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ABSTRACT
Lung cancer is the most common malignant tumor, accounting for 25% of cancer-
related deaths and 14% of new cancers worldwide. Lung adenocarcinoma is the most
common type of pulmonary cancer. Although there have been some improvements in
the traditional therapy of lung cancer, the outcome and prognosis of patients remain
poor. Lung cancer is the leading cause of cancer-related deaths worldwide, with 1.8
million new cases being diagnosed each year. Precision medicine based on genetic
alterations is considered a new strategy of lung cancer treatment that requires highly
specific biomarkers for precision diagnosis and treatment. Fibrinogen-like protein
2 (FGL2) plays important roles in both innate and adaptive immunity. However,
the diagnostic value of FGL2 in lung cancer is largely unknown. In this study, we
systematically investigated the expression profile and potential functions of FGL2 in
lung adenocarcinoma. We used the TCGA and Oncomine datasets to compare the
FGL2 expression levels between lung adenocarcinoma and adjacent normal tissues.
We utilized the GEPIA, PrognoScan and Kaplan-Meier plotter databases to analyze
the relationship between FGL2 expression and the survival of lung adenocarcinoma
patients. Then, we investigated the potential roles of FGL2 in lung adenocarcinoma
with the TIMER database and functional enrichment analyses. We found that FGL2
expression was significantly lower in lung adenocarcinoma tissue compared with
adjacent normal tissue. A high expression level of FGL2 was correlated with better
prognostic outcomes of lung adenocarcinoma patients, including overall survival
and progression-free survival. FGL2 was positively correlated with the infiltration of
immune cells, including dendritic cells, CD8+ T cells, macrophages, B cells, and CD4+

T cells, in lung adenocarcinoma. Functional enrichment analyses also showed that a
high expression level of FGL2 was positively correlated with enhanced T cell activities,
especially CD8+ T cell activation. Thus, we propose that high FGL2 expression, which
is positively associated with enhanced antitumor activities mediated by T cells, is a
beneficial marker for lung adenocarcinoma treatment outcomes.
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INTRODUCTION
Lung cancer is a malignant lung tumor with unrestrained cell proliferation in the
lung (Schwartz & Cote, 2016). As a highly prevalent and invasive disorder in women
and men, more than 1.8 million people are diagnosed with lung cancer every year (Torre,
Siegel & Jemal, 2016). Lung cancer accounts for almost 25% of cancer-related deaths and
14% of new cancers worldwide. Although there have been some improvements in the
therapy and diagnosis of lung cancer, the outcome and prognosis of patients remain poor.
The 5-year survival rate varies from 4–17% depending on regional and stage differences.
Almost 1.6 million people die from lung cancer yearly. The lack of effective first-line
drugs, the nonoptimal administration route and the formation of resistant tumors might
be correlated with the poor prognostic survival of lung cancer patients (Pilkington et al.,
2015).

Lung cancer is generally classified into two kinds of histopathology groups: non-small
cell lung cancer and small cell lung cancer (Latimer, 2018). As the most common type of
lung cancer, lung adenocarcinoma belongs to the non-small cell lung cancer group. Fifty
percent of non-small cell lung cancer patients have a lung adenocarcinoma. It is also the
most common form of lung cancer in Asian countries. The symptoms and signs of lung
adenocarcinoma are similar to those of other types of lung cancer (Zappa & Mousa, 2016).
Shortness of breath and persistent cough are the main symptoms of lung adenocarcinoma
patients. The category of lung adenocarcinoma includes a variety of subtypes, such as acinar
predominant adenocarcinoma, lepidic predominant adenocarcinoma, and micropapillary
predominant adenocarcinoma. Radiotherapy, chemotherapy, surgical resection, and
immunotherapy are common therapies employed to treat lung adenocarcinoma. However,
because of the difficulties in diagnosing early lung adenocarcinoma, the average five-year
survival rate is only approximately 18% (Hirsch et al., 2017).

