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Abstract

Diffusion weighted MRI (DWMRI) and the myriad of analysis approaches (from tensors to 

spherical harmonics and brain tractography to body multi-compartment models) depend on 

accurate quantification of the apparent diffusion coefficient (ADC). Signal drift during imaging 

(e.g., due to b0 drift associated with heating) can cause systematic non-linearities that manifest as 

ADC changes if not corrected. Herein, we present a case study on two phantoms on one scanner. 

Different scan protocols exhibit different degrees of drift during similar scans and may be sensitive 

to the order of scans within an exam. Vos et al. recently reviewed the effects of signal drift in 

DWMRI acquisitions and proposed a temporal model for correction. We propose a novel spatial-

temporal model to correct for higher order aspects of the signal drift and derive a statistically 

robust variant. We evaluate the Vos model and propose a method using two phantoms that mimic 

the ADC of the relevant brain tissue (0.36-2.2 x 10-3 mm2/s) on a single 3T scanner. The 

phantoms are (1) a spherical isotropic sphere consisting of a single concentration of 

polyvinylpyrrolidone (PVP) and (2) an ice-water phantom with 13 vials of varying PVP 

concentrations. To characterize the impact of interspersed minimally weighted volumes (“b0’s”), 

image volumes with b-value equal to 0.1 s/mm2 are interspersed every 8, 16, 32, 48, and 96 

diffusion weighted volumes in different trials. Signal drift is found to have spatially varying effects 

that are not accounted for with temporal-only models. The novel model captures drift more 

accurately (i.e., reduces the overall change per-voxel over the course of a scan) and results in more 

consistent ADC metrics.
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Introduction

Diffusion weighted magnetic resonance imaging (DWMRI) enables non-invasive mapping 

of in vivo neural fiber architecture [1, 2]. It also provides important, albeit non-specific, 

markers for low anisotropy [3, 4] which may be indicative of the microstructure given a 
priori knowledge of the architecture of the pathway of interest [5, 6]. Quantitative accuracy 

of DWMRI derived metrics across scan sessions, scanners, and scanner manufacturers is 

critically important for broader application of DWMRI-derived metrics in the clinical 

setting, and substantial efforts have sought to map intra-[7, 8] and inter-[9]scanner 

variability while harmonizing DWMRI acquisitions and subsequent analyses [10, 11]. 

Recently, MRI scanner temporal instability has been shown to introduce systematic 

nonlinearities that can substantively impact observed apparent diffusion coefficients (ADCs) 

in a directionally dependent manner [12, 13], but fortunately these effects can be quantified 

and compensated through relatively standard modifications to traditional DWMRI protocols.

Vos et al. recently explored the effects of temporal instability in the scanner system on 

DWMRI data [14] and found that the effects were characterized as a decrease in global 

signal intensity. They proposed a temporal non-linearity model on a region of interest (ROI) 

basis and fit this model by relying on interspersing b0 images in the scan acquisitions. With 

those data, they were able to interpolate the mean signal of the defined ROI (the entire brain 

or phantom) to the temporal locations of the diffusion weighted scans and apply a correction 

to the unobserved reference signal that would have been temporally collocated. Moreover, 

Vos et al. show that the effect of temporal instability is present on scanners from multiple 

vendors [14].

To empirically illustrate this effect, Figures 1 and 2 show the resulting normalized signal and 

variance in the normalized signal in three selected ROIs in an ice-water phantom with 13 

vials of varying PVP concentrations and a spherical isotropic sphere consisting of a single 

concentration of polyvinylpyrrolidone (PVP) respectively. The plots show the normalized 

signal across each volume corresponding to the 96 gradient directions acquired in 10 

sequential scans for each phantom. The acquisition parameters are described in the next 

section. We observe that the variance in ADC is spatially dependent, which indicates that the 

signal drift occurs at different rates and even with different signs between ROIs. Moreover, 

the magnitude of the signal drift seems to decrease as time progressed in the session. This 

complex pattern in the signal drift requires a more complex correction that includes the 

spatial characteristics of the drift.

