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Abstract: Carbon nanotubes (CNTs) have been extensively studied as one of the most interesting
nanomaterials for over 25 years because they exhibit excellent mechanical, electrical, thermal, optical,
and electrical properties. In the past decade, the number of publications and patents on cellulose and
nanocellulose (NC) increased tenfold. Research on NC with excellent mechanical properties, flexibility,
and transparency is accelerating due to the growing environmental problems surrounding us such as
CO2 emissions, the accumulation of large amounts of plastic, and the depletion of energy resources
such as oil. Research on mixed materials of cellulose, NC, and CNTs has been expanding because
these materials exhibit various characteristics that can be controlled by varying the combination
of cellulose, NC to CNTs while also being biodegradable and recyclable. An understanding of
these mixed materials is required because these characteristics are diverse and are expected to solve
various environmental problems. Thus far, many review papers on cellulose, NC or CNTs have been
published. Although guidance for the suitable application of these mixed materials is necessary,
there are few reviews summarizing them. Therefore, this review introduces the application and
feature on mixed materials of cellulose, NC and CNTs.
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1. Introduction

The environment around us is currently suffering from various problems such as CO2 emissions,
the accumulation of large amounts of plastic, health damage due to air pollution, and the depletion
of energy resources such as oil. In order to solve these problems, there is an increasing need for
innovative recyclable materials, energy-saving materials, reinforcing materials, bio and chemical
sensing materials, and portable electronic paper materials. Mixed materials of cellulose, nanocellulose
(NC) and carbon nanotubes (CNTs) have great potential for such applications because these mixed
materials can be adjusted to have various functions and structures due to the combination of cellulose
and CNTs. However, there are various challenges in terms of the effectiveness, evaluation, appropriate
use, production methods and cost for dissemination of these applications. Although guidance on the
appropriate application and research of these mixed materials is necessary, there are currently few
reviews summarizing them in a simple manner. Therefore, this review paper introduces the various
applications and future prospects of mixed materials of cellulose and CNTs.

Many applications of CNTs have been examined, as they are one of the representative nanomaterials
produced since the discovery of CNTs by Iijima in 1991 [1]. Over 25 years, many research and
review papers have been actively published [2–17]. However, the application and commercialization
of CNT-based products have been limited to luxury and expensive products [2,3] because the
manufacturing process is complicated and high in cost [17–19]. This is mainly because CNTs easily
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aggregate in water. Aggregation not only causes a reduction in surface area and mechanical properties,
but also causes the deterioration of various functions such as the optical and electrical properties. Thus,
dispersion technology is important for the practical application of CNTs in a wide range of products,
and various studies have been conducted to address this issue [10–12]. On the other hand, cellulose
and NC, the main component of plant cell walls, wood is widely used and is the most abundant and
renewable natural polymer on the earth. NC made from herbs, plants, wood, and organisms has been
attracting attention because of its excellent features such as high strength, low thermal expansion,
high aspect ratio, and light weight. In the last decade, many basic and applied research and review
papers on cellulose and NC have been published [20–30], and many researchers have recognized the
characteristics and application potential of them. The number of publications and patents related to
cellulose and NC per year increased from 208 in 2009 to 2,372 in 2018 [30].

Recently, studies on mixed materials of cellulose, NC and CNTs have been actively conducted.
In order to demonstrate the characteristics of these mixed materials and apply them appropriately, it is
necessary to understand the characteristics of NC and CNTs themselves. The goal of this review is
to provide a comprehensive understanding of the excellent individual properties of NC and CNTs,
and the superior functions and applications that are possible when they are mixed. These mixed
materials introduced in this paper include composites and hybrid materials. A composite represents
a material in which the characteristics of the base material are enhanced by combining the base
material with a dispersion material, and a hybrid material represents a new property different from the
original by mixing different substances such as organic and inorganic substances at the molecular and
atomic levels.

2. Feature of Nanocellulose and Carbon Nanotubes

In this section, we introduce the features of NC and CNTs such as their classifications, dimensions,
mechanical, thermal, optical and electronical properties. A comparison of these characteristics will
clarify the superiority and specificity of NC and CNTs.

2.1. Nanocellulose

Cellulose is the most abundant carbohydrate on earth. NC is a natural nanofiber that can be isolated
by the defibration of cellulose from biomass resources such as wood, herbs, plants, and organisms.
NC is roughly classified into cellulose nanofiber (CNF), cellulose nanocrystals (CNC), and bacterial
nanocellulose (BNC).

CNF is a bundle of stretched cellulose nanofibers as shown in Figure 1a. The cellulose chains
are entangled and flexible with a large surface area. Cellulose nanofibers, nanofibrillar cellulose,
and cellulose nanofibrils are some of the synonyms for CNF. CNF is composed of amorphous regions,
with widths of tens to several hundreds of nanometers, and soft and long chains of micrometer-scale
length. CNF can have different mechanical properties depending on the natural source as shown in
Table 1 [31,32]. CNC has a shape like an elongated crystal rod, as shown in Figure 1b, also called
nanowhiskers, and has higher rigidity than NFC. CNC is usually 3 to 50 nm in width and 50
to 500 nm in length [33]. CNC has high axial rigidity (105–168 GPa), high Young’s modulus
(20–50 GPa) [34], high tensile strength (about 9 GPa) [35], a low coefficient of thermal expansion (about
0.1 ppm/K) [36], high thermal stability (up to about 260 ◦C) [37], low density (1.5–1.6 g/cm3) [38],
and thixotropy with time-dependent shear thinning properties [39]. BNC is synthesized and secreted
by the Gluconoacetobacter xylinus family. Certain other bacterial species, such as Agrobacterium,
Pseudomonas, Rhizobium, and Sarcina, also produce BNC. BNC is reported to have a high Young’s
modulus (79–88 GPa) [40], high water retention capacity, and molecular weight up to 8000 Da [20].
Unlike CNC and CNF, which are prepared top-down by physical and chemical treatments, BNC can
be prepared bottom-up from low molecular weight biomass by optimizing the culture conditions of
cellulose-synthesizing bacteria.
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Figure 1. Cellulose contained in plants or trees has a hierarchical structure from the meter to the 
nanometer scale, as shown in (a). A schematic diagram of the reaction between cellulose and strong 
acid to obtain Nanocellulose is shown in (b). Bionanocellulose cultured from cellulose-synthesizing 
bacteria is shown in (c). Figure 1 was drawn by co-author R. Hamano.  

