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Abstract

Background: Coffee has been consistently associated with lower risk of liver cancer and chronic liver disease, suggesting that
coffee affects mechanisms underlying disease development.
Methods: We measured serum metabolites using untargeted metabolomics in 1:1 matched nested case-control studies of
liver cancer (n¼221 cases) and fatal liver disease (n¼242 cases) in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention
cohort (n¼29 133). Associations between baseline coffee drinking and metabolites were identified using linear regression;
conditional logistic regression models were used to identify associations with subsequent outcomes.
Results: Overall, 21 metabolites were associated with coffee drinking and also each subsequent endpoint; nine metabolites
and trigonelline, a known coffee biomarker, were identified. Tyrosine and two bile acids, glycochenodeoxycholic acid
(GCDCA) and glycocholic acid (GCA), were inversely associated with coffee but positively associated with both outcomes;
odds ratios (ORs) comparing the 90th to 10th percentile (modeled on a continuous basis) ranged from 3.93 (95% confidence
interval [CI]¼2.00 to 7.74) for tyrosine to 4.95 (95% CI¼2.64 to 9.29) for GCA and from 4.00 (95% CI¼2.42 to 6.62) for GCA to
6.77 (95% CI¼3.62 to 12.65) for GCDCA for liver cancer and fatal liver disease, respectively. The remaining six metabolites and
trigonelline were positively associated with coffee drinking but inversely associated with both outcomes; odds ratio ranged
from 0.16 to 0.37. Associations persisted following diet adjustment and for outcomes occurring greater than 10 years after
blood collection.
Conclusions: A broad range of compounds were associated with coffee drinking, incident liver cancer, and liver disease death
over 27 years of follow-up. These associations provide novel insight into chronic liver disease and liver cancer etiology and
support a possible hepatoprotective effect of coffee.

Liver cancer is the second-leading cause of cancer death world-
wide (1). Most liver cancers are preceded by chronic liver disease
(2), including cirrhosis, which is also a leading cause of death in
the United States, particularly among men (3). Although liver
cancer rates are highest in developing countries, they have in-
creased dramatically in the United States and Europe (4–7). This
increase has been largely attributed to increasing rates of hepa-
titis C virus (HCV) infection (8,9) but obesity and diabetes are

also likely contributors (10–13). In contrast, coffee drinking has
been consistently associated with lower risk of liver cancer,
with moderate coffee drinkers experiencing a 40% to 50% lower
risk than nondrinkers (14,15). An earlier analysis in the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) cohort es-
timated that a one-cup-per-day increase in consumption was
strongly associated with lower risk of liver cancer and chronic
liver disease death (16). Additionally, coffee consumption has
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been consistently linked with lower risk of type 2 diabetes (17)
and lower rates of liver disease progression in the context of
patients with advanced hepatitis C–related liver disease (18).

The mechanisms linking coffee drinking to liver disease and
liver cancer are poorly understood but may involve effects on
metabolism and digestion. The liver plays a central role in hu-
man metabolism, converting dietary constituents into metabo-
lites that can be used or stored and toxins into substances that
are harmless or can be excreted. In addition, the liver produces
bile, which is critical for the breakdown and absorption of fats,
and it regulates blood glucose by storing and breaking down gly-
cogen as needed. A growing body of research indicates that bile
acids play an important role in the pathogenesis of chronic liver
disease (19–21), but their role in the development of liver cancer
is unclear.

High-resolution mass spectrometry technologies can simul-
taneously measure thousands of small molecules in serum and
other biospecimens and may improve mechanistic understand-
ing of liver cancer and liver disease etiology as well as the po-
tential protective effects of coffee. The aim of our study was to
prospectively evaluate the associations of serum metabolites,
particularly those that may provide insight into underlying
mechanisms related to coffee drinking, with liver cancer and
liver disease mortality in a large cohort of men with low rates of
HCV and hepatitis B virus (HBV) infection, a high prevalence of
coffee drinking, and baseline serum samples collected up to
27 years prior to diagnosis or death.

Methods

Study Design

The study design, rationale, and specific aims of the ATBC study
have been detailed elsewhere (22). From 1985 to 1988, the study
enrolled 29 133 Finnish male smokers, age 50 to 69 years, with
no prior malignancy, alcoholism, or major medical issues, to
participate in a randomized, double-blinded, placebo-controlled
primary prevention trial of lung cancer. Participants were pas-
sively followed during the postintervention period via linkage
with the Finnish Cancer Registry, which ascertains nearly 100%
of cases (23), and the Register of Causes of Death. Each partici-
pant gave written informed consent, and the study was ap-
proved by the institutional review boards of the National
Cancer Institute (NCI), the National Public Health Institute of
Finland, and the International Agency for Research on Cancer.