To account for these effects, we proposed two key modifications. First, we generalize the 

ROI-temporal model to operate on a voxelwise basis to provide for a higher degree of spatial 

specificity in the correction while alleviating the need for external context information (i.e., 

the specification of ROI’s). Second, we propose a data-efficient model to capture the 

interaction effects between spatial and temporal nonlinearities. Herein, we combine these 
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ideas to present a novel temporal-spatial model (TS) that accounts for the temporal 

instability of the scanner and spatial variation in the signal drift. We compare the new 

approach to uncorrected data, the temporal model (T) as proposed by Vos et al. [14], and a 

custom generalization of the Vos et al. that models nonlinearities on a voxelwise basis. The 

novel method yields greater improvement in error than the alternative approaches. This work 

highlights the need to capture interleaved b0 data in DWMRI and provides an effective 

model to capture patterns of signal drift within a scan while yielding more accurate 

estimation of directional ADC.

Data and Methods

Acquisition

Figure 3 outlines the process for acquisition and processing. Images are acquired on a 

Philips 3T MRI system. For both the ice-water phantom and the PVP phantom, 10 scans 

were acquired in a single session with 96 gradient directions at a b-value of 2000 s/mm2 and 

with a variable number of minimally weighted volumes of b=0.1 s/mm2 interspersed 

throughout the scans. The acquisition parameters for all scans are as follows: b-value of 

2000 s/mm2, interspersed b-value of 0.1 s/mm2, TR of 8394 ms, TE of 70 ms, SENSE 

acceleration of 2.5, slice thickness of 2.5 mm, and in-plane pixel dimensions of 2.5 mm. The 

number of these minimally weighted volumes was decreased every two scans giving a pair 

of scans of opposite phase encoded directions (left phase encoding and right phase 

encoding) with 13, 7, 4, 3, and 2 minimally weighted volumes at the beginning, end, and 

interspersed among the 96 directions in that chronological order.

Preprocessing

Each pair of scans with opposite phase encodings and the same b-value was concatenated for 

preprocessing which consisted of topup for susceptibility distortion correction [15] and eddy 

current correction [16]. Within each scan, relative signal intensity images were computed by 

normalizing the diffusion weighted volumes by the first minimally weighted volume (“b0”) 

of the scan. Note that subsequent analyses were performed with additional b0-correction as 

described below. Next, each scan was registered to the T1 structural MRI of the phantom. 

The structural MRI’s were manually labeled using custom scripts in MATLAB (Mathworks, 

Natick, MA). For the ice-water phantom, the 13 ROIs correspond to the 13 vials of varying 

PVP concentrations. The spherical PVP phantom is simply filled with PVP at one 

concentration, and three spherical ROIs were defined within it to visually correspond to 

different regions as shown in Figure 2.

Signal drift correction

Each of the following correction methods was independently applied to each of the 

acquisitions, which resulted in five different output 4-D volumes for each scan: uncorrected 

images, images corrected using the Vos et al temporal model (T), images corrected using the 

Vos et al temporal model generalized to voxels (Tx), and images corrected using the 

temporal/spatial model (TS).

Method 1: Uncorrected.—No additional was processing was performed.
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Method 2: Vos et al Temporal Model (T)—The model defined by Vos et al. estimates a 

global signal decrease with a linear or quadratic fit through the mean signal intensities of the 

interspersed b0 images within a region of interest. Figure 2 illustrates that the observed drift 

is non-linear, and so the linear model would not suffice. However, we apply a linear model 

when the number of b0 images is less than 3. The linear and quadratic models are defined 

for the ROI using the b0 volumes among the scanned images by:

S(n) = dn + s0 (1)

and

S(n) = d2n2 + d1n + s0 (2)

respectively where n is the index of the volume; S (n) is the mean signal within the b0 image 

at time index n for the ROI; d, d1, and d2 are the modeled signal drift coefficients; and s0 is 

the signal offset at the b0 image where n = 0. After the linear fitting of s0, d1, and d2, a 

rescaling factor is used to correct each ROI:

S n = S n 100
dn + s0

(3)

and

S n = S n 100
d2n2 + d1n + s0

(4)

where SJ(n) is the corrected signal intensity in the image normalized to 100 for quadratic 

corrections [14]. The linear model (Eq. 3) was applied when three or fewer b0’s were 

acquired, while quadratic model was applied when more b0’s were available.