Table 1. Comparison of mechanical properties of natural fibers [31]. 
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Cotton 0.3–0.7 5.0–10.9 
Wool 0.1–0.2 2.3–3.4 
Silk 0.3–0.5 7.3–11.2 
Flex 0.3–0.9 24.0  
Jute 0.3–0.7 43.8 
Sisa 0.4–0.6 – 

Ramie 0.3–0.8 53.4 

2.2. Surface Modification of Nanocellulose 

It is known that the easy aggregation of NC and CNTs is a common problem. So far, 
technologies for dispersing NC have been studied in various ways [41]. This section introduces some 
of the techniques for modifying the surface of NC. The surface modification technique is to impart 
ionic charges to NC. An outline of the carboxymethylation, phosphorylation, oxidation, and 
sulfonation processes is shown in Figure 2. 

The carboxymethylation process introduces carboxymethyl groups onto the cellulose surface, 
making the surface negatively charged. There is a clear change in CNF generated from the 
carboxymethylation pathway. These suspensions are highly transparent and can be used in 
transparent films and composite applications. Phosphorylation that incorporates phosphate ester 
groups into the cellulose backbone significantly changes the original characteristics of cellulose. 
Thus, cellulose phosphorylation is a well-known surface modification technique for producing 
materials suitable for various fields of application such as biomedical applications, fibers, fuel cells, 
and so on. Oxidation mediated by 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) can be used as a 

Figure 1. Cellulose contained in plants or trees has a hierarchical structure from the meter to the
nanometer scale, as shown in (a). A schematic diagram of the reaction between cellulose and strong
acid to obtain Nanocellulose is shown in (b). Bionanocellulose cultured from cellulose-synthesizing
bacteria is shown in (c). Figure 1 was drawn by co-author R. Hamano.

Table 1. Comparison of mechanical properties of natural fibers [31].

Tensile Strength
[GPa]

Young’s Modulus
[GPa]

Cotton 0.3–0.7 5.0–10.9
Wool 0.1–0.2 2.3–3.4
Silk 0.3–0.5 7.3–11.2
Flex 0.3–0.9 24.0
Jute 0.3–0.7 43.8
Sisa 0.4–0.6 –

Ramie 0.3–0.8 53.4

2.2. Surface Modification of Nanocellulose

It is known that the easy aggregation of NC and CNTs is a common problem. So far, technologies
for dispersing NC have been studied in various ways [41]. This section introduces some of the
techniques for modifying the surface of NC. The surface modification technique is to impart ionic
charges to NC. An outline of the carboxymethylation, phosphorylation, oxidation, and sulfonation
processes is shown in Figure 2.

The carboxymethylation process introduces carboxymethyl groups onto the cellulose surface,
making the surface negatively charged. There is a clear change in CNF generated from the
carboxymethylation pathway. These suspensions are highly transparent and can be used in transparent
films and composite applications. Phosphorylation that incorporates phosphate ester groups into
the cellulose backbone significantly changes the original characteristics of cellulose. Thus, cellulose
phosphorylation is a well-known surface modification technique for producing materials suitable for
various fields of application such as biomedical applications, fibers, fuel cells, and so on. Oxidation
mediated by 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) can be used as a pretreatment to promote
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CNF separation and to render the NC surface hydrophobic. When TEMPO-NaOCl-NaOCl2 is used
to catalytically oxidize cellulose, a high degree of charge is obtained due to the oxidation of the
C6 position into anionic carboxylates, thus resulting in better dispersibility in water. The negative
charges on the CNC surface introduced via this oxidation technique increase the electrostatic repulsive
forces. Araki et al. reported the TEMPO-mediated oxidation of CNCs after hydrolyzing the cellulose
fibers with HCl [42]. The rheological properties of TEMPO-oxidized CNCs have been studied [43].
Sulfonation is a technique for imparting an anionic charge to the surface of NC materials. Sulfuric
acid hydrolysis that enables the formation of sulfate half esters from CNC hydroxyl groups provides a
stable colloidal suspension [20].
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Figure 2. Different surface modification techniques through which ionic charges are imparted to the
NC surface. Reproduced with permission from [20]. Copyright American Chemical Society, 2018.

2.3. Application of Nanocellulose

In this section, we introduce examples of NC that have been adopted for industrial applications.
Controlling carbon dioxide emissions and reducing fuel consumption for the purpose of preventing
global warming have been a long-standing issues in several fields such as the automotive industry,
aviation, and railways. Most of the weight of these vehicles is in the body, so reducing this weight
is important for reducing fuel consumption [44], but high rigidity of body is required in order to
maintain safety and steering stability [45,46]. In order to address the issues of both fuel efficiency and
safety, metal materials are being replaced with plastics and epoxy materials. For example, in a change
in the 2000s, the midrange Audi A2 car adopted door trims made of polyurethane reinforced with a
flax/sisal mixed material [47]. In addition, Toyota adopted a spare tire cover reinforced with kenaf
fibers made of sugar cane and sweet potato with a PLA matrix in their RAUM 2003 model car. On
the other hand, a concept car using NC was announced by the Finnish company UPM in 2015 [48].
More recently, a surprising nano cellulose vehicle (NCV) was exhibited at the Tokyo Motor Show 2019.
NCV was realized through a supply chain through a consortium consisting of a total of 22 universities,
research institutes with Kyoto University as the representative company. Composites made from
plastic, epoxy and NC are used in various parts such as dashboards, door panels, and interior panels
of vehicle body for reinforcements.
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2.4. Carbon nanotubes

CNTs are one-dimensional tubular materials made of a wound graphene sheet composed of carbon
atoms. There are single-wall carbon nanotubes (SWNTs), double-wall carbon nanotubes (DWNTs),
and multi-wall carbon nanotubes (MWNTs). CNTs can have a radius ranging from 0.5 to 150 nm [49].
The mechanical properties vary between SWNTs, DWNTs, and MWNTs. In particular, CNTs have
excellent mechanical properties such as a Young’s modulus of 70–1000 GPa [50–52], which is stronger,
mass density 1.3–2.0 g/cm3 [53], thermoconductivity of 3000–3500 W/mK [54,55], coefficient of thermal
expansion of 20.0 ppm/K [56] and capacitance 33–180 F/g [57,58]. Furthermore, SWNTs are known to
exhibit metallic and semiconducting properties depending on how the graphene sheet composed of
carbon atoms is wound, such as chirality [13,59]. SWNTs have unique optical properties such light
absorption from visible region to infrared region and light emission in the near-infrared region (NIR)
by absorbing the visible region. The light absorption spectrum of SWNTs can be divided into a metallic
first transition (400–600 nm), a semiconducting first transition (600–900 nm), and a second transition
(900–1600 nm) determined by chirality. It is expected to be applied as a probe for bio-imaging because
a second transition (900–1600 nm), which is harmless to the human body, is hardly affected by the
absorption and scattering of water and biomolecules.

