lowest 

correlation with both SAP MD and PSD and the lowest performance in discriminating eyes 

with glaucomatous visual field loss. The C/D ratio was first popularized as an indicator of 

GON by Armaly,37 but estimates of the C/D, even among experts, may lack sufficient 

reliability to be a generalizable measure for screening. Individual graders may differ by >0.2 

in their C/D ratio estimates in up to 76% of cases.10 Moreover, for C/D less than 0.7, there is 

a tendency to overestimate a larger C/D ratio by 10 to 20% on clinical examination as 

compared with the photographs.38 Subjective grading of C/D ratio and of the probability of 

glaucoma is also influenced by variation in optic disc characteristics such as disc size, cup 

depth, peripapillary atrophy, and different angles of implantation of the optic disc to the 

sclera.7

The M2M DL model may offer several additional advantages compared to previous DL 

models trained based on subjective gradings. Most importantly, previous models have been 

trained to output a binary classification decision, i.e., yes or no, for the presence of 

glaucomatous damage. In contrast, the M2M model is able to provide a quantitative output. 

This makes it easier to set up cut-offs according to desired levels of specificity, for example. 

In addition, it is possible that the quantitative measurements might be useful for tracking 

changes over time, although this still requires validation.

This study has limitations. A study that attempts to compare a new diagnostic test with 

human gradings of fundus photographs offers some challenges, notably with regard to the 

gold standard used for diagnosis. We used the presence of visual field defects as the gold 
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standard for glaucoma in this work. We attempted to avoid using clinical optic disc 

appearance as a diagnostic criterion, as this would most likely favor the performance of 

human gradings. However, as the population from this study was recruited from a tertiary 

hospital, it is likely that subjective clinical assessments played an important role in 

determining whether the patients were being followed in the glaucoma clinic. However, 

although this may have favored the diagnostic accuracy estimates of subjective human 

gradings, our results showed that the M2M model still showed significantly greater accuracy 

for detecting glaucoma. As another limitation, it is likely that some eyes with pre-perimetric 

glaucoma, but normal visual fields may have been included in the control group, resulting in 

artificially lower accuracies for detection of glaucoma. However, this potential bias would 

most likely affect results from both subjective grading and the DL model. Finally, clinicians 

may not be used to routinely provide a score of probability of GON like the one employed in 

this study. Although clinicians are trained to identify features that are indicative of 

glaucomatous damage (e.g. enlarged C/D ratio, localized RNFL defects, rim thinning) and 

are expected to make judgments of higher or lower probability of glaucoma on a routine 

basis. The scores are a direct measurement of this judgment, and therefore are likely to be a 

suitable metric to compare with the continuous metric yielded by the DL algorithm. 

However, clinicians are not formally trained to give a final score in the form of a probability 

and this should be taken into consideration when interpreting the results of our study.

Further refinement is desirable before the M2M DL algorithm can be applied in either 

clinical or screening settings. In particular, it will be important to define cut-offs suitable for 

screening according to the desirable level of specificity and the stage of the disease that one 

wants to detect. External assessment of the validity of our test results in external datasets 

will be an important next step. Also, the algorithm may underappreciate subtle sectoral 

RNFL losses given that it was trained with a global RNFL parameter. Thus, further 

refinement may include training the algorithm for detection of localized RNFL or rim loss.

In conclusion, a DL algorithm outperformed human graders in detecting signs of 

glaucomatous damage on fundus photographs. The algorithm provides objective and 

quantitative assessment of neural damage that could potentially be used for glaucoma 

diagnosis and screening, avoiding the biases and labor of human subjective gradings.