Method 3: Vos et al. Generalized to Voxels (Tx)—The Vos model was modified to fit 

the signal time course to each voxel allowing free form spatial correction. In this case a 

single mask is provided which denotes voxels that are in any of the ROIs. The linear and 

quadratic models then become:

V X, n = dXn + v0, X (5)

and

V X, n = d1, Xn2 + d2, Xn + v0, X (6)

where V(X, n) is the signal intensity of the voxel at the xyz-coordinate in the image; X is the 

vector that specifies the xyz-coordinate; dX, d1,X, and d2,X are the modeled signal drift 

coefficients; and v0,X is the signal offset for the voxel in the b0 image where n =0. The 

rescaling becomes:
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V X, n = V X, n 100
dXn + v0, X

(7)

and

V X, n = V X, n 100
d1, Xn2 + d2, Xn + v0, X

(8)

where V(X, n) is the uncorrected intensity for the voxel at the xyz-coordinate in image n, 

and V (X, n) corrected signal intensity for that voxel.

Method 4: Temporal/Spatial Model (TS)—We propose a new temporal/spatial (TS) 

model to take into account the temporal effects in the Vos model (e.g., Eq. 5–8), the spatial 

effects (e.g., as captured by the v0,X terms), and their interactions. The degrees of freedom in 

a model that allows for voxel-wise variations in the interaction between temporal and spatial 

effects would quickly become untenable. Rather, we propose to use a second order 

Chebyshev polynomial decomposition of the spatial effects, while interacting with a 

polynomial expansion of temporal effects (as in Eq. 5 and 6). In the linear TS model, the 

basis functions are:

BT X, n = d1n (9)

BTSv X, n = v0, x d2x + d3y + d4z + d5xy + d6xz + d7yz + d8xyz (10)

BTSn X, n = n d9x + d10y + d11z + d12xy + d13xz + d14yz + d15xyz (11)

and the combined linear TS model is:

V X, n = BT X, n + BTSv X, n + BTSn X, n + v0, X (12)

For the quadratic model, the basis functions are:

BT X, n = d1n2 + d2n (13)

BTSv X, n = v0, X d3x + d4y + d5z + d6xy + d7xz + d8yz + d9xyz + d10x2

+ d11y2 + d12z2 + d13xy2 + d14xz2 + d15xy2z + d16xyz2 + d17xy2z2 + d18x2y
+ d19x2z + d20x2yz + d21x2y2 + d22x2z2 + d23x2y2z + d24x2yz2 + d25x2y2z2

+ d26y2z + d27yz2 + d28y2z2

(14)
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BTSn X, n = n d29x + d30y + d31z + d32xy + d33xz + d34yz + d35xyz + d36x2

+ d37y2 + d38z2 + d39xy2 + d40xz2 + d41xy2z + d42xyz2 + d43xy2z2 + d44x2y
+ d45x2z + d46x2yz + d47x2y2 + d48x2z2 + d49x2y2z + d50x2yz2 + d51x2y2z2

+ d52y2z + d53yz2 + d54y2z2

(15)

BTSn2 X, n = n2 d55x + d56y + d57z + d58xy + d59xz + d60yz + d61xyz
+ d62x2 + d63y2 + d64z2 + d65xy2 + d66xz2 + d67xy2z + d68xyz2 + d69xy2z2

+ d70x2y + d71x2z + d72x2yz + d73x2y2 + d74x2z2 + d75x2y2z + d76x2yz2

+ d77x2y2z2 + d78y2z + d79yz2 + d80y2z2

(16)

and the combined quadratic TS model is:

V X, n = BT X, n + BTSv X, n + BTSn X, n + BTSn2 X, n + v0, X (17)

where BT(X, n) has the same temporal components as T, and BTSv(X, n), BTSn(X, n), and 

BTSn2 (X, n) are the spatial-temporal components of the model that come from the cross 

product of three second order Chebyshev polynomials, each dealing with either the x, y, or z 

coordinate of the voxel. The rescaling in this method is defined by:

V X, n = V X, n 100
BT X, n + BTSv X, n + BTSn X, n + v0, X

(18)

and

V X, n = V X, n 100
BT X, n + BTSv X, n + BTSn X, n + BTSn2 X, n + v0, X

(19)

To better account for outliers, all coefficients were estimated using robust bi-square 

regression [17].