The dispersion technology is important for applying CNTs to various applications, and there
have been reports of dispersing CNTs with various organic substances and surfactants so far [10].
This techniques for CNTs are mainly divided into chemical modification and physical modification.
Chemical modification refers to techniques in which functional groups that enable solvation are
covalently introduced to the CNTs surface. Generally, CNTs surface oxidation by a strong acid
treatment such as H2SO4/HNO3 is popular. However, chemical modification by covalent bonding
may compromise the superior characteristics of CNTs because the modification breaks the bonds
of the CNTs themselves. On the other hand, physical modification techniques can be divided into
approaches that use hydrophobic interactions, such as micelle solubilization, and physical adsorption,
such as π–π stacking. For example, various surfactants such as sodium dodecyl sulfate (SDS), sodium
dodecylbenzene sulfate (SDBS), and sodium cholate (SC) are often used as micelle solubilizers [60].
In addition, the physical adsorption of organic molecules by π–π stacking has been actively studied.
Among these, the composites of SWNTs wrapped with DNA developed in 2003 [61,62] are very
stable, and have been studied as biomaterials for various applications such as biosensors and drug
delivery [11,12].

2.5. Application of Carbon Nanotubes

CNTs have already been applied and commercialized for various purposes. For example,
Mitsubishi Electric Corp. has adopted CNTs made by GSI Creos Corp. for the diaphragms of
luxury in-vehicle speakers. For low-cost sensors that can communicate wirelessly, Andrews et al.
demonstrated the use of fully printed carbon nanotube thin film transistors to detect environmental
pressures in the pressure range of 0 to 42 PSIG [63]. Tyrata Inc. bought their technology license and is
commercializing it as a tire sensor. As an application example of natural rubber, cross-linked natural
rubber matrix mixed with MWNTs and conductive carbon black (CB) has been studied as conductive
filler, and these elastic materials are expected to be used as sensors for various dynamic elastomer parts
such as health monitoring, tires, valves, gaskets, and engine mounts [64]. Furthermore, supercapacitors
using CNTs are studied for vehicle battery applications [65]. CNT sponges have been studied as a
unique application to solves environmental problems [66]. This type of densified sponge expands
instantly when it comes into contact with an organic solvent and is highly recyclable. In order to
realize the above applications, high-cost CNTs have been limited to practical use. However, ZEON
Corp. has begun operation of the world’s first mass production plant for CNTs using the Super-growt
h method [59]. In the future, there are a variety of applications that are expected to be industrialized.
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Mixed material of cellulose and CNTs that utilizes the advantages of each is expected to be used in
various fields such as medical diagnosis, environment, automobiles, aviation, and precision electronics.
The characteristics of cellulose and CNTs are summarized in Table 2.

Table 2. Comparison of NC and CNTs.

CNC CNF BNC Ref. SWNT MWNT Ref.

Width
[nm] 3–50 4–100 20–140 [33,40] 0.5–10 5–100 [49,53]

Length
[nm] 100–500 5000– 5000– [33,40] 10–1000 100– [49,53]

Young’s modulus
[GPa] 20–50 0.5–10 79–88 [31,34,40] 1000 70–950 [51–53]

Tensile strength
[GPa] 9 0.1–1.0 21 [31,35,40] 13–53 11–150 [51–53]

Mass density
[g/cm3] 1.5–1.6 1.3–1.4 1.1 [38,40] 1.3–1.5 1.8–2.0 [50]

Thermo conductivity
[W/mK] – – – – 3500 3000 [54,55]

Coefficient of Thermal
expansion
[ppm/K]

0.1 [36] 20.0 [56]

Capacitance
[F/g] – – – – 180 32.7 [57,58]

Remarks Transparency thermal stability (±260 ◦C)
[37] Thixotropic

ChiralityHigh
dispersibility

Wide range
ofdimensions –

3. Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes

Mixed materials of cellulose, NC and CNTs have been studied for their dispersion performance,
mechanical, optical, thermal and electronical properties and so on. These materials have been
synthesized with various features and in various structures depending on the desired application.
In this section, we introduce the various applications using these mixed materials.

3.1. Composites

Dispersion technology is a very important key technology for realizing applications of composites
of cellulose, NC and CNTs. Although we discussed the outstanding characteristics of NC and CNTs in
Section 2, CNTs typically exist in a bundle state due to strong π stacking and van der Waals forces in
the solid state. The high performance of these nanomaterials cannot be demonstrated when they are in
an aggregated state. CNTs can be dispersed by ultrasonic irradiation in water or an organic solvent.
However, the CNTs then form bundles again when the ultrasonic irradiation is stopped. Therefore,
a dispersant is required to disperse CNTs in the solvent.

Among the many types of cellulose, carboxymethyl cellulose (CMC) is a popular cellulose
derivative and CMC has been used in a wide range of applications such as additives for food and feed,
cosmetics, thickeners, water absorbents, and water retention agents. The reason that CMC has been in
practical use for a long time is because it is non-toxic, biodegradable, biocompatible, and water-soluble.
Thus, CMC is notable as a compatible dispersant for CNTs. Composites of SWNTs and MWNTs
wrapped with CMC are expected to serve as an important platform for CNTs in optical, thermal and
electronical applications and biomaterials since CMC can be safely mass-produced at low cost and
recycled as a dispersant. It has been reported that CMC–SWNTs dispersed with CMC is nearly 20 times
more stable than dispersion with conventional surfactants [67,68].