Supplementary Material
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Figure 1. 
Scatterplot and histograms illustrating the relationship between predictions obtained by the 

machine to machine (M2M) deep learning (DL) algorithm evaluating optic disc photographs 

and the mean probability of glaucomatous optic neuropathy (GON) assessed by human 

graders.
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Figure 3. 
(A) Performance of the human gradings [probability of glaucomatous optical neuropathy 

(GON), and vertical and horizontal cup-to-disc ratio (C/D)] and deep learning (DL)-

predicted retinal nerve fiber layer (RNFL) thickness to discriminate eyes with repeatable 

glaucomatous visual field loss. (B) Partial areas under the receiver operating characteristic 

curves (pAUC) at specificity of 85–100% and (C) precision-recall curves for the DL-

predicted RNFL thickness and the probability of GON given by human graders. AUC = area 
under the receiver operating characteristic curve; AUPR = area under the precision-recall 
curve.
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Figure 4. 
Examples of eyes included in the study. (A) shows an eye with normal visual field and 

normal appearing optic disc. The human graders gave a low probability of glaucomatous 

optic neuropathy (GON) (15%), which agreed to the thick retinal nerve fiber layer (RNFL) 

thickness predicted by the machine to machine (M2M) deep learning (DL) algorithm. (B) 

shows an eye with a large but likely physiologic cup given the healthy appearance of the 

RNFL. The DL prediction indicated a thick RNFL, whereas human graders seemed to have 

overestimated the probability of GON. (C) shows an eye with early glaucomatous visual 

field loss where the DL algorithm predicted a thinner RNFL and human graders also gave a 

high probability of GON. Finally, (D) shows an eye with advanced visual field loss where 

the DL thin predicted RNFL agrees with the high probability of GON given by human 

graders.
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Table 1.

Demographics and clinical characteristics of eyes included in the grading sample.

Grading sample

P-value

Presence of repeatable visual field loss

Overall No Yes

Number of eyes 490 280 210 -

Number of subjects 370 233 262 -

Age (years) 60.5 ± 13.9 58.4 ± 14.3 63.4 ± 13.1
0.146

a

Female gender (%) 52.7 57.5 46.2
0.014

b

Race (%),

Caucasian 58.6 62.1 53.8
0.078

b

African-American 41.4 37.9 46.2

SAP MD (dB)* −4.32 ± 6.07 −1.12 ± 1.69 −8.59 ± 7.10
<0.001

a

[−2.05 (−5.53, −0.52)] [−0.81 (−1.93, −0.05)] [−6.21 (−11.77, −3.75)]

Probability of GON by human graders (%) 52.3 ± 27.5 40.3 ± 22.0 69.4 ± 25.9
<0.001

a

Vertical C/D by human graders 0.63 ± 0.20 0.57 ± 0.18 0.72 ± 0.19
<0.001

a

Horizontal C/D by human graders 0.60 ± 0.18 0.56 ± 0.18 0.68 ± 0.18
<0.001

a

M2M DL-predicted global RNFL Thickness (μm) 85.1 ± 14.0 91.6 ± 9.7 76.4 ± 15.0
<0.001

a

a
generalized estimating equations (GEE);

b
Fisher’s exact test Values are given as mean ± standard deviation, unless otherwise noted.

*
mean ± standard deviation [median (interquartile range)]

C/D = cup-to-disc ratio; GON = glaucomatous optical neuropathy; M2M DL = machine to machine deep learning; MD = mean deviation; SAP = 
standard automated perimetry; RNFL = retinal nerve fiber layer.
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Table 2.

Absolute Spearman correlations of the mean gradings by humans and the machine to machine (M2M) deep 

learning (DL) retinal nerve fiber layer (RNFL) thickness predictions with standard automated perimetry (SAP) 

mean deviation (MD).

Measure

SAP MD SAP PSD

Correlation P-value Correlation P-value

M2M DL RNFL thickness 0.540 < 0.001 0.521 < 0.001

Probability of GON 0.479 < 0.001 0.445 < 0.001

Vertical C/D 0.431 < 0.001 0.379 < 0.001

Horizontal C/D 0.332 < 0.001 0.281 < 0.001

C/D = cup-to-disc ratio; GON = glaucomatous optical neuropathy; M2M DL = machine to machine deep learning algorithm; MD = mean 
deviation; PSD = pattern standard deviation; RNFL = retinal nerve fiber layer; SAP = standard automated perimetry.
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