Analysis

For the analysis of the methods, values were calculated in terms of signal intensity and 

ADC. For the ice-water phantom, ROIs corresponding to three vials of different PVP 

concentrations and spatial locations were chosen and are denoted by the ROI numbers 3, 7, 

and 11 as shown in Figure 1. As for the spherical PVP phantom, the three ROIs selected 

correspond to the spherical ROIs as shown in Figure 2. For each diffusion volume in the 10 

scans and for each method, the mean signal intensity and mean ADC was calculated for each 

ROI. The measurement of error within each ROI for every scan was calculated as the 

standard deviation of a third-degree polynomial fit to the mean ADC over the course of the 

scan. This metric quantifies the amount of residual drift across time. It also captures the 

variation from the isotropic properties of each ROI while ignoring the signal-to-noise ratio 

(SNR) variation between ROIs especially those of different PVP concentrations in the ice-

water phantom. For the analysis of the number of b0 images needed, the same measurement 

of error is used, but only TS corrected images are used. The scans corrected using fewer than 

13 interspersed b0 images for this analysis were artificially created by removing b0 images 
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from both of the first two scans (those with 13 b0 images). To analyze the statistical 

difference between all methods, the ADC for all voxels in all scans in a valid ROI were 

considered for each method in a Wilcoxon rank sum test. In this way a p-value was 

generated for each pairing of methods.

Results

For both phantoms, the signal drift in ROIs of higher variance as seen in Figures 1 and 2 

reached and sometimes surpassed 10% over the course of a scan without any correction. 

Correcting for the global signal drift as in T does result in improvement over the uncorrected 

method in most ROIs. However, without accounting for the different and rates of the drift, 

the method does not reduce the error in all ROIs. Tx and TS show similar performances with 

small differences.

The mean normalized signal intensity and the corresponding standard deviation across the 

entire session (all ten scans) is reported in Figure 4 and Figure 5 for the ice-water and PVP 

phantoms respectively. In both phantoms, Tx and TS have similar signal intensities. In the 

ice-water phantom the uncorrected method and T show a small difference. T performs more 

closely to Tx and TS for the PVP phantom.

In Figure 6, the standard deviation of a third-degree polynomial fit to the mean ADC across 

diffusion volumes is reported for each method just as Figure 7 reports the same for the PVP 

phantom. The results for the ice-water phantom show the obvious shortcoming of correcting 

for the global signal drift. When a scan’s error is particularly large with no correction, Tx 

and TS outperform T, and in some cases when the ROI does not follow the global signal 

drift, T does worse than the uncorrected method whereas Tx and TS reduce the error. Figure 

6 also shows the effects of leaving out b0 images from the first two scans (those with 13 

interspersed b0s) and applying signal drift correction using TS. At the point where fewer 

than four b0 images are used, the linear model is used and is shown to be less stable in the 

two ROIs shown to have a higher variance in Figure 1.

Figure 7 shows similar results for the PVP phantom. The signal drift in the ROIs in this 

phantom agree with the direction of the global signal drift, but the rates at which the signal 

drift occurs within the ROIs varies. As a result, the errors in T and Tx and TS are not as 

significantly different—see for example ROI 7 (middle row) in Figure 6. The central ROI 

(ROI 2) agrees closely with the global signal drift, but the outer two ROIs show 

improvement when using Tx or TS as the spatial information becomes more necessary. In 

the right column in Figure 7, the effects of leaving out b0 images from the two scans that 

initially had 13 b0 images shows different results for the scan with right phase encoding. 

The scan with a left phase encoding direction shows an upward trend in error as fewer b0 

images are used in all ROIs, but the scan with right phase encoding does not show a 

significant change (see Table 2 for all significance levels).