The first case-control set for this study included 229 incident
liver cancer cases (International Classification of Diseases,
Ninth Revision [ICD9]: 155, and ICD, Tenth Revision [ICD10]:
C22), diagnosed through December 31, 2012, and 229 incidence-
density matched controls. The second case-control set included
248 fatal liver disease patients (ICD9: 571, and ICD10: K70, K72,
K74), who died on or before December 31, 2012, and
248 incidence-density matched controls. Approximately 90% of
the fatal liver disease cases were described as alcohol related,
namely alcoholic cirrhosis of the liver (ICD9: 571.2, and ICD10:
K70.2/3; n¼ 197). Case types are mutually exclusive endpoints,
so if an individual had a liver cancer diagnosis before dying of
liver disease, he or she is recorded as a liver cancer case only.
All controls were alive at event date and were matched on age
at random assignment (þ or –5 years) and baseline serum draw
date (þ or –30 days). Serum samples from patients and controls
were placed next to each other in the same batch and the order
of pairs was randomized. Blinded quality control (QC) samples

were included at a rate of 7% and were regularly spaced
throughout the batches.

Exposure Assessment

At baseline, participants reported information on demo-
graphics, diet, lifestyle, and medical history via questionnaires
and donated a fasting (overnight) blood sample, which was sub-
sequently stored at –70�C. All blood samples used in the metab-
olomic analyses were never thawed prior to this study. A
detailed summary of fasting insulin and glucose measures as
well as HBV and HCV measure have been described elsewhere
(10). A subset of serum samples from ATBC participants (n¼ 50)
were tested for the presence of aflatoxin-albumin adducts at
the University of Leeds (United Kingdom); because we found no
evidence for exposure, we did not measure aflatoxin exposure
in our larger case-control set (10).

Untargeted Metabolomics

Mass spectrometry analyses were carried out as described in de-
tail elsewhere (24). In brief, study samples were analyzed on a
liquid chromatography-mass spectrometry system consisting
of a 1290 Binary LC system, a Jet Stream electrospray ionization
source, and a 6550 QTOF mass spectrometer (Agilent
Technologies, Santa Clara, CA). The mass spectrometer was op-
erated in positive ionization mode across a mass range of 50–
1000 Da. Coefficients of variation of 14 known compounds in
102 pooled QC samples ranged from 3.3% to 15.5% in batch 1
and 7.0% to 18.6% in batch 2.

Acquired raw data were preprocessed using Qualitative
Analysis B.06.00, DA Reprocessor and Mass Profiler Professional
12.1 software (Agilent Technologies) using a recursive workflow.
First, molecular feature extraction was employed to find fea-
tures as singly charged proton adducts [MþH]þ in all study
samples. Features that existed in at least 2% of the study sam-
ples were combined, using 0.08 minute (min) retention time and
15 ppm þ 2 mDa mass windows for alignment. These features
were used as targets for recursive analysis of the data of sam-
ples, QCs, and blanks by employing a “find by formula” algo-
rithm with match tolerances at 610 ppm and 60.035 min, and
ions limited to [MþH]þ. The resulting features were then
merged to generate the final matrix of peak areas. In total,
8020 features were found; after removing batch-specific fea-
tures and features whose median intensities were higher in
blanks than study samples, 2879 features remained. Finally, we
removed 14 samples that were extreme outliers (four liver can-
cer cases, five fatal liver disease cases, and five controls) using
principal coordinate analysis of the 2879 spectral features
(Supplementary Figure 1, available online). Our final analytic
sample included 221 liver cancer and 242 fatal liver disease
cases and their matched controls.

We tested whether each of the 2879 spectral features was as-
sociated with coffee intake, liver cancer, and liver disease mor-
tality. First, we used linear regression models to test the cross-
sectional associations of these 2879 features as continuous log2-
transformed response variables, with coffee intake at baseline
(continuous, g per day) among both case-control sets combined,
adjusting for age, smoking intensity (cigarettes per day), run or-
der, and the surrogate variables identified by surrogate variable
analysis using the R package SVA version 3.32.1. (25). We then
tested the associations of the spectral features as continuous
log2-transformed exposure variables, with liver cancer and liver
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disease mortality using conditional logistic regression models,
adjusting for age, smoking intensity, and run order. In total,
38 features were statistically significantly associated with coffee
intake and both liver endpoints, after correcting for multiple
comparisons using the Bonferroni method (P< 1.74 � 10–5).
Additionally, greater than 80% of peaks associated with liver
cancer were also associated with fatal liver disease (data not
shown).

Feature identification was performed by grouping based on
retention time similarity and intensity correlation across sam-
ples and searching their m/z values for candidate metabolites in
the Human Metabolome Database 4.0 (www.hmdb.ca) using
ions [MþH]þ, [MþNa]þ, and [M-H2OþH]þ with 615 ppm toler-
ance. Retention times and tandem mass spectrometry were
compared with standards when available or against library spec-
tra. The level of confidence was as proposed by Sumner et al.
(26). Chromatograms and spectra are in Supplementary Figure 2
(available online). We also identified trigonelline, a known coffee
biomarker, for consideration in subsequent analyses. Intraclass
correlation coefficients for blinded QCs were greater than 0.80
for all identified metabolites except lysophosphatidylcholine
(lysoPC)(P-16:0) with an intraclass correlation coefficient of 0.65.