Regarding optical properties of CMC–SWNTs, Matsukawa et al. reported differences in the
response of the NIR absorption spectra of CMC–SWNTs and DNA–SWNTs [69]. It is known that
both CMC and DNA form π–π stacking and are adsorbed on the surface of SWNTs. However,
Atomic force microscopy (AFM) observations show that the difference between CMC and DNA
Cannot be distinguished because it is small at the nanoscale, as shown in Figure 3a,b. Remarkable
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NIR absorption peaks in the spectra of CMC–SWNTs and dsDNA–SWNTs appear at about 1130 nm
and 1270 nm, as shown in Figure 3c,d, respectively. NIR absorption measurement results of the
redox reaction of SWNT show a clear difference that the reaction of CMC–SWNTs is small and the
reaction of DNA–SWNTs is large. The redox reactions of DNA–SWNTs have been studied by various
groups [11,12]. For example, they found that peaks around 1270 nm in the NIR absorption spectrum of
DNA-SWNT were reduced in the presence of hydrogen peroxide (H2O2), such as oxidizing agents.
By contrast, in the presence of caffeine [70], dithiothreitol [71], β-mercaptoethanol and catechin [69]
reducing agents the NIR peak was found to recover. In contrary, CMC–SWNTs exhibit an interesting
behavior in that the redox reaction is small.
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Figure 3. AFM images: (a) CMC–SWNTs, (b) dsDNA–SWNTs. NIR absorption spectra of SWNT
composites: (c) CMC–SWNTs, (d) dsDNA–SWNTs. Black line: SWNT composites initially prior to
adding H2O2. Blue line: SWNT composites oxidized with 0.03% H2O2 solution for 30 min. Orange
line: the oxidized SWNT composites were incubated with 15 µg/mL catechin solution for 10 min.
The absorption values represent the average of five independent measurements. The results of Figure 3
were measured by co-author R. Hamano.

CMC–SWNTs is used as a comparative material for sensor sensitivity studies. Oura et al.
investigated the biomolecular recognition ability of RecA protein, which is well known to be able
to recognize single strand DNA (ssDNA), in ssDNA–SWNTs using CMC–SWNTs as a comparison
target [72]. They showed the difference the diameter of ssDNA-SWNTs with and without RecA protein.
In contrast, the diameter change of CMC-SWNTs was small with or without RecA protein. From a
structural approach, Riou et al. showed that CMC forms an apparently non-helical superstructure
with CNTs, leading to their individualization [73]. In the future, as the mechanism governing the
interactions between cellulose and CNTs becomes clearer, it is considered that this composite can be
efficiently dispersed under optimum conditions as a reference material for sensors.

Composites of cellulose and CNT can be used as sensors that can detect certain chemical substances
because their properties and sensitivity can be modified by changing the mixture ratio and material
combination. For example, these chemical sensors include such diverse devices as concentrators for
detecting for benzene, toluene, and xylenes [74], pH sensors made with titanium dioxide/multiwall
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carbon nanotube/cellulose hybrids [75]. In some cases, MWNT-g-CMC, in which CMC is grafted onto
MWNTs using plasma technology, has a much higher adsorption capacity for removing UO2

2+ than
untreated MWNTs [76].

3.2. Aerogels

In recent years, aerogels of cellulose and CNTs have attracted much attention for their potential
applications in many areas of basic research. These aerogels are considered promising materials for the
development of supercapacitors for flexible energy storage [77–81], optical devices [82], thermoelectric
devices [83], and adsorbents to address the problems arising from oil compound spills because
these materials have excellent mechanical properties and electrochemical performance and they can
selectively adsorb organic compounds. Several approaches have been proposed for manufacturing
these aerogels [84–86]. For example, Xu et al. reported a new approach to producing a CNF–MWNT
aerogel using bamboo powder of a raw material by a simple dipping and carbonization process.
This CNF–MWNT aerogel can be recycled many times by distillation and combustion, meeting the
requirements for practical oil-water separation [86].

One of the advantages of mixed materials is that various characteristics can be adjusted by
changing the mass fractions of the component materials. Long et al. prepared aerogels with excellent
mechanical properties using carboxymethylcellulose (CMC) as a raw material and carboxyl CNTs as
reinforcements and investigated the surface morphology, specific surface area, compression modulus,
density, and adsorption capacity of these materials for various oils, as shown in Figure 4. It was
found that aerogels prepared with a mass fraction of CNTs exhibited an increased adsorption capacity
for highly viscous liquids [84]. On the other hand, there has also been research on the deformation
mechanism of aerogels in order to progress the material design of these aerogels. Hajian et al.
investigated the potential of these CMC and CNT aerogels (CMC–CNT) to form superelastic and
conductive aerogels for applications such as mechanically responsive materials through repeated
conductivity tests at various strains. As a result, it has been found that the conductivity of aerogels
of 50 wt % single SWNTs with a density of 10 kg/m3 and a porosity of 99% exceeds 0.5 S/cm [85].
CMC–CNT aerogels have been shown to have the potential to form recyclable superelastic aerogels
without material loss or the need for other chemical treatments. Furthermore, Wang et al. showed that
mixed materials of CNF cleaved from plant cell walls and functionalized MWNTs exhibited elastic
mechanical behavior in combination with reversible electrical response under compression as well
as responsive conductivity and pressure [87]. The synergistic combination of the wide availability of
NC and the electrical functions of CNTs can lead to applications in devices such as supercapacitors
and electrodes.

As research using other combinations of mixed materials, Zheng et al. prepared a polyvinyl
alcohol (PVA), CNF, and MWNT mixed organic aerogel using a freeze-drying process. Adding small
amounts of CNF and MWNTs significantly improved the mechanical properties of PVA aerogels,
which showed an exponential dependence on relative aerogel density. These low-density aerogels
have also been shown to exhibit very low thermal conductivity and high surface area, suggesting that
they can be useful for many applications, including thermal insulation and structural components [78].
On the other hand, Yang et al. reported flexible electrodes of aerogels for supercapacitors fabricated
by combining freeze-drying with a cold-press process to create a composite system of CNF, MWNTs,
and polyaniline (PANI) after polymerizing polyaniline onto the surface of the CNF and CNTs by an
in-situ polymerization method. These aerogels have a small charge transfer resistance (1.24 Ω), because
PANI acts as a binder that binds tightly to each component, and a loose cross-section. Due to the 3D
porous structure of the aerogel electrode, a high specific capacitance of 791.13 F/g was obtained at 0.2
A/g. In addition, the electrodes made from the aerogels showed excellent redox reversibility and cycle
stability [79].
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Zheng et al. used a new type of very flexible composite using H2SO4, poly vinyl alcohol (PVA)
gel with CNF, reduced graphene oxide (RGO), to form a carbon nanotube hybrid (CNF–RGO–CNT)
aerogel for use as an electrode material [81]. They used this aerogel to develop a solid supercapacitor
electrolyte. These flexible solid supercapacitors were manufactured without a binder, current collector,
or electroactive additive. Due to the porous structure of the CNF–RGO–CNT aerogel electrode and the
excellent electrolyte absorption characteristics of CNF present in the aerogel electrode, the resulting
flexible supercapacitors exhibited a high specific capacitance (252 F/g at a discharge current density
of 0.5 A/g) and a remarkable cycle stability (more than 99.5% of the capacitance was retained after
1000 charge–discharge cycles at a current density of 1 A/g). Moreover, the supercapacitors also showed
high areal capacitance, power density and energy density (216 mF/cm2, 9.5 mW/cm2, and 28.4 µWh/cm2,
respectively).

