Table 5.
Methods | Precision | Recall | SP | NPV | F-measure | MCC | Accuracy | AUC | AP |
---|---|---|---|---|---|---|---|---|---|
DNN (1 layer, 1:6) | 0.355 | 0.772 | 0.206 | 0.877 | 0.261 | 0.103 | 0.712 | 0.499 | 0.206 |
DNN (3 layers, 1:6) | 0.350 | 0.255 | 0.921 | 0.881 | 0.295 | 0.202 | 0.826 | 0.483 | 0.221 |
DT (1:6) | 0.584 | 0.588 | 0.930 | 0.931 | 0.586 | 0.517 | 0.881 | 0.759 | 0.616 |
NB (1:6) | 0.456 | 0.697 | 0.861 | 0.945 | 0.551 | 0.473 | 0.837 | 0.877 | 0.615 |
KNN (1:6) | 0.778 | 0.564 | 0.973 | 0.930 | 0.654 | 0.617 | 0.914 | 0.888 | 0.740 |
LR (1:6) | 0.785 | 0.591 | 0.973 | 0.934 | 0.675 | 0.637 | 0.918 | 0.931 | 0.749 |
SVM (1:6) | 0.841 | 0.550 | 0.983 | 0.929 | 0.665 | 0.641 | 0.921 | 0.915 | 0.762 |
RF (1:6) | 0.799 | 0.615 | 0.974 | 0.938 | 0.695 | 0.659 | 0.923 | 0.940 | 0.776 |
ET (1:6) | 0.816 | 0.600 | 0.977 | 0.936 | 0.692 | 0.659 | 0.925 | 0.943 | 0.779 |
DNN (1 layer, 1:1) | 0.652 | 0.504 | 0.568 | 0.591 | 0.607 | 0.157 | 0.578 | 0.603 | 0.640 |
DNN (3 layers, 1:1) | 0.737 | 0.497 | 0.823 | 0.620 | 0.593 | 0.338 | 0.659 | 0.637 | 0.692 |
DT (1:1) | 0.802 | 0.791 | 0.805 | 0.794 | 0.797 | 0.596 | 0.798 | 0.798 | 0.849 |
NB (1:1) | 0.836 | 0.708 | 0.862 | 0.747 | 0.767 | 0.576 | 0.785 | 0.874 | 0.872 |
KNN (1:1) | 0.853 | 0.843 | 0.854 | 0.845 | 0.848 | 0.697 | 0.849 | 0.904 | 0.906 |
LR (1:1) | 0.865 | 0.834 | 0.870 | 0.840 | 0.849 | 0.704 | 0.852 | 0.925 | 0.920 |
SVM (1:1) | 0.855 | 0.858 | 0.854 | 0.858 | 0.857 | 0.713 | 0.856 | 0.928 | 0.921 |
RF (1:1) | 0.844 | 0.886 | 0.836 | 0.880 | 0.864 | 0.723 | 0.861 | 0.932 | 0.920 |
ET (1:1) | 0.853 | 0.879 | 0.849 | 0.876 | 0.866 | 0.729 | 0.864 | 0.934 | 0.928 |