Statistical Analysis

We considered the set of potential confounders defined in
Table 1. We tested for differences between cases and controls
using the Wilcoxon signed-rank test for continuous variables
and McNemar test for categorical variables. All statistical tests
were two-sided, and a P value of less than .05 was considered
statistically significant unless indicated otherwise. Metabolite
analyses use log2-transformed peaks, with missing data
assigned a value of one-half the lowest observed value for a
given metabolite. We calculated partial Spearman correlation
coefficients (rs), adjusting for case status and batch variables,
for coffee consumption and metabolites. Odds ratios (ORs) and
95% confidence intervals (CIs), comparing the 90th to the 10th
percentile of metabolite values based on the distribution in the
controls, were estimated using conditional logistic regression
models. Letting X90 and X10 denote the 90th percentile and 10th
percentile in controls, and b denote the log (OR) from the condi-
tional logistic regression model, the odds ratio is ebðX90�X10Þ.
Multivariable models were adjusted for potential confounders
including age, body mass index, smoking intensity, smoking du-
ration, alcohol, self-reported diabetes status, and education,
with indicator variables used to account for missing data.
Models were further adjusted for dietary variables, including
intakes of coffee, fruit and vegetables, red meat, white meat,
processed meat, fish, saturated fat, and energy, using the nutri-
ent density method of energy adjustment, also including total
energy in the models. Analyses were stratified by time to diag-
nosis or death. We used a stepwise selection process to deter-
mine the set of metabolites that were independently associated
with each examined disease endpoint, with an alpha of 0.005 to
enter and 0.05 to remain in the model for each metabolite. We
calculated the adjusted receiver operating characteristic (aROC)
curve and adjusted area under the curve (aAUC) for each metab-
olite signature using the joint-modeling approach (27).
Confidence intervals for the aAUC and aROC were based on nor-
mal theory with the standard errors estimated using the boot-
strap procedure. We conducted sensitivity analyses
(Supplementary Methods, available online) to estimate the im-
pact of model overfitting.

In a series of sensitivity analyses, we excluded participants
with a liver cancer that was not specified as primary or second-
ary (ICD9 155.2; n¼ 17). Among participants with data on diabe-
tes status and fasting glucose (n¼ 246 for liver cancer set;
n¼ 400 for liver disease set), we excluded those with self-
reported or biochemically defined diabetes (n¼ 22 for liver can-
cer set; n¼ 29 for liver disease set), and among those evaluated
for hepatitis B and C infections (n¼ 255 for liver cancer set;
n¼ 416 for liver disease set), we excluded those who were
seropositive for HBV or HCV (n¼ 31 for liver cancer set; n¼ 27
for liver disease set). Analyses were conducted with R version
3.5.2 (R Core Team, Vienna, Austria. URL https://www.R-project.
org/) or with SAS version 9.4 (SAS Institute Inc, Cary, NC).

Results

Baseline characteristics for ATBC participants who developed
liver cancer or who died from liver disease and their matched
controls are presented in Table 1. Overall, average coffee con-
sumption was 1.9 cups per day, and 3.6% of participants
reported drinking no coffee, whereas 21.5% reported no less
than 3 cups per day (data not shown). Both case groups drank
less coffee but more alcohol than controls, and liver cancer
cases tended to have higher body mass index than controls.
Both case groups had higher median levels of glucose and insu-
lin relative to controls, and liver cancer cases had a higher prev-
alence of diabetes (11.3% vs 2.3%) and HCV (5.0% vs 0.8%).

Of the 2879 spectral features, 38 features corresponding to
21 metabolites were associated with coffee intake at baseline
and subsequent liver outcomes (Supplementary Table 1, avail-
able online). In total, nine metabolites, corresponding to 24 fea-
tures, were identified: tyrosine, hypoxanthine, serotonin,
glycochenodeoxycholic acid (GCDCA), glycocholic acid (GCA),
lysoPC lysoPC[15:0], lysoPC[18:2], lysoPC[P-16:0]), and a dipeptide
(leucyl-valine [leu-val] or isomer). The remaining 14 features,
corresponding to 12 metabolites, could not be identified. An ad-
ditional feature, identified as trigonelline, was statistically sig-
nificantly associated with coffee intake and liver disease death
(both P< 1.74 � 10–5). Histograms for identified metabolites by
case type and status are provided (Supplementary Figure 3,
available online).

