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Abstract: Goat domestication and human selection for valued traits have formed diverse breeds with
characteristic phenotypes. This process led to the fixation of causative genetic variants controlling
breed-specific traits within regions of reduced genetic diversity—so-called “selection signatures”.
We previously reported an analysis of selection signatures based on pooled whole-genome sequencing
data of 20 goat breeds and bezoar goats. In the present study, we reanalyzed the data and focused
on a subset of eight Pakistani goat breeds (Angora, Barbari, Beetal, Dera Din Panah, Kamori, Nachi,
Pahari, Teddy). We identified 749 selection signatures based on reduced heterozygosity in these
breeds. A search for signatures that are shared across large-sized goat breeds revealed that five
medium-to-large-sized Pakistani goat breeds had a common selection signature on chromosome 6
in a region harboring the LCORL gene, which has been shown to modulate height or body size in
several mammalian species. Fine-mapping of the region confirmed that all five goat breeds with the
selection signature were nearly fixed for the same haplotype in a ~191 kb region spanning positions
37,747,447-37,938,449. From the pool sequencing data, we identified a frame-shifting single base
insertion into an isoform-specific exon of LCORL as a potential candidate causal variant mediating the
size-increasing effect. If this preliminary result can be confirmed in independent replication studies,
genotyping of this variant might be used to improve breeding programs and the selection for stature
in goats.

Keywords: Capra hircus; whole-genome sequence; body size; height; stature; QTL; selection signature;
animal breeding; meat production

1. Introduction

There are 25 goat breeds in Pakistan [1] with an estimated population of 76.1 million heads, which
are mostly raised for milk, meat, hair, and hide purposes. Goats produce ~940 thousand tons of milk
annually in Pakistan and ~732 thousand tons of mutton (goat and sheep) [2]. Around 6.8 million people
are involved in small ruminant farming in Pakistan and rearing goats under nomadic, transhumant,
household and sedentary production systems [3]. Genomic selection and proper targeted breeding
policies are considered promising tools for genetic improvement of this valued species. Body size is
an important trait to investigate for the improvement of meat-purpose domestic animals. It is also
marginally associated with milk production [4-6].

Human adult stature and skeletal frame size is controlled by more than 700 genes [7-12].
The LCORL gene encoding ligand-dependent nuclear receptor corepressor-like has been repeatedly
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found to be associated with human height [7-12]. LCORL (previously also called MLR1) is a putative
transcription factor that utilizes a conserved helix-turn-helix motif for DNA binding [13]. There are
several experimentally confirmed human LCORL transcript isoforms that encode vastly different
proteins. Not all of these proteins share the DNA-binding domain, and they also differ in their other
protein domains [14].

Size variation in livestock species is typically controlled by fewer genes with larger effects as
compared to humans [15,16]. The LCORL locus has also been found associated with height and body
size in many domestic animal species, including dogs [17], horses [18-20], pigs [21], and sheep [22,23].

In cattle, the genomic locus is also strongly associated with height and growth-related traits.
However, the functional effect in cattle has been claimed to be mediated by the NCAPG gene, which is
adjacent to LCORL [16,24-27]. Determining which of these two genes is responsible for variability in
height has not been possible because of the close proximity of these genes and the high levels of linkage
disequilibrium among markers in this genome region. Recently, the identification of a missense variant
in bovine LCOR—a gene with very high homology and potentially similar function to LCORL—as
being associated with stature provides some supporting evidence for LCORL as the causative gene [28].

We previously conducted a comprehensive screen for selection signatures in 20 genetically diverse
goat breeds [29]. In the current study, we used this dataset to analyze loci under selection in large-sized
Pakistani goat breeds with the aim of identifying important genes for meat production.