Fibrinogen-like protein 2 (FGL2) plays important roles in both innate and adaptive
immunity (Liu, Liu & Chen, 2017). The FGL2protein is located on the surface of endothelial
cells and macrophages (Yang & Hooper, 2013). CD8+ and CD4+ T cells constitutively
secrete FGL2 protein to induce an inflammatory response. Several disorders, including
severe acute respiratory syndrome (SARS), abortion and allograft rejection, are correlated
with FGL2 (Hsieh et al., 2010; Zhao et al., 2013). In the area of cancer research, previous
studies have found that altered FGL2 gene expression contributes to immune surveillance
evasion in murine renal carcinoma (Birkhäuser et al., 2013). Moreover, FGL2 contributes
to glioblastoma multiforme (GBM) progression by stimulating immunosuppression
mechanisms (Yan et al., 2015). However, the diagnostic value of FGL2 in lung cancer is
largely unknown.

In this study, we systematically explored the potential roles of FGL2 in lung
adenocarcinoma. Data downloaded from the TCGA dataset and PNAS were used to
compare the FGL2 expression levels between lung adenocarcinoma and adjacent normal
tissues. Three bioinformatics databases, including GEPIA, PrognoScan and Kaplan–Meier
plotter, were adopted to analyze the relationship of FGL2 expression and the survival of
lung adenocarcinoma patients. The TIMER database was used to discover the association
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between the immune status and FGL2 expression in lung adenocarcinoma. Functional
enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and GSEA, were used to explore the potential functions of
FGL2 in lung adenocarcinoma development.

METHODS
Bioinformatic evaluation of FGL2 gene expression data
The normalized FPKM (fragments per kilobase per million mapped reads) values were
downloaded from The Cancer Genome Atlas (TCGA) Data Portal (https://portal.gdc.
cancer.gov). Normalized RNA-Seq datasets were used as input. Microarray mRNA data
of lung adenocarcinoma were downloaded from Proc. Natl. Acad. Sci. USA (PNAS)
(https://www.pnas.org/) (Bhattacharjee et al., 2001) and the GEO database (GSE32863).
The microarray data were log2 transformed. FGL2 expression was compared between lung
cancer and normal adjacent tissues. Statistical significance was calculated with SPSS 20.0.
Detailed information of included patients are listed in Table S1.

Analysis of prognostic potential
The GEPIA, PrognoScan and Kaplan–Meier plotter databases were used to evaluate the
prognostic potential of FGL2 in lung adenocarcinoma. The GEPIA (Gene Expression
Profiling Interactive Analysis) database is a new web server (http://gepia.cancer-pku.cn/)
for cancer and normal gene expression profiling and interactive analyses. GSEA
was first introduced at 2003. Some concerns appeared immediately after GSEA was
proposed (Tamayo et al., 2016). The concerns or limitations were list as follows: the
null distribution of GSEA is superfluous and very hard to be worth calculating. The
Kolmogorov–Smirnov-like statistic is not as sensitive as original. The results of GSEA are
dependent on the algorithm clusters the genes, and the number of clusters being analyzed.
The PrognoScan database is a new database (http://dna00.bio.kyutech.ac.jp/PrognoScan/)
used to explore the relation between patient prognosis and gene expression with
large collections of tumor microarray datasets. It is a useful platform to evaluate
potential tumor markers in cancer research. The Kaplan–Meier plotter database
(http://kmplot.com/analysis/) is a useful online tool used to assess the effects of specific
genes on cancer prognosis and can estimate survival from lifetime data. Detailed
information of included patients are listed in Table S1.