In multivariable models, we observed strong positive associ-
ations with liver cancer (Table 2) and liver disease mortality
(Table 3) for tyrosine (liver cancer: OR¼ 3.93, 95% CI¼ 2.00 to
7.74; liver disease mortality: OR¼ 4.91, 95% CI¼ 2.59 to 9.29) and
glycine-conjugated bile acids, GCDCA (liver cancer: OR¼ 3.99,
95% CI¼ 2.22 to 7.17; liver disease mortality: OR¼ 6.77, 95%
CI¼ 3.62 to 12.65) and GCA (liver cancer: OR¼ 4.95, 95% CI¼ 2.64
to 9.29; liver disease mortality OR¼ 4.00, 95% CI¼ 2.42 to 6.62). In
contrast, we observed inverse associations for trigonelline, sero-
tonin, leu-val, each of three identified glycerophospholipids,
and hypoxanthine; odd ratios ranged from 0.16 to 0.37.
Intriguingly, coffee consumption at baseline was negatively cor-
related with tyrosine (rs ¼ �0.13), GCDCA (rs ¼ �0.20), and GCA
(rs ¼ �0.19) but positively correlated with trigonelline (rs � 0.50),
serotonin (rs ¼ 0.13), leu-val (rs ¼ 0.20), lysoPC(15:0) (rs ¼ 0.32),
lysoPC(P16:0) (rs ¼ 0.18), lysoPC(18:2) (rs ¼ 0.15), and hypoxan-
thine (rs ¼ 0.10) (all P< .01). Strong correlations were observed
between some metabolites (Supplementary Figure 4, available
online).

Associations were generally stronger for cases occurring
within 10 years of baseline but remained strongly associated
with liver outcomes for cases occurring more than 10 years after
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baseline. Diet-adjusted associations were moderately attenu-
ated (5%–25%) or unchanged; all diet-adjusted associations
remained statistically significant. Using a stepwise selection
process, we found five metabolites (GCA, leu-val, hypoxanthine,
lysoPC[18:2], and lysoPC[15:0]) and four metabolites (GCDCA,
lysoPC[18:2], serotonin, and trigonelline) that were strong inde-
pendent predictors of liver cancer and liver disease mortality,
respectively (Table 4). The corresponding aROC curves (Figure 1)
had aAUCs of 0.78 (95% CI¼ 0.74 to 0.83) for liver cancer and 0.82
(95% CI¼ 0.78 to 0.85) for liver disease mortality; sensitivity
analyses suggest that the estimated aAUC and aROC were, at
most, modestly influenced by selection of metabolites
(Supplementary Figure 5, available online).

We also considered the associations of 12 unidentified metab-
olites; of these, six were inversely associated with both endpoints
and six were positively associated with both endpoints
(Supplementary Table 2 and 3, available online). Results from sen-
sitivity analyses were generally similar to those from the main
analyses (Supplementary Table 4 and 5, available online).
However, among those without diabetes, odds ratio estimates, ad-
justed for homeostatic model assessment for insulin resistance,
were notably attenuated for tyrosine and GCDCA with liver cancer
and for lysoPC(P-16:0) with liver cancer and fatal liver disease.

Discussion

In this prospective study with baseline serum collected up to
27 years prior to liver cancer diagnosis or liver disease death,

we observed strong associations with coffee consumption,
liver cancer, and liver disease mortality for 21 metabolites.
We identified nine of the 21 metabolites as well as trigonel-
line. Metabolites positively correlated with coffee consump-
tion were associated with lower risk of liver cancer and liver
disease death. In contrast, metabolites negatively correlated
with coffee consumption, including two bile acids, were as-
sociated with higher risk of liver cancer and liver disease
death.

Several case-control studies have used untargeted metabo-
lomics to identify markers to facilitate early detection of liver
cirrhosis and liver cancer in high-risk populations (28–33). But,
just one other study prospectively evaluated associations be-
tween serum metabolites and liver cancer. A nested case-
control study in the European Prospective Investigation into
Cancer and Nutrition (EPIC) cohort, with 114 hepatocellular
(HCC) cases, measured 44 metabolites using nuclear magnetic
resonance (34) and found associations with markers of fatty
acid oxidation as well as amino acid, lipid, and carbohydrate
metabolism. EPIC investigators recently updated this analysis to
include 220 HCC cases and matched controls (Stepien, Keski-
Rahkonen, Kiss, Duarte-Salles, Murphy, Perlemuter, et al.,
unpublished data) using the same analytical platform as the
current study. Despite distinct study populations and comple-
mentary but different endpoints, our two studies observed simi-
lar positive associations for tyrosine, GCA, and GCDCA and
inverse associations for lysoPC(15:0), lysoPC(18:2), lysoPC(P-
16:0), and leu-val.

Table 1. Baseline characteristics of liver cancer cases, chronic liver disease deaths, and matched-controls in Alpha-Tocopherol and Beta-
Carotene Cancer Prevention Study

Baseline characteristics

Liver cancer incidence Chronic liver disease death

No. (%)
cases (n¼ 221)

No. (%) controls
(n¼ 221) P*

No. (%)
cases (n¼ 242)