2. Materials and Methods

2.1. Ethics Statement

All goats in this study were privately owned and samples were collected with the consent of their
owners. Extracted DNA from Pakistani goats was sent to Switzerland for downstream sequencing

and genotyping.
2.2. Animal Selection

Eight Pakistani domestic goat breeds selected for this study belong to diverse geographical regions
across Pakistan. Breed averages of the height at withers served as proxies for the size phenotypes
(Table 1). Peripheral blood samples were collected from goats of the selected breeds in EDTA vacutainers
and stored at —20 °C.

Table 1. Phenotypic characteristics of eight goat breeds of Pakistan.

Main Geographic  Population
Breed Name Abbr. WH (cm) BW (ke) Purposes Distribution  Size (2006) ?
Angora ANG 75 47 Meat, hair Punjab NA
Barbari . Punjab,
(Bari) BAR 68 30 Meat, milk Sindh 2306
Beetal BEE NA NA Meat, milk Punjab 4214
Dera Din DDP 81 61.7 Meat, milk, Punjab 1424
Panah hair
Kamori KAM 90 55 Meat, milk Sindh 5294
Nachi Meat, milk, .
(Bikaneri) NAC 71 35 hair Punjab 1135
. . Meat, milk, Punjab,
Pahari (Kajli) PAH 77 67 hair Balochistan NA
Punjab,
Teddy TED 64 33.9 Meat, milk  Azad Jammu 1342

and Kashmir

WH = wither height, BW = body weight; data taken from FAO [http://www.fao.org/dad-is/data]. * Thousand heads.


http://www.fao.org/dad-is/data
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Based on the personal experience of the authors and the recorded average wither height in the
FAO database, Beetal (BEE), Dera Din Panah (DDP), and Kamori (KAM) were arbitrarily classified as
large-sized breeds for this study. Angora (ANG), Barbari (BAR), Nachi (NAC), and Pahari (PAH) goats
were considered medium in size, while Teddy (TED) goats were classified as small. Representative
animals of each breed are shown in Figure 1.

© Nachi Angora Pahari Teddy

Figure 1. Representative animals of eight Pakistani goat breeds.

2.3. DNA Extraction and Identification of Selection Signatures

DNA was extracted from whole blood using TIANamp Genomic DNA Kit (Tiangen Biotech,
Beijing, China) according to the manufacturer’s instructions. Pooled sequencing (pool-seq) and
identification of selection signatures of these samples has been described in detail before [29].

Briefly, pooled heterozygosity scoring statistics were used as described [21,30] to identify the

regions under selection, which was calculated as H, = %, where ), nMaj and }, nMin are

the sums of major and minor alleles for all single-nucleotide polymorphisms (SNPs) in each window.

Then, individual H, values were Z-transformed by ZH), = w, where uH,, is the overall average

heterozygosity, and oH,, is the standard deviation of all windows within each pool. We calculated ZH,
and converted it to —ZH, values in 150-kb sliding windows. In this study, we applied a threshold of
—ZH) > 4 for putative selection signatures. The underlying sequence data are publicly available under
the study accession PRJEB23815 at the European Nucleotide Archive.

2.4. Fine Mapping

A selection window of 150 kb with —ZH,, > 4 was found common in three large and two
medium-sized breeds, but was not present in the small breed group. In order to define the precise
boundaries of the selection signature, we considered all variants in a 375 kb region spanning positions
37,650,001-38,025,000 on chromosome 6. We calculated the frequency of the minor allele at each variant
in each breed pool. The selection signature was then defined as the region in which the five breeds with
the selection signature showed a long consecutive stretch of variants with minor allele frequency < 0.2.

2.5. Gene Analysis

We used the ARS1 goat reference genome assembly [31], accession number: GCF_001704415.1,
as reference for all downstream analyses. Numbering within the goat LCORL gene corresponds to the
NCBI RefSeq accession numbers XM_018049322.1 (mRNA) and XP_017904811.1 (protein).



Genes 2020, 11, 168 4 0f 10

2.6. Sanger Sequencing
Seven LCORL variants were genotyped by direct Sanger sequencing after PCR amplification with
the primers listed in Table 2.