TIMER database analysis
The TIMER database is a useful web tool that can be used to conduct a comprehensive
analysis of tumor-infiltrating immune cells. This tool can evaluate the relationship
between the immune status and FGL2 mRNA expression in the lung adenocarcinoma
microenvironment. The immune status includes inflammatory cells and the immune gene
marker sets of immune cells. The TIMER database was used to measure the correlation
between FGL2 mRNA expression and the infiltration of immune cells, including B cells,
CDT cells, CD4+ cells, macrophages and dendritic cells. Furthermore, the TIMER database
was used to measure the correlation between FGL2 mRNA expression and the immune
gene marker sets of immune cells.
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Figure 1 The mRNA expression level of FGL2 in lung adenocarcinoma. (A) There was a significant dif-
ference between the FPKM value of FGL2mRNA expression in lung adenocarcinoma and normal adja-
cent tissue (P < 0.001). The left bar indicates the FPKM value of FGL2mRNA expression in lung adeno-
carcinoma tissue (mean FPKM value= 3.958). The right bar indicates the FPKM value of FGL2 expres-
sion level in normal adjacent tissue (mean FPKM value= 3.266). (B) The microarray database from PNAS
showed a significant difference in the FGL2mRNA levels between lung adenocarcinoma and normal adja-
cent tissues (P = 0.001). (C) The GSE32863 database showed that the FGL2 expression level in lung ade-
nocarcinoma tissue was significantly lower than that in normal adjacent tissue (P < 0.001).

Full-size DOI: 10.7717/peerj.8654/fig-1

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were used to analyze the potential function of FGL2 with the Database for Annotation,
Visualization and Integrated Discovery (DAVID). GO analysis is a powerful bioinformatics
tool used to determine biological processes (describing the physiological or cellular role
carried out by the FGL2), cellular components (CC) and molecular functions (MF).

RESULTS
The mRNA expression level of FGL2 in lung adenocarcinoma
Related data were downloaded from the bioinformatics database TCGA Data Portal
and used to compare the mRNA expression level of FGL2 in lung adenocarcinoma and
normal adjacent tissues. The results showed that the mean FPKM value of FGL2 in lung
adenocarcinoma was 3.266, which was significantly lower than that in normal adjacent
tissue (3.958, P < 0.001) (Fig. 1A). Microarray data from PNAS and the GEO also showed
that the FGL2 mRNA expression level was lower in lung adenocarcinoma tissue than in
normal adjacent tissue (Figs. 1B–1C).

The prognostic value of FGL2 in lung adenocarcinoma
We used three databases (PrognoScan, GEPIA, Kaplan–Meier plotter) to analyze the
prognostic value of FGL2 in lung adenocarcinoma. In the GEPIA database, high FGL2
expression was correlated with better overall survival (OS) in lung cancer (OS HR =
0.61, log-rank P = 0.0016, cutoff-high = 50%) (Fig. 2A). In the PrognoScan database,
an analysis of the cohort GSE13213 showed that a high FGL2 mRNA level was related to
better overall survival in lung adenocarcinoma (OS HR = 0.68, 95% CI = 0.48 to 0.96,
Cox P = 0.029471) (Fig. 2B). In the Kaplan–Meier plotter database, high FGL2 mRNA
expression was correlated with better overall survival and progression-free survival in lung
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Figure 2 The prognostic value of FGL2 in lung adenocarcinoma. (A) The GEPIA database showed that
a high FGL2mRNA level was correlated with better overall survival (OS) in lung adenocarcinoma. (B) In
the PrognoScan database, the cohort GSE13213 was used to evaluate the relationship between the FGL2
expression level and overall survival in lung adenocarcinoma patients. (C–D) The Kaplan–Meier plotter
database was used to analyze the relationship between the FGL2 expression level and OS and progression-
free survival in lung adenocarcinoma patients.

Full-size DOI: 10.7717/peerj.8654/fig-2

adenocarcinoma patients (OS HR = 0.64, 95% CI = 0.50 to 0.81, log-rank P = 0.00027;
FP HR = 0.57, 95% CI = 0.41 to 0.79, log-rank P = 0.00061) (Figs. 2C–2D). These
results suggest that a high FGL2 expression level is correlated better outcomes of lung
adenocarcinoma.