No. (%)
controls (n¼ 242) P*

Alcohol, >11.6 g ethanol/day† 113 (58.3) 92 (47.4) .03 156 (77.6) 103 (51.2) <.001
Self-reported diabetes, yes 25 (11.3) 5 (2.3) <.001 9 (3.7) 9 (3.7) 1.00
Education, � elementary 58 (26.2) 45 (20.4) .14 67 (27.7) 54 (22.3) .17
HBV, anti-HBc, yes‡ 20 (16.7) 5 (4.2) .003 12 (5.8) 13 (6.3) .84
HBV, HBsAg, yes‡ 2 (1.7) 3 (2.5) .66 1 (0.5) 1 (0.5) 1.00
HCV, anti-HCV, yes‡ 6 (5.0) 1 (0.8) .06 6 (2.9) 2 (1.0) .16
Mean entry age (SD), y 57.8 (4.8) 57.3 (4.5) .004 55.2 (4.0) 55.2 (4.3) .78
Mean coffee intake (SD), 8 oz cups/day† 2.1 (1.4) 2.6 (1.5) .002 1.6 (1.2) 2.4 (1.4) <.001
Mean BMI (SD), kg/m2 27.6 (4.5) 26.1 (3.4) <.001 26.8 (4.0) 26.9 (3.8) .77
Mean smoking intensity (SD), cigarettes/day 21.1 (9.4) 19.0 (8.9) .03 22.2 (9.2) 20.7 (8.1) .06
Mean smoking duration (SD), y 36.9 (8.5) 35.2 (8.4) .01 34.0 (8.5) 34.0 (7.7) .48
Mean glucose (SD), mg/dL§ 111.0 (36.0) 100.3 (12.2) .006 104.6 (20.2) 100.3 (15.3) .02
Mean insulin (SD), mU/mL§ 9.9 (10.3) 5.3 (3.5) <.001 8.7 (13.5) 5.5 (4.7) <.001
Mean HOMA-IR (SD)§ 2.9 (3.8) 1.3 (1.0) <.001 2.5 (4.8) 1.4 (1.4) <.001
Mean fruit and vegetable intake (SD), g/1000 kcal† 144.9 (49.6) 155.9 (59.5) .05 147.3 (63.4) 152.2 (66.2) .56
Mean red meat intake (SD), g/1000 kcal† 28.3 (11.8) 25.7 (10.5) .05 28.0 (14.7) 27.1 (12.1) .89
Mean processed meat intake (SD), g/1000 kcal† 27.3 (19.2) 26.0 (17.7) .74 27.8 (16.7) 27.3 (17.5) .88
Mean white meat intake (SD), g/1000 kcal† 5.5 (6.8) 5.1 (5.2) .97 4.6 (4.9) 5.4 (6.7) .34
Mean fish intake (SD), g/1000 kcal† 15.8 (10.9) 14.4 (10.5) .06 14.6 (10.4) 14.6 (9.4) .89
Mean saturated fat intake, (SD) g/day† 18.5 (5.0) 19.3 (5.0) .16 18.0 (5.2) 18.9 (4.5) .04
Mean total energy (SD), kcal† 2617 (807) 2729 (689) .03 2687 (809) 2732 (769) .52

*P value for McNemar test and Wilcoxon signed-rank test for categorical and continuous variables, respectively. BMI ¼ body mass index; HBc = hepatitis B core anti-

body; HBV ¼ hepatitis B virus; HBsAg ¼ hepatitis B surface antigen; HCV ¼ hepatitis C virus; HOMA-IR ¼ homeostatic model assessment of insulin resistance.

†Dietary data available for 194 liver cancer cases and matched controls and 201 fatal liver disease cases and matched controls.

‡Data on hepatitis B and C virus status was available for 120 liver cancer cases and matched controls and 206 fatal liver disease cases and matched controls.

§Among those without a self-reported history of diabetes, data on fasting glucose and insulin were available for 107 liver cancer cases and matched controls and

190 fatal liver disease cases and matched controls.
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Perturbations in amino acid metabolism, particularly high
levels of aromatic amino acids such as tyrosine, have been im-
plicated in the pathogenesis of chronic liver diseases (35–37),
and one recent study suggested that gut dysbiosis may result in
the abnormal accumulation of serum tyrosine, which may con-
tribute to liver disease progression (32). The link between gut
dysbiosis and chronic liver diseases may also be relevant to the
observed associations with bile acids, which undergo biotrans-
formation by the gut microbiota (38). A secondary bile acid,
deoxycholic acid, has been shown both to cause DNA damage
(39) and to promote liver tumor growth (40). Experimental stud-
ies have linked interactions between the gut microbiota and
liver, termed the liver-gut axis, to the pathogenesis of liver dis-
eases (41). Current data, primarily from rodent models, suggest
that the liver-gut axis is a potential target for prevention of liver
disease progression and liver cancer (19,41,42). Interestingly,
the coffee compound cafestol has been shown to suppress bile
acid synthesis in mice (43) and in rat hepatocytes (44), and chlo-
rogenic acid, a phenolic compound abundant in coffee, has
been shown to reduce bile acid-induced colon carcinogenesis

(45). Moreover, a recent analysis of metabolomic data from the
PREDIMED study also found that coffee drinking was negatively
associated with GCA (46). Studies have also demonstrated that
trigonelline has an inhibitory effect on nuclear factor E2-related
factor 2, which may play an important role in cancer (47).
Experimental evidence suggests that coffee may increase
serotonin availability (48), although prospective studies are
needed to clarify the metabolic role of peripheral serotonin in
humans (49).