Aerogels with excellent electrochemical performance and adsorption capacity can be used to
fabricate low-cost, recyclable, high-performance supercapacitors and adsorbents, and are expected to
be materials that can solve environmental and energy problems.

3.3. Smart Paper and Film

The research of smart paper and film technology is of great interest for portable electronics, sensor
and shields applications. Mixed materials of cellulose and CNTs are expected to be used in low-cost,
renewable smart paper that can replace petrochemical-based materials because of their excellent
mechanical strength, lightweight and conductivity. The main features of mixed materials with CNTs
on flexible and transparent cellulose paper are their mechanical strength, lightweight, and electrical
conductivity. This section introduces paper and film applications realized with mixed materials of
NC and CNTs. Major applications include electromagnetic interference shields [88–90], chemical
sensors [91–94], conductive films [95–99], stable substrates [100,101], 3D printer ink bases [102,103],
supercapacitors [104], and electrodes [105].

Smart paper is required to be flexible and have high mechanical strength and stable conductivity,
and a filtration process capable of realizing paper that meets these requirements has been reported.
Koga et al. coated cellulose nanofiber paper uniformly with conductive nanomaterials such as silver
nanowires (AgNWs) and CNTs to produce cellulose nanopaper that functions as both a filter and
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a transparent flexible substrate [100]. AgNWs or CNTs filtration coating of on cellulose nanopaper
was prepared by a two-step filtration process. First, an aqueous dispersion of cellulose nanofibers
was filtered through a commercial membrane filter (pore diameter of 0.1 µm) for 20 min to form
a wet nanopaper. Second, either the AgNW or the CNT aqueous dispersion was poured on the
wet nanopaper, followed by filtration dewatering for 20 min. During the second filtration process,
the wet nanopaper acted as an effective filter and retained almost all the conductive nanomaterials
on the surface. Finally, the obtained material was completely dried by hot pressing at 110 ◦C for
20 min (1.1 MPa), and then peeled off from the membrane filter. The prepared AgNW@nanopapers
and CNT@nanopapers showed the superiority of cellulose paper compared with AgNW@PET and
CNT@PET made of polyethylene terephthalate film (PET). Furthermore, compared with cellulose
nanopaper prepared by bar coating and spin coating, it was shown that the filtration coating method
was simple and effective. The AgNW@nanopapers and CNT@nanopapers exhibited a sheet resistance
of 12 Ω/ sq. and 88% light transmission. This is up to 75 times the sheet resistance of PET made by
conventional coating processes. These results show that the filtration coating provides a conductive
network that is uniformly connected to the vertical drainage through the paper-specific nanopores,
whereas the conventional coating process is difficult, induces unavoidable self-aggregation, and the
distribution of nanomaterial is uneven. In addition, the conductive network is embedded in the
surface layer of the cellulose nanopapers, exhibits strong adhesion to the cellulose nanopaper substrate,
provides foldability, and exhibits only negligible changes in conductivity. Therefore, this filtration
process is expected to serve as an effective coating technique for a variety of conductive materials.

These cellulose papers are expected to find applications as electromagnetic interference shields
and chemical sensors. Electromagnetic interference shielding is an important application in modern
communications and computer technology. Fugetsu et al. developed a composite material combining
CNTs and cellulose paper [88]. CNTs form a continuous interconnected network on cellulose fibers,
optimizing the conditions for mass production of paper. Papers provide an indispensable shielding
mechanism that can shield electromagnetic interference, especially in the range of 30–40 GHz. These
papers have been reported to be physically strong and flexible. On the other hand, Moilanen et al.
produced CNT–CNC with a new material to replace traditional metal-based shields for EMI shielding.
By combining a layered structure, including the CNT–CNC layer, with existing commercially available
lossy materials (such as ferrite sheets), an effective EMI shield can be formed without degrading signal
integrity performance [90]. It is worth noting that the shielding effect of the laminated CNT–CNC
layer is greatly improved.

Cellulose paper not only has a large surface area but also provides the high foldability and
twistability required for a robust and flexible sensor, making it effective for sensor applications.
Han et al. demonstrated a humidity sensor by adding single-walled carbon nanotubes functionalized
with carboxylic acid on cellulose paper. The conductance shift of the nanotube network intertwined
with CNF is used for humidity sensing [91]. The sensor response was reported to be linear with good
reproducibility and low hysteresis up to 75% relative humidity. In addition, the excellent adhesion
of CNTs to cellulose paper shows excellent robustness against mechanical stresses such as bending,
folding, and wrinkling, so water-based conductive CNT ink and cellulose paper are also expected to
be applied to electrical circuits, chemical sensors, and cell scaffolds. Han et al. synthesized SWNTs
with sodium dodecyl benzene sulfonate as a surfactant. Chemical sensors made by writing directly on
cellulose paper showed good responses to up to 10 ppm ammonia vapor in air [92].

On the other hand, cellulose paper has good adsorptivity and compatibility with ink made from
CNTs. There is research on conductive inks that are a composite of cellulose nanofibers and CNTs.
Composite conductive ink made by mixing CNF and CNTs has had a great effect on cell research by
imitating real nerve tissue more realistically. These inks have important applications for neural tissue
engineering because they rely heavily on scaffolds that support the development of cells into functional
tissues [102]. As other studies, Nguyen et al. developed a simple and environmentally friendly
method to produce free-standing CNC–CNT films by preparing and depositing stable CNC–CNT
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dispersions [105]. The structural and morphological properties of CNC–CNT films carbonized at
800 ◦C were investigated by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron
microscopy (SEM). The conductive CNC matrix was generated by chemical carbonization. These
carbonized composite films are expected to be used as anodes for lithium-ion batteries.

