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ABSTRACT: PROTACs-induced targeted protein degradation has emerged as a novel
therapeutic strategy in drug development and attracted the favor of academic institutions,
large pharmaceutical enterprises (e.g., AstraZeneca, Bayer, Novartis, Amgen, Pfizer,
GlaxoSmithKline, Merck, and Boehringer Ingelheim, etc.), and biotechnology companies.
PROTACs opened a new chapter for novel drug development. However, any new
technology will face many new problems and challenges. Perspectives on the potential
opportunities and challenges of PROTACs will contribute to the research and
development of new protein degradation drugs and degrader tools.
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Proteolysis targeting chimeras (PROTACs) are hetero-
bifunctional small molecules with three chemical

elements: a ligand binding to a target protein, a ligand binding
to E3 ubiquitin ligase, and a linker for conjugating these two
ligands. PROTAC is a chemical knockdown strategy that
degrades the target protein through the ubiquitin-proteasome
system (Figure 1).1 Different from the competitive- and

occupancy-driven process of traditional inhibitors, PROTACs
are catalytic in their mode of action, which can promote target
protein degradation at low exposures.2 PROTACs have the
potential to degrade the target pathogenic proteins and
regulate the related signaling pathways, which cannot be
achieved by traditional therapy (inhibitor/activator). As a
novel approach, PROTACs have gained great attention from
academia and the pharmaceutical and biotechnology industry
(e.g., Arvinas, C4 Therapeutics, Kymera Therapeutics,
AstraZeneca, Bayer, Novartis, and Vertex, etc.).
At present, PROTACs have been successfully employed in

the degradation of different types of target proteins related to
various diseases, including cancer, viral infection, immune
disorders, and neurodegenerative diseases. Some cases

reported include PROTACs targeting B-cell lymphoma 6
(BCL6) from AstraZeneca,3 P300/CBP-associated factor and
general control nonderepressible 5 (PCAF/GCN5) from
GlaxoSmithKline (GSK),4 Bruton’s tyrosine kinase (BTK)
from Pfizer,5 focal adhesion kinase (FAK) from Boehringer
Ingelheim,6 and Interleukin-1 receptor-associated kinase 4
(IRAK4) from GSK.7 In addition, resistance caused by
PROTACs was illustrated by researchers from Abbvie,8 and
Promega reported the quantitative live-cell kinetic degradation
and mechanistic profiling.9 Recently, ARV-110 (undisclosed
structure)10 from Arvinas, Inc., an androgen (AR)-targeted
PROTAC with high potency against both wild-type and
mutants, exhibited satisfactory safety and tolerability in
patients in a phase I clinical trial. ARV-471 (undisclosed
structure),11 an estrogen (ER) degrader from Arvinas, Inc., is
also in phase 1 studies in women with locally advanced or
metastatic ER positive/HER2 negative breast cancer. PRO-
TACs have opened a new chapter for the development of new
drugs and novel chemical knockdown tools and brought
unprecedented opportunities to the industry and academia,
which are mainly reflected in the following aspects:

(1) Overcoming drug resistance of cancer. In addition to
traditional chemotherapy, kinase inhibitors have been
developing rapidly in the past 20 years.12 Although
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Figure 1. Overview steps of entire target protein degradation by
PROTACs. TP, target protein.
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kinase inhibitors are very effective in cancer therapy,
patients often develop drug resistance and disease
recurrence, consequently. PROTACs showed greater
advantages in drug resistant cancers through degrading
the whole target protein. For example, ARCC-4
targeting androgen receptor could overcome enzaluta-
mide-resistant prostate cancer13 and L18I targeting BTK
could overcome C481S mutation.14

(2) Eliminating both the enzymatic and nonenzymatic
functions of kinase. Traditional small molecule
inhibitors usually inhibit the enzymatic activity of the
target, while PROTACs affect not only the enzymatic
activity of the protein but also nonenzymatic activity by
degrading the entire protein. For example, FAK
possesses the kinase dependent enzymatic functions
and kinase independent scaffold functions, but regulating
the kinase activity does not successfully inhibit all FAK
function. In 2018, a highly effective and selective FAK
PROTAC reported by Craig M. Crews’ group showed a
far superior activity to clinical candidate drug in cell
migration and invasion.15 Therefore, PROTAC can
expand the druggable space of the existing targets and
regulate proteins that are difficult to control by
traditional small molecule inhibitors.