The correlation between immune cell infiltration and FGL2 expression
in lung adenocarcinoma
We used the TIMER database to explore the correlation between immune cell infiltration
and FGL2 expression in lung adenocarcinoma. As shown in Fig. 3A, the FGL2 expression
level was positively correlated with B cell infiltration (r = 0.409, P = 5.79e−21), CD8+

T cell infiltration (r = 0.539, P = 1.37e−47), CD4+ T cell infiltration (r = 0.379,
P = 1.97e−17), macrophage infiltration (r = 0.540, P = 3.87e−38) and dendritic cell
infiltration (r = 0.718, P = 1.44e−78) in lung adenocarcinoma.
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Figure 3 The correlation between immune cell infiltration and FGL2 expression in lungadenocarci-
noma. (A–F) The TIMER database showed that FGL2 expression was positively correlated with the infil-
tration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in lung ade-
nocarcinoma. (G–N) GSEA showed that FGL2 expression was positively correlated with effector memory
CD8+ T cells, activated CD8+ T cells, activated CD4+ T cells, type 1 T helper cells, effector memory CD4+

T cells, central memory CD8+ T cells, immature dendritic cells and natural killer T cells.
Full-size DOI: 10.7717/peerj.8654/fig-3

Then, we further investigated the correlation between the FGL2 mRNA level and the
subtypes of immune cell infiltration with GSEA (Fig. 3B). FGL2 expression was positively
correlated with the infiltration of effector memory CD8+T cells, activated CD8+ T cells,
activated CD4+ T cells, type 1 T helper cells, effector memory CD4+T cells, central memory
CD8+ T cells, immature dendritic cells and natural killer T cells.

The correlation between the immune marker sets of immune cells and
FGL2 expression in lung adenocarcinoma
To validate the relationship between FGL2 expression and immune cell infiltration, we
also investigated the correlation between the immune marker sets of immune cells and
FGL2 expression in lung adenocarcinoma with the TIMER and GEPIA databases. As
shown in Table 1, data from the TIMER database indicated that FGL2 expression was
positively correlated with most of the immune marker sets. For example, FGL2 was
positively corelated with the T cell gene markers CD3D (Cor = 0.532, P = 1.97e−37),
CD3E (Cor = 0.583, P = 3.25e−46), and CD2 (Cor = 0.646, P = 1.59e−59); CD8+ T cell
(cytotoxic T lymphocyte, CTL) gene markers CD8A (Cor = 0.561, P = 3.93E−42) and
CD8B (Cor= 0.456, P = 1.03E−26), dendritic cell gene markersHLA-DPB1 (Cor= 0.635,
P = 6.07E−57), HLA-DRA (Cor = 0.683, P = 6.79E−69), and HLA-DPA1 (Cor = 0.681,
P = 1.45E−68); and Th17 gene markers ICOS (Cor = 0.667, P = 1.00E−64) and IL1B
(Cor = 0.428, P = 2.26E−23).
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Table 1 Correlation between immunemarker sets of immune cells and FGL2 expression in lung adenocarcinoma based data from TIMER
database.

Description Gene markers Cor P Description Gene markers Cor P

CD3D 0.532 1.97E−37 CD8A 0.561 3.93E−42
CD3E 0.583 3.25E−46 CD8B 0.456 1.03E−26T cell (general)

CD2 0.646 1.59E−59

CTL (Cytotoxic T
Lymphocytes )

GZMB 0.325 1.45E−13
CD19 0.232 2.01E−07 HLA-DPB1 0.635 6.07E−57
CD79A 0.21 2.54E−06 HLA-DQB1 0.386 5.34E−19
CD79B 0.316 7.03E−13 HLA-DRA 0.683 6.79E−69