It can be seen from Figures 6 and 7 that even the scans with errors corresponding to a 10% 

difference in ADC due to drift can be corrected to error levels corresponding to a difference 

of less than 5%. Though methods Tx and TS perform very similarly in terms of error, it 
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should be noted that the parameter space needed for fitting the Tx model is far greater than 

that of TS. Tx requires two parameters per voxel for the quadratic model while TS only 

requires a total of 81 parameters.

Discussion

Though Vos et al. most recently explored the signal drift caused by temporal instability of 

scanner systems in DWMRI, signal drift has been an issue in imaging systems that many 

have attempted to address. In functional magnetic resonance imaging, the effects of signal 

drift have been observed resulting in a few different methods for correction [18]. Gram-

Schmidt orthogonalization [19] and high-pass filtering [20] have been used to eliminate 

signal drift, but other methods are very similar to Tx in that they model the temporal drift in 

a voxelwise manner using either a polynomial [21], a spline [22], or a wavelet [23]. Another 

method assumes that all voxels follow the trend of the global signal much like T and 

removes the global signal drift from each voxel [24]. However, we have seen that the 

assumption of a global trend does not always hold. As mentioned by Vos et al., most of these 

methods are fMRI specific as the drift is included as a confounding factor [14], but the 

premises can be adapted to DWMRI. Correction on an ROI basis is restricted by the defined 

ROIs, and therefore is not a commonly used method. TS is unique in that it models the 

spatial variation in the temporal drift where Tx allows the temporal models to be spatially 

independent and freely formed within a voxel.

It can be noted in Figure 6 that the error drops in the rlr phase encoded scan in the first ROI 

as two interspersed b0s are used instead of three, but the error is still higher than when using 

four or more b0s. Also, in Figure 7, the rlr phase encoded scans do not seem to have a 

particular trend as fewer b0s are used for correction. However, compared to the rll phase 

encoded scans denoted by 13L in the left column of Figure 7, the correction methods did not 

have as significant of an effect in the upper and lower ROIs for the rlr phase encoded scans 

denoted by 13R. We would expect if the resulting error is significantly reduced using all b0s 

available to the correction method then the error would have an upward trend as fewer b0s 

are used.

We find that we can correct even rather severe signal drift produced in an imaging situation 

intended to highlight the effects of the drift (e.g., isotropic phantoms with a large number of 

diffusion weighted volumes). Yet, to perform this correction a b0 is acquired at least every 

32 volumes (or a minimum of 4 b0 volumes to support robust fitting of quadratic temporal 

models). For pragmatic technical reasons on the Philips systems, we use low (<5 s/mm2), 

but non-zero, diffusion sensitized volumes to enable repeated b0’s interleaved with volumes 

of higher diffusion weighting. Given the variable degree of signal drift observed within an 

imaging session and across similar phantoms, we strongly advocate for self-correction of 

individual datasets through interspersed b0’s. Fortunately, these data can be acquired without 

time penalty as standard practice is already to acquire b0’s in an approximate ratio of 8:1. 

All data have been made available via a SVN repository at: http://www.nitrc.org/scm/?

group_id=1282.
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Figure 1. 
Empirical characterization of drift in the ice water phantom. This plot presents the variance 

in the ice water phantom in 10 different scans over the course of the session (1st and 4th row) 

and normalized signal intensity within three ROIs (indicated in the top left plot). The top 

four rows represent the first five scans in the series with the bottom four representing the last 

five scans. Note that areas of high variance in the top plot row correspond to ROI’s that have 

greater drift and require more substantial calibration. Of concern, observe that different 

ROI’s within same scan are drifting with opposite signs, hence spatial correction of the 
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signal drift is required. Furthermore, over the course of the session, the pattern of drift 

changes with time and with region. This complex drift pattern is motivation for the proposed 

spatial-temporal drift correction model, TS.
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Figure 2. 
Empirical characterization of drift in the PVP phantom. This plot presents the variance in the 