We observed inverse associations with leu-val as well as
three glycerophospholipids belonging to a class of chemical
compounds called lysoPCs; each of these inverse associations
was also observed in the EPIC cohort (Stepien, Keski-Rahkonen,
Kiss, Duarte-Salles, Murphy, Perlemuter, et al., unpublished
data). Leu-val is a product of protein catabolism, and although
some dipeptides have known physiological effects, their rele-
vance to the liver is unclear. Glycerophospholipids are compo-
nents of cellular membranes and play important roles in many
cellular signaling pathways; lysoPCs, more specifically, have
been linked to apoptosis, particularly in proliferating cells such

Table 2. Odds ratios and 95% confidence intervals* for incident liver cancer comparing men in the 90th and 10th percentiles, based on the dis-
tribution in controls, for top metabolites, using conditional logistic regression

Chemical class and metabolite Unadjusted model Model 1†

>0 to 10 years of
follow-up

(model 1)†,‡

>10 years of
follow-up

(model 1)†,§
Model 2

(diet adjusted)†,k

Alkaloid
Trigonelline 0.33 (0.19 to 0.56) 0.37 (0.20 to 0.67) 0.10 (0.03 to 0.40) 0.59 (0.29 to 1.22) 0.46 (0.22 to 0.96)
P¶ <.001 .001 .001 .15 .04

Amino Acid
Tyrosine 5.06 (2.74 to 9.33) 3.93 (2.00 to 7.74) 7.21 (1.77 to 29.31) 3.35 (1.49 to 7.56) 3.60 (1.72 to 7.51)
P¶ <.001 <.001 .006 .004 <.001

Indoleamine
Serotonin 0.32 (0.20 to 0.53) 0.33 (0.19 to 0.58) 0.28 (0.10 to 0.84) 0.41 (0.21 to 0.82) 0.36 (0.20 to 0.65)
P¶ <.001 <.001 .02 .01 <.001

Dipeptide
Leucyl-valine 0.24 (0.14 to 0.43) 0.22 (0.12 to 0.41) 0.31 (0.10 to 0.97) 0.12 (0.05 to 0.29) 0.20 (0.10 to 0.40)
P¶ <.001 <.001 .04 <.001 <.001

Bile Acid
Glycochenodeoxycholic acid 3.92 (2.34 to 6.59) 3.99 (2.22 to 7.17) 5.70 (1.91 to 17.02) 3.76 (1.74 to 8.12) 3.73 (1.97 to 7.05)
P¶ <.001 <.001 .002 <.001 <.001
Glycocholic acid 5.00 (2.84 to 8.80) 4.95 (2.64 to 9.29) 8.09 (2.25 to 29.03) 4.65 (2.03 to 10.64) 4.43 (2.27 to 8.64)
P¶ <.001 <.001 .001 <.001 <.001

Glycerophospholipid
LysoPC(15:0) 0.20 (0.11 to 0.35) 0.17 (0.09 to 0.34) 0.09 (0.02 to 0.37) 0.27 (0.12 to 0.61) 0.15 (0.06 to 0.35)
P¶ <.001 <.001 <.001 <.001 <.001
LysoPC(P-16:0) 0.15 (0.08 to 0.28) 0.21 (0.10 to 0.40) 0.04 (0.01 to 0.22) 0.30 (0.14 to 0.67) 0.21 (0.10 to 0.43)
P¶ <.001 <.001 <.001 .003 <.001
LysoPC(18:2) 0.21 (0.12 to 0.37) 0.24 (0.13 to 0.45) 0.13 (0.03 to 0.48) 0.30 (0.15 to 0.62) 0.21 (0.11 to 0.42)
P¶ <.001 <.001 .002 .001 <.001

Purine derivative
Hypoxanthine 0.19 (0.10 to 0.35) 0.19 (0.10 to 0.38) 0.11 (0.02 to 0.47) 0.26 (0.11 to 0.58) 0.21 (0.10 to 0.43)
P¶ <.001 <.001 .003 .001 <.001

*ORs for 221 liver cancer cases and 221 matched controls are scaled to compare the 90th to the 10th percentile of metabolite values (modeled on a continuous basis)

based on the distribution in the controls; letting X90 and X10 denote the 90th percentile and 10th percentile in controls, and b denote the log(OR) from the conditional lo-

gistic regression model, the OR is eb(X90�X10). CI ¼ confidence interval; LysoPC = lysophosphatidylcholine; OR ¼ odds ratio.

†Models adjusted for entry age (years), body mass index (kg/m2), smoking intensity (cigarettes per day), smoking duration (years), alcohol intake (none, <11.6 g/day,

�11.6 g/day, or missing), self-reported diabetes status (yes or no), education (� or > elementary education), and run order.

‡n¼146 (73 cases; 73 matched controls); missing alcohol assigned to highest frequency category owing to unstable risk estimates.

§n¼296 (148 cases; 148 matched controls).

kModels additionally adjusted for coffee intake (none, <1, 1 to <2, 2 to <3, or �3 cups [8 oz] per day), fruit and vegetable intake (g/1000 kcal), red meat intake

(g/1000 kcal), white meat intake (g/1000 kcal), processed meat intake (g/1000 kcal), fish intake (g/1000 kcal), saturated fat intake (g/1000 kcal), energy intake (kcal); indi-

viduals with missing food frequency questionnaire data were grouped using an indicator variable.

