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Abstract

Herein we describe the development of a highly selective kinetic resolution of cyclobutanones via 

a Rh-catalyzed “cut-and-sew” reaction with selectivity factor up to 785. This reaction takes place 

at room temperature with excellent efficiency. Various trans-5,6-fused bicycles and C2-substituted 

cyclobutanones were obtained with excellent ee’s that can be further used as chiral building 

blocks. DFT calculations reveal the crucial roles of the DTBM-segphos ligand in stabilizing the 

rate- and enantioselectivity-determining C–C oxidative addition transition state via favorable 

ligand–substrate dispersion interactions.

While highly desirable, controlling both reactivity and stereochemistry constitutes a 

significant challenge during activation of inert chemical bonds. The recent advancement 

allows asymmetric C–H functionalization to emerge as a powerful tool for synthesis;1 by 

contrast, the corresponding asymmetric C–C cleavage/functionalization, though attractive 

for preparing chiral complex ring systems, has been much less developed.2 To date, the 

scope of transition metal-catalyzed asymmetric C–C activation3 has been primarily restricted 

to either the cleavage of an achiral C–C bond, e.g., an aryl–CN bond2b,c or the C1–C8 bond 

in benzocyclobutenones,2d,e or use of symmetrical substrates2f–n (Scheme 1a,b). Despite the 

fact that chiral unsymmetrical C– C bonds are common, the corresponding catalytic 

asymmetric transformation involving activation of these bonds remains elusive (Scheme 1c).

Our laboratory has an ongoing interest in developing a “cut-and-sew” approach for synthesis 

of various polycyclic structures widely found in bioactive compounds.3r This approach 

involves oxidative addition of a transition metal into the C–C bond of a cyclic ketone 

followed by migratory insertion of an unsaturated unit. In particular, the use of 

cyclobutanones as a common building block has been demonstrated in forming bridged and 
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fused rings.4 The enantioselective synthesis of bridged-ring systems via desymmetrization of 

cyclobutanones has been reported by Cramer2f–h and us2i,j through intramolecular 

carboacylation of olefins, carbonyls, and allenes (Scheme 2a). However, enantioselective 

construction of fused rings, which would require substrates containing an existing C2-

stereocenter, remained unknown and challenging. First, the catalyst needs to differentiate a 

pair of enantiomers (intermolecular recognition) instead of different π faces (e.g., olefins) or 

different sides of ketones (intramolecular recognition). Another issue is that cleavage of the 

less sterically hindered C–C bonds (the unproductive pathway) is generally more favorable.2j 

Hence, the desired reaction would have to address regio- and enantioselectivity problems 

simultaneously. Moreover, this type of reactions typically need high reaction temperatures 

(≥120 °C),5 which makes it difficult to control enantioselectivity. In this communication, we 

describe our preliminary results of a highly selective kinetic resolution of cyclobutanones via 

a Rh-catalyzed “cut-and-sew” reaction (Scheme 2b). Surprisingly, the reaction can operate at 

room temperature with the selectivity factor up to 785. This approach provides an 

asymmetric entry to the 5,6-fused bicycles6 often found in chiral bioactive compounds,7 as 

well as α-substituted cyclobutanones that are nontrivial to prepare enantioselectively without 

stoichiometric chiral auxiliaries.

To explore the feasibility of the kinetic resolution approach, cyclobutanone 1a with a 

tethered olefin was chosen as the model substrate. After extensive studies, it was ultimately 

found that a combination of a cationic Rh complex and DTBM-segphos permitted a room-

temperature carboacylation of 1a (Table 1). The kinetic resolution was highly selective: both 

product 2a and cyclobutanone 1a were obtained in nearly theoretical yields and excellent 

optical purity (98% ee) with selectivity factor8 of 458. The reaction was also 

diastereoselective: the trans-5,6-fused ring (2a) was observed as a single diastereomer. The 

absolute stereochemistry of product 2a was confirmed through X-ray crystallography, which 

shows that the S-enantiomer of the substrate reacted selectively. The cationic rhodium 

catalyst can be smoothly generated in situ from [Rh(C2H4)2Cl]2, (R)-DTBM-segphos, and 

AgSbF6 in 1,4-dioxane. It is noteworthy that fused ring formation via a cut-and-sew reaction 

between cyclobutanones and olefins has not been reported previously.6

To gain more insights into this reaction, a series of control experiments were performed. 

