Skip to main content
. 2020 Jan 31;11(2):153. doi: 10.3390/genes11020153

Table 5.

Performance comparison of our method with different classifiers and different essential and non-essential gene rates on InWeb_IM dataset.

Methods Precision Recall SP NPV F-measure MCC Accuracy AUC AP
DNN (1 layer, 1:6) 0.355 0.772 0.206 0.877 0.261 0.103 0.712 0.499 0.206
DNN (3 layers, 1:6) 0.350 0.255 0.921 0.881 0.295 0.202 0.826 0.483 0.221
DT (1:6) 0.584 0.588 0.930 0.931 0.586 0.517 0.881 0.759 0.616
NB (1:6) 0.456 0.697 0.861 0.945 0.551 0.473 0.837 0.877 0.615
KNN (1:6) 0.778 0.564 0.973 0.930 0.654 0.617 0.914 0.888 0.740
LR (1:6) 0.785 0.591 0.973 0.934 0.675 0.637 0.918 0.931 0.749
SVM (1:6) 0.841 0.550 0.983 0.929 0.665 0.641 0.921 0.915 0.762
RF (1:6) 0.799 0.615 0.974 0.938 0.695 0.659 0.923 0.940 0.776
ET (1:6) 0.816 0.600 0.977 0.936 0.692 0.659 0.925 0.943 0.779
DNN (1 layer, 1:1) 0.652 0.504 0.568 0.591 0.607 0.157 0.578 0.603 0.640
DNN (3 layers, 1:1) 0.737 0.497 0.823 0.620 0.593 0.338 0.659 0.637 0.692
DT (1:1) 0.802 0.791 0.805 0.794 0.797 0.596 0.798 0.798 0.849
NB (1:1) 0.836 0.708 0.862 0.747 0.767 0.576 0.785 0.874 0.872
KNN (1:1) 0.853 0.843 0.854 0.845 0.848 0.697 0.849 0.904 0.906
LR (1:1) 0.865 0.834 0.870 0.840 0.849 0.704 0.852 0.925 0.920
SVM (1:1) 0.855 0.858 0.854 0.858 0.857 0.713 0.856 0.928 0.921
RF (1:1) 0.844 0.886 0.836 0.880 0.864 0.723 0.861 0.932 0.920
ET (1:1) 0.853 0.879 0.849 0.876 0.866 0.729 0.864 0.934 0.928