Many of the smart paper applications introduced so far have involved mixed materials of CNF
and MWNTs. On the other hand, TEMPO–SWNTs using SWNTs, which are difficult to obtain as
high-quality dispersions, such as mixed and industrialized TEMPO-oxidized NC are practical and
attracting attention. TEMPO oxidized NC obtained by applying a TEMPO catalyst to wood fiber (pulp)
and defibrating the resulting product mechanically showed strong mechanical properties, transparency,
dispersibility, and unique viscosity behavior such as thixotropy [39]. As a composite with SWNTs,
Koga et al. prepared TOCNs–SWNTs by mixing TEMPO-oxidized cellulose nanofibrils (TOCNs)
with abundant sodium carboxyl groups on the crystalline nanocellulose surfaces [95]. The composite
aqueous dispersion can impart conductivity to various substrate materials simply by coating and
drying. TOCNs–SWNTs have been reported to form a flexible transparent conductive film with visible
light transmittance of about 70% (including PET substrate) and sheet resistance of about 1.2 kΩ/γ.
Furthermore, the effectiveness of TEMPO-oxidized cellulose was confirmed by the result that the
resistance was increased to 5.8 kΩ/γ due to the inevitable aggregation of SWNTs without adding
cellulose. In addition, these composites could be used as humidity sensors because the resistance of
their one was confirmed to change in response to humidity. Thus, TOCNs–SWNTs can be expected
to be applied as printable transparent conductive films and wearable electronic sensor devices [95]
because they can be inkjet printed onto paper and can also be used to draw electrical wiring freely, as
shown in Figure 5. Hamedi et al. also suggested that CNF and SWNTs can act as excellent aqueous
dispersants, enabling low-cost exfoliation and purification of SWNTs with dispersion limits exceeding
40% by weight [96]. This dispersion method may be an inexpensive and sustainable alternative for the
molecular self-assembly of advanced composite materials. They also investigated the characteristics of
nanopaper, translucent conductive films, aerogels, and anisotropic microscale fibers produced from
NFC–SWNTs. CNF–SWNT nanopapers exhibited a modulus of 13.3 GPa and 307 MPa when the
strength increased at 3 wt % SWNTs.
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Figure 5. Optical images and sheet resistance measurements at 23 ◦C and 50% relative humidity
(RH) for (a) TOCNs–SWNTs (b) the CNT cast onto PET films.; these films of 3 × 3 cm were laid on
the color-printed word “cellulose” on copy paper. (c) The lighting of an LED using a transparent
conductive film based on the TOCNs–SWNTs cast PET. (d) Correlation between the resistance values of
the TOCNs–SWNTs-cast PET film at 30 ◦C, and the relative humidity. Reproduced with permission
from [95]. Copyright American Chemical Society, 2013.
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Furthermore, Ito et al. produced a transparent film composed of SWNTs and a large amount
of CMC and evaluated the effect of CMC wrapping on the photoluminescence (PL) characteristics.
The PL spectrum from the transparent CMC–SWNT film showed a peak shift that depended on the
SWNT type, and they verified that the optical properties of SWNTs were retained evenly across the
film. The Raman scattering spectrum showed that SWMC was under uniaxial compression strain in
the CMC film [97]. Smart paper and films using mixed materials of NC and CNTs are expected to have
various applications that cannot be achieved with conventional paper and film.

3.4. Fibers

Highly conductive and mechanically strong microfibers are attractive for energy storage devices,
thermal management, wearable electronics, and bioelectronic therapy. In this section, we introduce the
applications of fibers and fiber mats that have excellent mechanical strength and electrical conductivity
realized by mixing cellulose and CNTs.

As a composite fiber manufacturing method, it is known that MWNTs in cellulose can be dissolved
in ionic liquids and the fibers obtained by subsequent grinding and spinning show good dispersion and
alignment [106]. Meanwhile, there have been research reports on the use of an electrospinning method
for the dispersion of NC and CNTs [107–109]. The electrospinning method has the advantage that even
a material that is difficult to process by conventional spinning or wet spinning can be easily made into
a fiber and a nano-sized diameter can be obtained. Deng et al. prepared a composite by electrospinning
a MWNTs and a cellulose acetate blend solution followed by deacetylation [107]. The effects of
nanotubes on the resulting CNF precursor and microstructure stabilization were investigated using
thermogravimetric analysis, TEM, and Raman spectroscopy. As a result, the embedded MWNTs were
demonstrated to reduce the activation energy for the oxidative stabilization of cellulose nanofibers from
about 230 to about 180 kJ/mol. In addition, Li et al. reported that they developed highly conductive
CNF–CNT microfibers using high-speed and scalable 3D printing techniques [110]. These microfibers
can be normally dispersed in an aqueous solution using TEMPO-oxidized CNF, resulting in a mixed
solution with obvious shear thinning properties. Both CNF and CNT fibers in the fiber-based microfiber
are well aligned, improving the interaction and penetration between these two building blocks,
resulting in high mechanical strength (247 ± 5 MPa) and electrical conductivity (216.7 ± 10 S/cm).

On the other hand, compared to the CNF and MWNT fibers reported so far, although it is
technically difficult to produce composites using CNF and SWNTs with complete characteristics,
Wan et al. reported CNF–SWNT filaments composed of axial building blocks with a flexible CNF
network. This filament exhibited high strength up to ~472.17 MPa and strain of ~11.77% shown in
Figure 6a, surpassing most results reported for CNF–SWNT investigated previously in the literature
as shown in Figure 6c. Interestingly, although the mechanical properties change depending on the
CNTs ratio contained in the composites, the tendency of these properties changes greatly depending
on the relative humidity, as shown in Figure 6a,b. These multifunctional filaments can be further
manufactured as strain sensors that measure mass changes and investigate muscle movement and are
expected to be used in the fields of portable gauge measurement and wearable bioelectronic therapy, as
shown in Figure 6d [111]. Although young’s modulus of skeletal muscle myofibrils under physiological
conditions has been studied to be several MPa in the axial direction and several KPa in the radial
direction [112,113], these applications are higher elastic properties than those. Other unique devices
such as non-woven macrofiber mats using CNF and SWNTs have also been reported by Niu et al.
Features can be easily adjusted by controlling the extrusion pattern of the CNF–SWNT suspension
in an ethanol coagulation bath and drying in air under limited conditions [114]. The new wearable
supercapacitors based on non-woven macrofiber mats have been proven to have excellent adjustability,
electrochemical stability, and damage reliability. Thus, these fiber and filament materials are expected
to be applied as wearable electronics and biological signal sensor.
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Figure 6. Mechanical properties of the filaments (a) Young’s modulus and ultimate strength of five
different filaments investigated in this work at 12% relative humidity (RH). (b) Young’s modulus and
ultimate strength of five different filaments investigated in this work at 50% RH. (c) Tensile stress and
Young’s modulus map to compare different types of CNF/CNT composites. (1) CNF/MWNT films,
(2) CNF/MWNT nanopapers, (3) CNF/fluorinated CNT films, (4) CNF/MWNT films, (5) CNF/SWNT
films, (6) CNF/SWNT films, (7) CNF/SWNT membranes, (8) CNF/SWNT membranes, (9) CNF/MWNT
nanopapers, (10) CNF/MWNT microfibers, and (11) CNF/SWNT microfibers. (d) Application of sensor
that can record slight changes in electrical resistance and respond to muscular movement. Reproduced
with permission from [111]. Copyright American Chemical Society, 2019.