¶P-value for v2 test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided.
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as cancer (50), and a recent biomarker identification study for
early detection of HCC found that higher serum levels of several
lysoPCs, including lysoPC(15:0), were negatively correlated with
liver enzymes (28). Finally, our findings for hypoxanthine, a nat-
urally occurring purine derivative, are consistent with two small
case-control studies of HCC (51) and HBV-induced HCC and cir-
rhosis (52). Again, however, further mechanistic studies are
needed.

One key question is whether identified metabolites are a
cause or result of underlying liver disease. We lacked clinical in-
formation about liver disease prevalence at baseline and inci-
dence during follow-up; however, participants manifesting
cirrhosis or who reported chronic alcohol abuse were ineligible
to enroll in the ATBC trial. Nevertheless, asymptomatic cirrho-
sis can be present for many years prior to diagnosis. With up to
27 years of follow-up, our study was able to examine whether
associations varied across follow-up time. Most associated
metabolites displayed similar patterns among cases occurring
more than 10 years after baseline blood draw. However, future

metabolomics studies with assessment of chronic liver disease
and longitudinal sample collections are needed to confirm and
extend our findings.

Our study was strengthened by the availability of data on
HBV and HCV status as well as fasting glucose in a subset of
participants. These measures allowed us to evaluate the po-
tential impact of known risk factors on odds ratio estimates.
Our results were similar when we excluded those with positive
HBV or HCV tests or those with diabetes, suggesting that the
observed metabolite associations were independent of these
factors. One main limitation of our study is its potential lack of
generalizability given that study participants were male
Finnish smokers. However, our findings support those
reported in EPIC and in cross-sectional studies of liver dis-
eases. A second limitation is that our study design and analytic
approach, which focused on metabolites that were cross-
sectionally associated with coffee drinking and prospectively
associated with liver outcomes, does not permit a rigorous me-
diation analysis or establish a causal association of coffee

Table 3. Odds ratios and 95% confidence intervals* for liver disease death comparing men in the 90th and 10th percentiles, based on the distri-
bution in controls, for top metabolites, using conditional logistic regression

Chemical class and metabolite Unadjusted model Model 1†

>0 to 10 years of
follow-up

(model 1)†,‡

>10 years of
follow-up

(model 1)†,§
Model 2

(diet adjusted)†,k

Alkaloid
Trigonelline 0.20 (0.12 to 0.36) 0.24 (0.13 to 0.44) 0.25 (0.09 to 0.66) 0.22 (0.09 to 0.55) 0.30 (0.14 to 0.62)
P¶ <.001 <.001 .005 .001 <.001

Amino Acid
Tyrosine 4.00 (2.36 to 6.77) 4.91 (2.59 to 9.29) 5.36 (2.14 to 13.40) 4.47 (1.74 to 11.49) 4.16 (2.07 to 8.37)
P¶ <.001 <.001 <.001 .002 <.001

Indoleamine
Serotonin 0.29 (0.18 to 0.46) 0.28 (0.17 to 0.47) 0.24 (0.11 to 0.52) 0.29 (0.14 to 0.63) 0.26 (0.15 to 0.46)
P¶ <.001 <.001 <.001 .002 <.001

Dipeptide
Leucyl-valine 0.27 (0.17 to 0.44) 0.25 (0.15 to 0.43) 0.16 (0.07 to 0.38) 0.40 (0.19 to 0.83) 0.30 (0.17 to 0.53)
P¶ <.001 <.001 <.001 .01 <.001

Bile Acid
Glycochenodeoxycholic acid 6.20 (3.53 to 10.88) 6.77 (3.62 to 12.65) 24.54 (6.19 to 97.21) 3.76 (1.56 to 9.06) 8.15 (3.88 to 17.12)
P¶ <.001 <.001 <.001 .003 <.001
Glycocholic acid 4.05 (2.52 to 6.51) 4.00 (2.42 to 6.62) 6.51 (2.83 to 14.96) 3.21 (1.49 to 6.90) 3.82 (2.23 to 6.53)
P¶ <.001 <.001 <.001 .003 <.001

Glycerophospholipid
LysoPC(15: 0) 0.17 (0.10 to 0.30) 0.22 (0.12 to 0.38) 0.15 (0.06 to 0.40) 0.30 (0.13 to 0.66) 0.18 (0.09 to 0.38)
P¶ <.001 <.001 <.001 .003 <.001
LysoPC(P-16: 0) 0.26 (0.15 to 0.45) 0.29 (0.16 to 0.54) 0.32 (0.14 to 0.74) 0.18 (0.06 to 0.52) 0.29 (0.14 to 0.59)
P¶ <.001 <.001 .007 .002 <.001
LysoPC(18: 2) 0.13 (0.07 to 0.24) 0.16 (0.08 to 0.31) 0.08 (0.03 to 0.25) 0.24 (0.09 to 0.63) 0.13 (0.06 to 0.30)
P¶ <.001 <.001 <.001 .004 <.001