(3) Degrade the “undruggable” protein target. At present,
only 20−25% of the known protein targets (include
kinases, G protein-coupled receptors (GPCRs), nuclear
hormone receptors, and iron channels) can be targeted
by using conventional drug discovery technologies.16,17

The proteins that lack catalytic activity and/or have
catalytic independent functions are still regarded as
“undruggable” targets. The involvement of Signal
Transducer and Activator of Transcription 3 (STAT3)
in the multiple signaling pathway makes it an attractive
therapeutic target; however, the lack of an obviously
druggable site on the surface of STAT3 limited the
development of STAT3 inhibitors. Thus, there are still
no effective drugs directly targeting STAT3 approved by
the Food and Drug Administration (FDA). In
November 2019, Shaomeng Wang’s group first reported
a potent PROTAC targeting STAT3 with potent
biological activities in vitro and in vivo.18 This successful
case confirms the key potential of PROTAC technology,
especially in the field of “undruggable” targets, such as
K-Ras, a tricky tumor target activated by multiple
mutations as G12A, G12C, G12D, G12S, G12 V, G13C,
and G13D in the clinic.19

(4) Fast and reversible chemical knockdown strategy in
vivo. Traditional genetic protein knockout technologies,
zinc-finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN), or CRISPR-Cas9, usually
have a long cycle, irreversible mode of action, and high
cost, which brings a lot of inconvenience for research,
especially in nonhuman primates. In addition, these
genetic animal models sometimes produce phenotypic
misunderstanding due to potential gene compensation
or gene mutation. More importantly, the traditional
genetic method cannot be used to study the function of
embryonic-lethal genes in vivo. Unlike DNA-based
protein knockout technology, PROTACs knock down
target proteins directly, rather than acting at the genome
level, and are suitable for the functional study of
embryonic-lethal proteins in adult organisms. In

addition, PROTACs provide exquisite temporal control,
allowing the knockdown of a target protein at specific
time points and enabling the recovery of the target
protein after withdrawal of drug treatment. As a new,
rapid and reversible chemical knockdown method,
PROTAC can be used as an effective supplement to
the existing genetic tools.20

Although PROTAC technology has a bright future in drug
development, it also has many challenges as follows:

(1) Until now, there is only one example of PROTAC
reported for an “undruggable” target;18 more cases are
needed to prove the advantages of PROTAC in
“undruggable” targets in the future.

(2) “Molecular glue”, existing in nature, represents the
mechanism of stabilized protein−protein interactions
through small molecule modulators of E3 ligases. For
instance, auxin, the plant hormone, binds to the ligase
SCF-TIR1 to drive recruitment of Aux/IAA proteins and
subsequently triggers its degradation. In addition, some
small molecules that induce targeted protein degradation
through “molecular glue” mode of action have been
reported.21,22 Furthermore, it has been recently reported
that some PROTACs may actually achieve target protein
degradation via a mechanism that includes “molecular
glue” or via “molecular glue” alone.23 How to distinguish
between these two mechanisms and how to combine
them to work together is one of the challenges for future
research.

(3) Since PROTAC acts in a catalytic mode, traditional
methods cannot accurately evaluate the pharmacoki-
netics (PK) and pharmacodynamics (PD) properties of
PROTACs. Thus, more studies are urgently needed to
establish PK and PD evaluation systems for PROTACs.

(4) How to quickly and effectively screen for target protein
ligands that can be used in PROTACs, especially those
targeting protein−protein interactions, is another
challenge.

(5) How to understand the degradation activity, selectivity,
and possible off-target effects (based on different targets,
different cell lines, and different animal models) and
how to rationally design PROTACs etc. are still unclear.

(6) The human genome encodes more than 600 E3
ubiquitin ligases. However, there are only very few E3
ligases (VHL, CRBN, cIAPs, and MDM2) used in the
design of PROTACs. How to expand E3 ubiquitin ligase
scope is another challenge faced in this area.

PROTAC technology is rapidly developing, and with the
joint efforts of the vast number of scientists in both academia
and industry, these problems shall be solved in the near future.
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