Table 2. Primer sequences to amplify seven LCORL variants. The first amplicon contains two
variable positions.

Primer Name Primer Sequence Product (bp) Amplified Variants
LCORL_1F CTTTCACCCAAGTCAGTGTCA 332 €.3480C>T
LCORL_1R CCCCAGGTTGTGAAACAGAT ¢.3360G>A
LCORL_2F TTGGATGCTTTATACCCTTCTGA 213 ¢.2513A>G
LCORL_2R AAAATCCCCTAAGGC CAAAA
LCORL_3F CATGTTGACTCAGCAATTCCA 226 c.1685A>G
LCORL_3R ACAAATCAT GAAAAGGGTGAAAC
LCORL_4F TGCTGGTGTCAGAGATGGAG 215 c.1298A>G
LCORL_4R CAGGCTTTCAGAGTCCTCGT
LCORL_5F AACAGCAAAGAGAAGCAGCA 495 €.828_829insA
LCORL_5R TCCTTCTGAAGCACTTTCCA
LCORL_6F GGGTTCAGTATAGATCTGAGAGACC 479 ¢.777-4235T>C
LCORL_6R TGGGCAGTGCATTTTAACTTT

The resulting amplicons were sequenced on an ABI 3730 DNA Analyzer after treating with
exonuclease I and alkaline phosphatase. Finally, the obtained Sanger sequences were analyzed using
the Sequencher 5.1 software (GeneCodes, Ann Arbor, MI, USA).

2.7. Association Analysis

We performed an allelic association study in 74 goats (Table S1) using the genotypes at the seven
genotyped variants in a case-control design and the PLINK 1.07 software [32]. We considered goats
from BAR (n = 8), BEE (n = 12), DDP (n = 12), KAM (1 = 13), and NAC (n = 12) as cases and goats from
ANG (n =6), PAH (n =5), and TED (n = 6) as controls (Table S1).

3. Results

3.1. Selection Signatures in Large-Sized Goats

Our pool-seq dataset comprised eight Pakistani goat breeds [28]. Each breed pool was composed
of 12 animals except Angora, for which only 10 animals were contained in the pool. Pools were
sequenced to 30x coverage and sequence data mapped to the ARS1 goat reference genome. On average
~12.7 million single nucleotide variants (SNVs) were observed in each breed from Pakistan as compared
to ~11.7 million SNVs in Swiss goat breeds [29].

In the Pakistani goat breeds we identified a total of 2064 windows with —ZH), > 4. After merging
overlapping windows, this resulted in 749 putative selection signatures in the eight studied breeds
(Table 3, Table S2).

In order to identify selection signatures related to body size, we searched for signatures that
were shared between all three large-sized goat breeds in the study (BEE, DDP, KAM). This identified
18 common selection signatures in these breeds (Figure 2; Table S3).

One of these shared selection signatures was located on chromosome 6 at ~38 Mb and contained
the LCORL gene, which has been shown to be associated with size in many species. Interestingly, two
of the medium-sized breeds, BAR and NAC, also had this selection signature harboring the LCORL
gene. Inspection of the pool-seq data revealed that all five breeds shared the same major haplotype in
this region. This prompted us to hypothesize that a size-increasing allele caused by the same genetic
variant and identical by descent (IBD) is under selection in the BAR, BEE, DDP, KAM, and NAC
goat breeds.
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Table 3. Selection signatures in the Pakistani goat breeds.

50f 10

Animals per Windows under Selection Genes in Selection
Breed . . .
Pool Selection Signatures Signatures
ANG 10 140 61 144
BAR 12 95 51 109
BEE 12 126 58 142
DDP 12 132 66 178
KAM 12 1244 341 889
NAC 12 130 79 137
PAH 12 61 44 92
TED 12 136 49 120
Total 2064 749 1811
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Figure 2. Manhattan plots illustrating the observed selection signatures in eight Pakistani goat breeds.
Red triangles indicate 18 selection signatures that are shared between three breeds of large-sized goats
(BEE, DDP, KAM). Selection signatures that harbor genes known to be related to height or body size in
other species are indicated.