Purine derivative
Hypoxanthine 0.29 (0.18 to 0.49) 0.29 (0.17 to 0.50) 0.18 (0.07 to 0.45) 0.36 (0.17 to 0.80) 0.29 (0.16 to 0.55)
P¶ <.001 <.001 <.001 .01 <.001

*ORs for 242 fatal liver disease cases and 242 matched controls are scaled to compare the 90th to the 10th percentile of metabolite values (modeled on a continuous ba-

sis) based on the distribution in the controls; letting X90 and X10 denote the 90th percentile and 10th percentile in controls, and b denote the log(OR) from the condi-

tional logistic regression model, the OR is eb(X90�X10). CI ¼ confidence interval; LysoPC = lysophosphatidylcholine; OR ¼ odds ratio.

†Models adjusted for entry age (years), body mass index (kg/m2), smoking intensity (cigarettes per day), smoking duration (years), alcohol intake (none, <11.6 g/day,

�11.6 g/day, or missing), self-reported diabetes status (yes or no), education (� or > elementary education), and run order.

‡n¼228 (114 cases; 114 matched controls).

§n¼256 (128 cases; 128 matched controls).

kModels additionally adjusted for coffee intake (none, <1, 1 to <2, 2 to <3, or �3 cups [8 oz] per day), fruit and vegetable intake (g/1000 kcal), red meat intake (g/

1000 kcal), white meat intake (g/1000 kcal), processed meat intake (g/1000 kcal), fish intake (g/1000 kcal), saturated fat intake (g/1000 kcal), energy intake (kcal); individu-

als with missing food frequency questionnaire data were grouped using an indicator variable for missing.

¶P value for v2 test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided.
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drinking with either liver cancer or chronic liver disease
mortality.

In conclusion, our study identified metabolites that were
strongly associated with coffee consumption, liver cancer, and
liver disease mortality. Our focus on metabolites associated
with coffee drinking provides potential insight into metabolic

pathways that may contribute to the strong observed inverse
associations between coffee drinking, liver disease develop-
ment and progression, and liver cancer. The strong positive
associations of bile acids and inverse associations of glycero-
phospholipids warrant further exploration both in experimental
and population studies.

Figure 1. Adjusted receiver operating characteristic curves for metabolites independently associated with liver cancer or liver disease mortality. A) Results for liver can-

cer (aAUC ¼ 0.78, 95% CI ¼ 0.74 to 0.83) including glycocholic acid, leu-val, hypoxanthine, and lysoPC(18:2). B) Results for liver disease mortality (aAUC ¼ 0.82, 95% CI ¼
0.78 to 0.85) including glycochenodeoxycholic acid, lysoPC(18:2), serotonin, and trigonelline. aAUC ¼ adjusted area under the curve; CI ¼ confidence interval. The solid

line represents the aAUC and the dashed lines represent the upper and lower 95% confidence intervals.

Table 4. Odds ratios and 95% confidence intervals for serum metabolites* independently associated with primary incident liver cancer or liver
disease mortality over 27 years of follow-up in a nested case-control study from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention
cohort

Metabolite Order entered Model entry P† Mutually adjusted OR (95 % CI)‡ Mutually adjusted P‡,†

Liver cancer (n ¼ 221 cases;
n ¼ 221 controls)

Glycocholic acid 1 <.001 2.80 (1.32 to 5.91) .007
Leu-val 2 <.001 0.30 (0.15 to 0.61) <.001
Hypoxanthine 3 <.001 0.32 (0.14 to 0.69) .004
LysoPC(18:2) 4 .004 0.33 (0.16 to 0.69) .003
LysoPC(15:0) 5 .003 0.26 (0.11 to 0.65) .004

Liver disease mortality (n ¼ 242 cases;
n ¼ 242 controls)

Glycochenodeoxycholic acid 1 <.001 4.49 (2.20 to 9.16) <.001
LysoPC(18:2) 2 <.001 0.28 (0.13 to 0.61) .001
Serotonin 3 <.001 0.34 (0.19 to 0.62) <.001
Trigonelline 4 .005 0.37 (0.18 to 0.75) .006

*ORs for cases and matched controls are scaled to compare the 90th to the 10th percentile of metabolite values (modeled on a continuous basis) based on the distribu-

tion in the controls; letting X90 and X10 denote the 90th percentile and 10th percentile in controls, and b denote the log(OR) from the conditional logistic regression

model, the OR is eb(X90�X10). CI ¼ confidence interval; Leu-val = leucyl-valine; LysoPC = lysophosphatidylcholine; OR ¼ odds ratio.

†P value for v2 test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided.

‡Models adjusted for entry age (years), body mass index (kg/m2), smoking intensity (cigarettes/day), smoking duration (years), alcohol intake (none, <11.6 g/day,

�11.6 g/day, or missing), self-reported diabetes status (yes or no), education (� or > elementary education), run order, and all other metabolites previously in model.
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