B cell

CD22 0.314 7.18E−15 HLA-DPA1 0.681 1.45E−68
INOS 0.039 3.85E−01 DEC-205 0.471 1.19E−28
CIITA 0.544 2.73E−39 BDCA-1 0.424 6.01E−23
IRF5 0.307 3.39E−12 BDCA-4 0.257 6.66E−09

M1 Macrophage

COX2 −0.127 4.72E−03 BDCA-2 0.48 8.93E−30
CD163 0.618 2.61E−53

Dendritic cell

CD11c 0.46 3.07E−27
IRF4 0.375 6.49E−18 CD38 0.211 2.18E−06
VSIG4 0.604 3.00E−50 T-bet 0.48 8.15E−30

M2 Macrophage

MS4A4A 0.685 1.40E−69 STAT4 0.409 2.78E−21
CCL2 0.35 1.16E−15 STAT1 0.461 2.63E−27
CCL5 0.506 2.07E−33 IFN-γ 0.432 7.89E−24
CD68 0.554 4.95E−41

Th1

TNF-α 0.295 2.51E−11
TAM

IL10 0.603 3.42E−50 GATA3 0.313 1.22E−12
CD66b (CEACAM8) 0.237 1.06E−07 IL13 0.142 1.63E−03
CD15 0.135 2.74E−03

Th2
STAT6 0.077 8.69E−02

CD11b (ITGAM) 0.587 5.45E−47 BCL6 −0.03 5.09E−01
Neutrophils

CCR7 0.434 4.99E−24 CD200 0.275 5.64E−10
NKp46 0.405 7.42E−21 IL21 0.319 4.27E−13
NKp44 0.109 1.52E−02

Tfh

ICOS 0.667 1.00E−64
NKp30 0.481 7.29E−30 STAT3 0.035 4.39E−01
FCGR3A 0.682 1.36E−68 IL17A 0.183 4.19E−05
FCGR3B 0.326 1.13E−13 IL1A 0.227 3.36E−07
NKG2A (KLRC1) 0.351 1.01E−15 IL1B 0.428 2.26E−23
KIR2DL1 0.151 7.73E−04

Th17

CCL20 −0.052 2.53E−01
KIR2DL3 0.22 7.87E−07 FOXP3 0.456 1.04E−26

Natural killer cell

KIR3DL1 0.169 1.64E−04 CCR8 0.572 3.47E−44Treg

TGFβ 0.365 5.36E−17

Data from the GEPIA database also showed similar results to that of the TIMER database.
Detailed information is listed in Table 2.

Functional enrichment analyses of FGL2-correlated genes
WeperformedGO and KEGGpathway analyses with data obtained from the TCGA dataset.
GO analysis indicated that FGL2-correlated genes were enriched in the immune response,
the adaptive immune response, the positive regulation of T cell proliferation, the positive
regulation of interferon-gamma production, the positive regulation of tumor necrosis
factor production, T cell activation, the interferon-gamma-mediated signaling pathway,
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Table 2 Correlation between immunemarker sets of immune cells and FGL2 expression in lung adenocarcinoma based data fromGEPIA
database.

Description Gene markers Cor P Description Gene markers Cor P

CD3D 0.500 0 CD8A 0.530 0
CD3E 0.580 0 CD8B 0.390 0T cell (general)

CD2 0.640 0

CTL (Cytotoxic T
Lymphocytes )

GZMB 0.280 3.50E−10
CD19 0.240 1.30E−07 HLA-DPB1 0.510 0
CD79A 0.220 1.70E−06 HLA-DQB1 0.230 3.00E−07
CD79B 0.290 1.70E−10 HLA-DRA 0.610 0

B cell

CD22 0.290 1.50E−10 HLA-DPA1 0.610 0
INOS 0.040 3.80E−01 DEC-205 0.450 0
CIITA 0.570 0 BDCA-1 0.290 1.10E−10
IRF5 0.300 3.70E−11 BDCA-4 0.250 2.90E−08