3.2. Fine-Mapping of the LCORL Selection Signature

The window with the highest —ZH), score spanned positions 37.80-37.95 Mb in all five breed-pools.
In order to precisely define the boundaries of the selection signature, we also considered adjacent regions
with slightly elevated —ZH,, scores and initially examined a 375-kb region spanning 37.600-38.025 Mb.
Our dataset with all eight breed pools contained 1469 SNVs in this interval. We counted the minor
and major alleles for each of these variants in each breed pool (Table S4). A consecutive stretch of
156 variants showed reduced variation with minor allele frequencies of less than 0.2 in the five breeds
with the selection signature. The five breeds under selection were nearly fixed for a shared 191-kb
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haplotype ranging from 37,747,447 to 37,938,449 (Figure 3A; Table 54). We considered this as the critical
interval harboring the hypothetical size-increasing genetic variant.
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Figure 3. (A) Pooled heterozygosity (Hp) distribution at the LCORL locus on chromosome 6 in five
medium/large-sized Pakistani goat breeds (black dots) and three small/medium breeds (grey dots).
A ~191 kb region from 37,747,447 to 37,938,449 showed greatly reduced heterozygosity in the breeds
with the selection signature. (B) The gene annotation for the selection signature is illustrated (NCBI
annotation release 102). The genomic locations of seven genotyped variants in the LCORL gene are
indicated in red (putative frameshift variant), orange (putative missense variants), or blue (silent or
non-coding variants).

3.3. Search for Candidate Causative Variants

The critical interval at this selection signature contained four protein-coding genes (FAM184B,
DCAF16, NCAPG, LCORL) and one gene for a non-coding RNA (LOC106502187; Figure 3B). Visual
inspection of the short read alignments did not reveal any structural variants that were private to the five
breed pools with the selected haplotype. Based on literature data in other mammalian species [16-24],
we considered LCORL the most likely functional candidate gene for size. We selected six SNVs and a
single base insertion that were located in potential exons of the LCORL gene and genotyped them on
74 individual goats. We calculated the association to the phenotype and observed the most significant
association for LCORL:c.828_829insA (Table 4). The insertion allele had a frequency of 0.95 in the five
breeds with the selection signature vs. 0.35 in three goat breeds that are not specifically selected for size.
This variant introduces a frameshift in three of the five annotated transcripts. On the longest protein
isoforms, the single-base insertion, is predicted to result in the truncation of more than 85% of the open
reading frame. The formal variant designation on the protein level is XP_017904811.1:p.(Ser277Ilefs*38).
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Table 4. Genotype phenotype association of selected SNVs in the LCORL gene.

Alternative Alternative
Che. Position  CDNAVariant  ProteinVariant  AGR RIS SRS RS
: osttio XM_018049322.1  XP_017904811.1 eecs eeds withou p-vatue
the Selection the Selection
Signature ? Signature P
6 37,925,990 €.3480C>T p= 0.05 0.26 3.0x107%4
6 37,926,110 €.3360G>A p.= 0.93 0.35 21x10713
6 37,926,957 ¢.2513A>G p-His838Arg 1.00 1.00 NA
6 37,927,785 c.1685A>G p-Asn562Ser 0.01 0.26 1.8x107%7
6 37,928,172 c.1298A>G p-Tyr433Cys 0.96 0.53 39x10710
6 37,928,645 .828_829insA p-Ser2771lefs*38 0.95 0.35 8.0x10715
) e
6 37,932,008 c777-4235T>C  ntronic/3-UTR of 0.01 0.09 1.0 x 10792

short isoform
a BAR, BEE, DDP, KAM; NAC, P ANG, PAH, TED.