4. Mixed Materials of Bacterial Nanocellulose and Carbon Nanotubes

NFC and CNC made from plant and wood materials such as pulp can be top-down prepared by
physical and chemical treatments. In contrast, bacterial nanocellulose (BNC) can be prepared bottom-up
from low-molecular-weight biomass by optimizing the culture conditions for cellulose-synthesizing
bacteria. Since BNC is produced from the bottom up, it has high uniformity and excellent fluidity,
miscibility, and moldability. Thus, BNC is also expected to be applied to CNTs for functional
enhancement. This section introduces various characteristics of BNC and its use in devices such as
translucent conductive paper [115] capacitance aerogels [116] and conductive polymer films [117] for
supercapacitors, as well as the excellent and selective absorption capacity for organic solvents and
ability for high pressure detection, which are exhibited by BNC and carbon nanotubes.

The structure of BNC is affected by the strain, medium, and culture conditions used. Acid-treated
MWNTs are added to a static medium, and their effects on bacterial cellulose structure are analyzed
by SEM, AFM, and Fourier transform infrared spectroscopy (FT-IR). Further, CP/MAS 13C NMR,
and X-ray diffraction measurements showed that the bacterial cellulose ribbon and MWNTs were
intertwined to form three-dimensional network architecture, and even in the presence of MWNTs,
a band-like assembly with sharp bending and rigidity was formed. It has been reported that these
materials can be manufactured [118]. Taking advantage of the superior mechanical properties of BNC,
Lee et al. developed recyclable and sensitive carbon nanotube resonators for chemical and biological
applications. Conventionally, although sensitivity can be improved if the CNT size is small, there is
still the problem of increased manufacturing complexity. This challenge can be overcome with new
technologies that produce CNT-coated bacterial cellulose (BC) bundles that are long, sensitive, and
high in tensile strength [119].

As applied research using BNC, Yoon et al. dispersed MWNTs in a surfactant (cationic
cetyltrimethylammonium bromide) solution and soaked them in bacterial cellulose pellicle produced by
Gluconacetobacter xylinum for 6, 12, and 24 h. Next, the surfactant was extracted with pure water and
dried. Electron microscopy showed that individual MWNTs were strongly attached to the surface and
interior of the cellulose pellicle [117]. These BNC and MWNT composites can be used as conducting
polymer films, and the conductivity of this composite was found to be 1.4 × 10−1 S/cm based on the
total cross-sectional area (about 9.6% MWNTs by weight). This result suggests that this composites
creation process can not only disperse MWNTs in a network but also create conductive polymer films
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from them. In addition, Kang et al. achieved composites with high physical flexibility, desirable
electrochemical properties, and excellent mechanical properties by rationally exploiting the interesting
characteristics of BNC, CNTs, and ionic liquid-based polymer gel electrolytes. They demonstrated a
complete all-solid flexible supercapacitor as shown in Figure 7. The supercapacitor performance of
these composites remained high even after 200 bending cycles up to a radius of 3 mm. In addition,
the supercapacitors showed excellent cycling with a Csp (~20 mF/cm2) decrease of only <0.5% after
5000 charge/discharge cycles at a current density of 10 A/g. These reports suggest the potential for
BNC and CNTs to be an important basis for the development of flexible supercapacitors [120].
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On the other hand, Hasan et al. modified BNC pellicles with MWNTs to develop flexible and 
conductive films capable of realizing a glucose biofuel cell system [121]. The membranes were 
further modified with redox enzymes such as pyroquinoline quinone glucose dehydrogenase 
(PQQ-GDH) and bilirubin oxidase (BODx), which function as anode and cathode catalysts using 
glucose as a biofuel source. The enzyme-functionalized MWNT cellulose-based glucose/O2 biofuel 
cell system utilizes the biochemical energy of glucose by using the oxidation of glucose and the 
reduction of molecular oxygen to generate power in the microwatt range. In relation to fuel cell 
application, Lv et al. experimentally showed that composites incorporating carboxylic acid 
multi-walled carbon nanotubes (c-MWNTs) in a BNC matrix have great potential for applications in 
renewable enzyme biofuel cells (EBFC). This EBFC biocathode and bioanode were prepared using 
BC/c-MWNT composites infused with laccase (Lac) and glucose oxidase (GOD) with the help of 
glutaraldehyde (GA) crosslinking. The electrochemical and biofuel performance of this composite 
was evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The EBFC power 
density and current density were 32.98 μW/cm3 and 0.29 mA/cm3, respectively. [122]. 

5. Prospects for mixed materials  

Up to this point, we have discussed the superior functions and applications of mixed materials 
of cellulose and CNTs. In this section, we discuss the future prospects of these nanomaterials. 
According to a MARKETS AND MARKETS survey, the market sizes of NC and CNTs are estimated 
to grow from US $240.7 million and US $3.95 billion in 2017 to US $661.3 million and US $9.84 
billion by 2023, respectively [123,124]. Although one of the challenges for putting mixed materials 
into practical use is the manufacturing cost, the increase in the market size of NC and CNTs will 
further accelerate research on mixed materials and provide bright prospects for cost reduction. In 
the near future, these materials may replace body reinforcement materials such as automobiles, 
aircraft and industrial machinery. However, it is necessary to overcome some problems such as 
cost, durability, and safety when compared with conventional materials such as aluminum, epoxy 
resin, carbon fiber reinforced plastic (CFRP), and to explore the ways to make use of characteristics 
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Reproduced with permission from [120]. Copyright American Chemical Society, 2013.