Unsurprisingly, the rhodium, the silver salt, and the phosphine ligand were all essential for 

this transformation (Table 1, entries 2–4). The existing ligands on the rhodium precatalysts 

were found to be critical (entries 5–7). Ethylene and cyclooctene (COE) ligands, which 

undergo easier ligand substitution reactions, can both provide excellent yields and 

enantioselectivity; in contrast, stronger 1,5-cyclooctadiene (COD) and electron-deficient CO 

ligand led to much lower conversions. The counterions for the in situ-generated cationic 

rhodium catalysts can be extended to BF4 and NTf2, although the ee’s for the recycled 

cyclobutanone were slightly diminished with these catalysts (entries 8 and 9). DTBM-

segphos was found to be crucial for this transformation. Based on the segphos backbone, 

switching the DTBM group to other aryl substituents significantly decreased the reactivity 

(entries 10 and 11). Chiral backbones other than segphos did not provide the desired product 

at room temperature (entries 12–14). Regarding the solvent used, 1,4-dioxane was superior, 

while THF gave some decomposition, and toluene afforded no desired product (entries 15 
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and 16). Lastly, comparably results could still be obtained with a halved catalyst loading 

(entry 17).

Next, we performed density functional theory (DFT) calculations to elucidate the origin of 

the unexpected high reactivity and enantioselectivity and the unique role of DTBM-segphos. 

The calculated energy profiles of the reaction with both enantiomers of 1a (Figure 1) 

indicated the rate- and enantioselectivity-determining step is the irreversible C–C oxidative 

addition because subsequent steps have lower energy barriers. Regarding the oxidative 

addition step, a relatively low activation barrier of 22.0 kcal/mol was observed for the more 

reactive enantiomer (S)-1a, which is consistent with the experimental reactivity at room 

temperature. The most favorable oxidative addition transition state (TS1) involves the 

cleavage of the more substituted C–C bond in (S)-1a and is stabilized by the weak 

coordination of the N-tosyl oxygen to the Rh center.6 The oxidative addition of the less 

substituted C–C bond (TS3) is kinetically disfavored due to the lack of such N-tosyl 

coordination. The C–C oxidative addition with the (R)-enantiomer of 1a (TS2) requires a 

much higher barrier, in agreement with the high selectivity factor observed in experiment. 

The origin of the enantioselectivity can be rationalized by the quadrant diagrams shown in 

Figure 2. The (S)-selective transition state (TS1) places the cyclobutanone moiety and the N-

tosyl group on the substrate in quadrants I and III, which are less occupied by the C2-

symmetric (R)-DTBM-segphos ligand. By contrast, in TS2, the cyclobutanone moiety is 

placed in the more occupied quadrant (II) and the N-Ts coordination cannot be achieved 

because the coordination site is blocked by the ligand in quadrant IV. The 

diastereoselectivity is determined in the subsequent alkene migratory insertion. This step 

strongly favors the formation of the trans-substituted pyrrolidine via TS4-trans. TS4-cis 
leading to the cis-diastereomer is 4.0 kcal/mol less stable because of the unfavorable steric 

repulsions about the forming C–C bond. The resulting seven-membered rhodacycle 

intermediate 8 undergoes facile C–C reductive elimination to yield product 2a and 

regenerate the Rh(I) catalyst.