4. Discussion

We investigated selection signatures potentially related to body size due to the prime importance
of this trait in the highly meat consuming society of Pakistan, which is influenced by religious and other
personal choices as well as economic needs for marginal farmers in low-income countries [2,33-35].
Several Pakistani goat breeds have already been genotyped under the AdaptMap project for exploring
goat diversity (e.g., local adaption and coat color genetics) [36-38], but to our knowledge the trait of
skeletal frame size and adult height has not been addressed before.

Our comprehensive study identified 749 selection signatures in Pakistani goat breeds. We
observed many selection signatures harboring genes that influence height or body size in other species,
thereby validating our experimental approach. Examples include the WARS2 gene, which is under
selection in BAR, BEE, DDP, KAM, and NAC and associated with body fat distribution in humans [39],
or ADAMTS6, which is under selection in BEE, DDP, KAM, and NAC and associated with bone length
in mice [40].

The LCORL locus has previously been found to be associated with height in at least six mammalian
species [16-27]. It is therefore not surprising that this locus is apparently also under selection in several
medium-to-large-sized Pakistani goat breeds. However, it should be noted that this region does not
show any evidence of selection in any of the previously studied Swiss goat breeds [29]. While there
is accumulating evidence that genetic variation at the LCORL locus is involved in the determination
of height and body size in diverse mammalian species, the molecular mechanism remains elusive.
The strongest associations are frequently seen within a region harboring DCAF16, NCAPG, and the
3’—end of the LCORL gene. The in vivo function of the LCORL gene is not fully understood. LCORL
encodes several different transcript isoforms, which mostly differ by the alternative use of at least four
different exons at the 3’-end of the gene. One of them is almost 5 kb in length and predicted to encode
more than 1600 amino acids. A single-base insertion, XM_022416410.1:¢.3661_3662_insA, in this giant
exon has been postulated to increase size in dogs [17].

In our study, another frame-shifting single-base-insertion variant in this exon showed the strongest
differentiation between large and small breeds. It is intriguing that two independent single-base
insertions into homologous exons in dogs and goats are associated with large body size. Unfortunately,
there is no available functional confirmation for the causality of the insertion in dogs [17], and we did
not perform any attempts to analyze the functional mechanism by which this LCORL variant might lead
to an increase in body size. Nonetheless, in light of the parallels between dogs and goats, it is tempting
to speculate that LCORL:c.828_829insA might be the true causative variant for a size-increasing QTL
in Pakistani goats. Unfortunately, our study relying on breed-average phenotypes cannot provide
conclusive proof for this hypothesis. Further studies are required to confirm this preliminary finding.
As some medium-sized goat breeds are apparently not fixed at the LCORL locus, the next logical step
will be a within-breed association study correlating individually measured height phenotypes with
the genotypes at ¢.828_829insA in a breed that segregates both alleles. We must also caution that our
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analysis exclusively focused on the LCORL gene and that we cannot exclude an additional functional
effect by any of the other three genes in the selection signature.

To the best of our knowledge, this is one of the first studies to report body-size-related selection
signatures in different Pakistani goat breeds. The provided pooled heterozygosity statistics may also
be used to investigate other breed-specific selection signatures and traits. This should help to enable
more efficient breeding strategies.

5. Conclusions

A total of 749 selection signatures were observed in Pakistani goat breeds using pooled
heterozygosity statistics. One selection signature harbored the LCORL gene and was observed
in three large-sized and two medium-sized breeds. Detailed analysis of the LCORL selection signature
suggested that the effect may be mediated by a frame-shifting single base insertion into the giant
exon encoding parts of the long LCORL protein isoforms. However, this preliminary finding requires
additional confirmation before the causality of this particular variant should be considered proven.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/2/168/s1,
Table S1. Genotypes of 74 goats for association study. Table S2. Selection signatures per breed pool. Table S3.
Significant windows in three large-sized Pakistani goat breeds (BEE, DDP, and KAM). Table S4. Alternative allele
frequency at 1469 SNVs in large and small breeds.
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