On the other hand, Hasan et al. modified BNC pellicles with MWNTs to develop flexible and
conductive films capable of realizing a glucose biofuel cell system [121]. The membranes were further
modified with redox enzymes such as pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and
bilirubin oxidase (BODx), which function as anode and cathode catalysts using glucose as a biofuel
source. The enzyme-functionalized MWNT cellulose-based glucose/O2 biofuel cell system utilizes the
biochemical energy of glucose by using the oxidation of glucose and the reduction of molecular oxygen
to generate power in the microwatt range. In relation to fuel cell application, Lv et al. experimentally
showed that composites incorporating carboxylic acid multi-walled carbon nanotubes (c-MWNTs) in a
BNC matrix have great potential for applications in renewable enzyme biofuel cells (EBFC). This EBFC
biocathode and bioanode were prepared using BC/c-MWNT composites infused with laccase (Lac) and
glucose oxidase (GOD) with the help of glutaraldehyde (GA) crosslinking. The electrochemical and
biofuel performance of this composite was evaluated by cyclic voltammetry (CV) and linear sweep
voltammetry (LSV). The EBFC power density and current density were 32.98 µW/cm3 and 0.29 mA/cm3,
respectively. [122].

5. Prospects for mixed materials

Up to this point, we have discussed the superior functions and applications of mixed materials of
cellulose and CNTs. In this section, we discuss the future prospects of these nanomaterials. According
to a MARKETS AND MARKETS survey, the market sizes of NC and CNTs are estimated to grow
from US $240.7 million and US $3.95 billion in 2017 to US $661.3 million and US $9.84 billion by 2023,
respectively [123,124]. Although one of the challenges for putting mixed materials into practical use
is the manufacturing cost, the increase in the market size of NC and CNTs will further accelerate
research on mixed materials and provide bright prospects for cost reduction. In the near future,
these materials may replace body reinforcement materials such as automobiles, aircraft and industrial
machinery. However, it is necessary to overcome some problems such as cost, durability, and safety
when compared with conventional materials such as aluminum, epoxy resin, carbon fiber reinforced
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plastic (CFRP), and to explore the ways to make use of characteristics such as electrical properties,
transparency, and recyclability that cannot be reproduced by conventional materials.

In order to overcome these problems, mixed materials are expected to be designed using simulation
techniques to drive these applications efficiently and optimally. So far, simulation research on NC and
CNTs have reported intermolecular forces and binding energies using molecular dynamics methods
and structural analysis using finite element methods [125–135]. In addition, there are also reports of
simulations on mixed materials of NC and CNTs [136,137]. In recent years, as a result of remarkable
improvements in computer performance, many researches on NC or CNTs using machine learning
have been reported [138–144]. In the future, research using these machine learning methods will
accelerate the development of further mixed materials of cellulose and CNTs research, such as by
reducing the time and cost of experiments.

6. Summary

Mixed materials of cellulose and CNTs can have various functions and take many forms, such as
composites, aerogels, papers, films, or fibers depending on their combinations, as shown in Table 3.
These mixed materials not only exhibit the excellent characteristics of cellulose, NC, and CNTs, but
are also renewable, biodegradable, recyclable, and energy saving. In the next decade, the further
development and spread of mixed materials will be required, as they are expected to be adopted in a
variety of fields such as medical diagnostics, machinery, the automotive industry, and chemistry for a
sustainable industrial society, as shown in Figure 8. This review will contribute to a comprehensive
understanding of the characteristics, progress of these mixed materials and to overcoming the challenges
presented by them.
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Table 3. Applications created by the combination of mixed cellulose and CNTs.

Type
Materials

Purpose Ref.
Cellulose Carbon Nanotube Other

Composites Cellulose SWNT – Detection of benzene, toluene,
and xylene (BTX) vapors [74]

Composites Cellulose MWNT TiO2 pH sensor [75]
Composites CMC MWNT – Removal sensor of UO2

2+ [76]
Aerogels CNF MWNT – Flexible supercapacitors [77]

Aerogels CNF MWNT PVA Application for insulation and
structural parts [78]

Aerogels CNF MWNT PANI Supercapacitance [79]

Aerogels CNF MWNT PVA Adsorption material for organic
solvent, oil [80]

Aerogels CNF CNT RGO Super capacitor electrolyte [81]
Aerogels CMC CNT – Conductive aerogels [85]

Aerogels CNF MWNT – Sensor for detecting the
conductivity and pressure [87]

Aerogels BNC CNT – Adsorption material for organic
solvent, oil [116]

Aerogels BNC CNT GA Enzyme biofuel cell [122]
Paper Cellulose paper CNT – EMI shielding [88]
Paper CNF CNT – EMI shielding [89]
Paper CNC CNT – EMI shielding [90]
Paper Cellulose paper CNT – Humidity sensor [91]
Paper Cellulose paper CNT – Ammonia sensor [92]
Paper Cellulose paper MWNT – Chemical vapor sensor [93]

paper Cellulose paper CNT – Smart paper for portable
electronics and sensing [94]

paper CNF CNT – Conductive paper [99]
paper Cellulose paper SWNT – Transparent, Conductive paper [100]

Paper CNF CNT – conductive inks for 3D printing of
scaffolding [102]

Paper Cellulose paper CNT – chemical sensor [103]

Paper CNF CNT LTO Lithium ion battery (LIB)
electrode [104]

Paper BNC MWNT – Translucent conductive paper [115]

Film TOCNs CNT – Highly conductive and printable
nanocomposites [95]

Film CNF SWNT – Translucent conductive film [96]
Film CMC SWNT – Translucent conductive film [97]
Film CMC CNT GO Reinforced film [101]
Film CNF CNT – Lithium ion battery anode [105]
Film BNC MWNT – Conductive polymer film [117]
Film BNC CNT – Flexible supercapacitor [120]

Film BNC MWNT – Flexible supercapacitor for biofuel
cell [121]

Fiber CNF MWNT – Super capacitor electrode [107]
Fiber CNF MWNT – Conductive fiber mat [108]
Fiber CNF MWNT – Reinforced fiber [109]
Fiber TEMPO-CNF MWNT – Wearable electronic devices [110]
Fiber CNF SWNT – Flexible strain and mass sensor [111]
Fiber CNF SWNT – Wearable supercapacitor [114]
Fiber BNC MWNT – Resonator for biochemical sensing [119]
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