In agreement with the low reactivity of the segphos (L2)-supported Rh catalyst, the rate-

determining oxidative addition (TS6) requires a 3.3 kcal/mol higher barrier when the 

segphos ligand is employed in place of DTBM-segphos (Figure 3). To investigate the origin 

of the ligand effects on reactivity, we computed the dispersion interactions (ΔEdisp)9 between 

substrate (S)-1a and the bisphosphine ligand in the oxidative addition transition states (TS1 
and TS6) and the catalyst resting states (3 and 10) using Grimme’s DFT-D3 method10 (see 

SI for details). Because TS1 is stabilized by various C–H/C–H and C–H/π interactions 

between the (R)-DTBM-segphos ligand and the substrate (Figure 2), the ΔEdisp of TS1 is 5.6 

kcal/mol more favorable than that of the resting state 3, indicating a significant dispersion 

effect that promotes the oxidative addition.11 In the reaction with the smaller (R)-segphos 

ligand, the ΔEdisp of TS6 is only 3.6 kcal/mol more favorable than in the resting state 10. 

The weaker dispersion effects with (R)-segphos diminish the stabilization effects in the 

oxidative addition transition state, and thus lead to lower reactivity than in reactions with the 

(R)-DTBM-segphos ligand.

The substrate scope of the kinetic resolution was then investigated (Table 2). Given the 

importance of the sulfonyl oxygen coordination, the linkage can be changed to nosyl and 
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methylsulfonyl groups with good yields and excellent enantioselectivity maintained (2b–

2d).12 More substituted olefins were not reactive under the current conditions likely due to a 

slow migratory insertion step (the second highest energy barrier, Figure 1). Gratifyingly, 

alkyne-tethered cyclobutanones proved to be excellent substrates (2e–2l). Owing to the mild 

and redox-neutral reaction conditions, a number of labile groups were tolerated, including 

MOM- (2h), benzyl-(2i), acyl- (2j), and TBS-protected alcohols (2k), giving both good 

yields and excellent selectivity. Remarkably, free primary alcohol (2g) was well compatible. 

Substitution at the 3-position of cyclobutanone reduced the reactivity; however, at slightly 

elevated temperature (40 °C), the kinetic resolution still occurred with a good yield and 

excellent selectivity (2l).13

The enantio-enriched trans-5,6-fused bicyclic product (2a) can be conveniently transformed 

to a variety of other structural motifs (Scheme 3).14 For example, the ketone moiety 

underwent smooth olefination to give alkene 3 in 68% yield. LAH reduction afforded the 

secondary alcohol (4) with excellent diastereoselectivity. In addition, Fischer indole 

synthesis could be employed to efficiently generate tetracycle 5 in a good yield. Moreover, 

the gem-difluoro compound (6) was obtained upon treatment of 2a with 

(diethylamino)sulfur trifluoride (DAST).

On the other hand, the obtained enantio-enriched cyclobutanone (1a) could serve as a 

versatile precursor to access other chiral four-membered ring scaffolds (Scheme 4). For 

example, the ketone moiety could be reduced to an alcohol (7) diastereoselectively. In 

addition, after the ketal protection, the allyl moiety can be removed via a Ni-catalyzed 

isomerization. Notably, no loss of enantio-purity was observed in these reactions. The 2-

aminomethyl-1-cyclobutanol moiety has been found in a number of pharmaceutical agents.
15

In summary, we describe the discovery of kinetic resolutions/asymmetric transformations of 

cyclobutanones with existing stereocenters via a Rh-catalyzed “cut-and-sew” reaction. The 

reaction takes place at room temperature and tolerates many functional groups. High 

efficiency and excellent enantio- and diastereoselectivity have been obtained. The enantio-

enriched trans-5,6-fused ring products and C2-substituted cyclobutanones could serve as 

useful building blocks for the asymmetric synthesis of bioactive compounds. As elucidated 

by the DFT study, the reaction mechanism and the origin of the ligand effect for enhanced 

reactivity and enantioselectivity could have implications for other C–C activation reactions. 