PVP phantom in 10 different scans over the course of one session (1st and 4th row) and the 

normalized signal intensity within three ROI’s (indicated in the top left plot). The top four 

rows represent the first five scans in the series with the bottom four representing the last five 

scans. Observe the structural patterns in variance map that appear to correspond to parallel 

imaging artifacts. As with the ice water phantom (Figure 1), different ROI’s within same 
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scan are drifting at different rates, and spatial correction is required. Similarly, the pattern of 

drift changes with time and with region.
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Figure 3. 
This shows our process from acquisition to correction. From the left, the acquisition 

parameters are shown, then the preprocessing pipeline, and finally the three different outputs 

resulting from the three different methods.
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Figure 4 . 
This plot represents the mean signal across the 10 scans in the session for the ice-water 

phantom for each method. Each line also has a shaded area representing the standard 

deviation among those scans at each volume number. Each plot represents one of the three 

selected ROIs from Figure 1. From top to bottom those ROIs are 3, 7, and 11. In ROI 3 there 

is no difference between the methods, but in the ROIs that show higher variance in Figure 1, 

the uncorrected method and T deviate from Tx and TS.
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Figure 5. 
This plot represents the mean signal across the 10 scans in the session for the PVP phantom 

for each method. Each line also has a shaded area representing the standard deviation among 

those scans at each volume number. Each plot represents one of the three selected ROIs from 

Figure 1. From top to bottom those ROIs are 1, 2, and 3. In all 3 ROIs there is a noticeable 

difference between the uncorrected method and the correction methods. In ROI 1 and 3 there 

is also a slight difference between T and methods Tx and TS.
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Figure 6. 
This plot presents the average error in ADC (standard deviation in a 3rd degree polynomial 

fit to the mean ADC of an ROI over the course of a scan) after correction for each of the five 

methods for 10 consecutive sessions using the ice water phantom with varying numbers of 

interspersed minimally weighted (“b0”) volumes (labeled in the x-axis). The appended letter 

of the x-axis label indicates the phase encoding direction (L = rll R= rlr). The three rows 

correspond to the three ROI’s in Figure 1, as indicated. The left column presents a 

comparison of the five methods. In the low variance ROI (first row), overall errors are small 

and little difference is observed between methods. In the two ROIs of higher variance, Tx, 

and TS outperform T for all scans. Note that in some scans, the uncorrected method out 

performs the T corrected scans. The right column studies simulated rate of b0 volumes by 

dropping out the b0s from the first two scans. Observe that with at least 4 b0s, the model 

errors are stable and low, which is intuitive as a second degree model is fit for #b0s>3 and a 

first degree model is fit for #b0<=3.
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Figure 7. 
This plot presents the error in ADC (standard deviation in a 3rd degree polynomial fit to the 

mean ADC of an ROI over the course of a scan) after correction for each of the five methods 

for 10 consecutive sessions using the PVP phantom with varying numbers of interspersed 

minimally weighted (“b0”) volumes (labeled in the x-axis). The appended letter of the x-axis 

label indicates the phase shift direction (L = rll R= rlr). The three rows correspond to the 

three ROI’s in Figure 1, as indicated. The left column presents a comparison for the five 

methods. In the middle ROI (second row) T, Tx, and TS show very similar performance as 

the drift in the center ROI is similar to the average drift across all ROIs. In the outer two 

ROIs (especially row 3) Tx and TS shows significant improvements over T. The right 

column studies simulated rate of b0 volumes by dropping out the b0s from the first two 

scans. Observe that with at least 4 b0s, the model errors are stable and low, which is intuitive 

as a second degree model is fit for #b0s>3 and a first degree model is fit for #b0<=3.
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Table 1

For each method and for each phantom the median of the errors from all ROIs indicated in Figures 1 and 2 is 

reported here along with the inter quartile range (IQR) of the errors. Additionally symbols have been placed 

next to the median values to indicate the rejection of the hypothesis that the method is equivalent to 

Uncorrected (*), T (†), or Tx (‡). The hypotheses were evaluated at a significance level of 5% using the 

Wilcoxon rank sum statistical test. Here we see that TS has a lower median error, but Tx shows the lowest 

IQR.

Method Ice-water Med. Error IQR PVP Med. Error IQR

x 10−5 x 10−5 x 10−5 x 10−5

Uncorrected 0.35 0.35 0.85 0.76

T 0.29 * 0.37 0.51 * 0.23

Tx 0.16 * 0.05 0.35 *† 0.23

TS 0.16 *†‡ 0.10 0.28 *†‡ 0.29
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