The development of related stereo-convergent reactions is ongoing in our laboratory.16
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Computed energy profiles of the Rh-catalyzed C–C activation of (R)-1a (in blue) and (S)-1a 

(in black) at the M06/SDD-6–311+G(d,p), SMD(1,4-dioxane)//B3LYP/LANL2DZ-6–

31G(d) level of theory. Distances are in angstroms.
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Figure 2. 
Oxidative addition transition states with the (R)-DTBM-segphos-supported Rh catalyst. The 

N-allyl group in TS1 is not shown for clarity.
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Figure 3. 
Ligand effects on reactivity. Dispersion interaction energies (ΔEdisp) between the 

bisphosphine ligand and the substrate were calculated with the DFT-D3 method.11
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Scheme 1. Asymmetric C–C Activations
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Scheme 2. Enantioselective “Cut-and-Sew” Reactions between Cyclobutanones and Unsaturated 
Bonds
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Scheme 3. Transformations of Bicyclic Product 2a
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Scheme 4. Transformations of Enantio-enriched Cyclobutanone 1a
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Table 1.

Selected Conditions Optimization
a

entry modification from “standard condition” yield of 2a (ee)
b
 + 1a (ee)

b
s (conv.)

c

1 None 46% (98%) 47% (98%) 458 (50%)

2 w/o AgSbF6 10% N/D 89% N/D N/D

3 w/o (R)-DTBM-segphos 0% N/A 81% N/A N/A

4 w/o [Rh(C2H4)2CI]2/AgSbF6 0% N/A 99% N/A N/A

5 [Rh(coe)2CI]2 instead of [Rh(C2H4)2CI]2 44% (99%) 48% (95%) 747 (49%)

6 [Rh(cod)CI]2 instead of [Rh(C2H4)2CI]2 0% N/A 99% N/A N/A

7 [Rh(CO)2CI]2 instead of [Rh(C2H4)2CI]2 10% N/D 90% N/D N/D

8 AgBF4 instead of AgSbF6 44% (98%) 45% (96%) 392 (49%)

9 AgNTf2 instead of AgSbF6 45% (98%) 45% (95%) 371 (49%)

10 L1 instead of L0 12% N/D 40% N/D N/D

11 L2 instead of L0 10% N/D 67% N/D N/D

12 L3 instead of L0 0% N/A 49% N/A N/A

13 L4 instead of L0 0% N/A 95% N/A N/A

14 L5 instead of L0 0% N/A 95% N/A N/A

15 THF instead of 1,4-dioxane 36% (99%) 52% (94%) 713 (49%)

16 toluene instead of 1,4-dioxane 0% N/A 90% N/A N/A

17 5 mol% [Rh] 41% (99%) 50% (86%) 556 (46%)

a
The reaction was run on a 0.1 mmol scale at room temperature for 12–13 h, and all the yields are isolated yields except for entries 10–14 

(determined by 1H-NMR using 1,1,2,2-tetrachloroethane as internal standard).

b
Determined by chiral HPLC.

c
Calculated conversion (C) = eeSM/(eeSM + eePR); selectivity (s) = ln[(1 − C)(1 − eeSM)]/ln[(1 − C)(1 + eeSM)].
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Table 2.

Substrate Scope
a,b

a
The reaction was run on a 0.1 mmol scale.

b
All yields are isolated yields; ee was determined by chiral HPLC; selectivity (s) = ln[(1 − C)(1 − eeSM)]/ln[(1 − C)(1 + eeSM)], calculated 

conversion (C) = eeSM/(eeSM + eePD).
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c
Reaction was carried out with [Rh(CH2=CH2)2Cl]2 (10 mol%), (R)-DTBM-segphos (20 mol%), AgSbF6 (20 mol%), THF (1 mL) at 40 °C.
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