M1 Macrophage

COX2 −0.110 2.00E−02 BDCA-2 0.420 0
CD163 0.460 0

Dendritic cell

CD11c 0.410 0
IRF4 0.300 1.70E−11 CD38 0.160 3.30E−04
VSIG4 0.500 0 T-bet 0.130 3.00E−03

M2 Macrophage

MS4A4A 0.610 0 STAT4 0.320 3.30E−13
CCL2 0.300 2.40E−11 STAT1 0.510 0
CCL5 0.430 0 IFN-γ 0.470 0
CD68 0.550 0

Th1

TNF-α 0.320 6.90E−13
TAM

IL10 0.580 0 GATA3 0.017 7.10E−01
CD66b (CEACAM8) 0.057 2.10E−01 IL13 0.240 8.30E−08
CD15 0.110 1.50E−02

Th2
STAT6 0.100 2.50E−02

CD11b (ITGAM) 0.560 0 BCL6 0.085 6.10E−02
Neutrophils

CCR7 0.410 0 CD200 0.370 0
NKp46 0.390 0 IL21 0.560 0
NKp44 0.068 1.40E−01

Tfh

ICOS 0.650 0
NKp30 0.440 0 STAT3 0.210 2.90E−06
FCGR3A 0.660 0 IL17A 0.220 8.70E−07
FCGR3B 0.430 0 IL1A −0.003 9.50E−01
NKG2A (KLRC1) 0.230 5.00E−07 IL1B 0.380 0
KIR2DL1 −0.054 2.30E−01

Th17

CCL20 −0.046 3.10E−01
KIR2DL3 0.130 5.70E−03 FOXP3 0.500 0

Natural killer cell

KIR3DL1 0.150 1.30E−03 CCR8 0.580 0Treg

TGFβ 0.330 1.80E−13

T cell costimulation, T cell differentiation, the T cell receptor signaling pathway, antigen
processing and presentation of exogenous peptide antigen viaMHCclass I, TAP-dependent,
etc (Fig. 4A). KEGG pathway analysis showed that FGL2was correlated with genes involved
in cell adhesion, natural killer cell-mediated cytotoxicity, the TNF signaling pathway, the
T cell receptor signaling pathway, antigen processing and presentation, etc. (Fig. 4B).

We also conducted GSEA to explore the biological functions of FGL2 in lung
adenocarcinoma. FGL2 expression was positively related to the inflammatory response, the
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Figure 4 Functional enrichment analysis of FGL2-correlated genes in lung adenocarcinoma. (A) GO
analysis of FGL2-correlated genes in lung adenocarcinoma with the TCGA dataset. (B) KEGG analysis of
FGL2-correlated genes in lung adenocarcinoma with the TCGA dataset. (C–H) GSEA was performed to
explore the biological functions of FGL2 in lung adenocarcinoma.

Full-size DOI: 10.7717/peerj.8654/fig-4

interferon alpha response, the interferon gamma response, TNF alpha signaling via NF-κB,
complement, and apoptosis (Fig. 4C).

DISCUSSION
Lung adenocarcinoma is a type of non-small cell lung cancer and the most common
histologic type of lung cancer. In lung adenocarcinoma, there is a variety of divergent
molecular, pathologic, and clinical spectra (Testa, Castelli & Pelosi, 2018). The common
signs of lung adenocarcinoma include weight loss, dyspnea, chest pain, and cough.
The extrapulmonary manifestations include hypercalcemia of the malignancy and
hypertrophic pulmonary osteoarthropathy. Tobacco smoking is a risk factor for lung
adenocarcinoma (Song et al., 2017). In addition to smoking, gene mutations are also
important mutagenic factors of lung adenocarcinoma (Ding et al., 2008). Somatic
mutationsmight influence tumor suppressor genes and oncogenes in lung adenocarcinoma.
Recent opinions on the treatment of lung adenocarcinoma have changed from traditional
chemotherapy to precision medicine based on the genetic alterations of cancer (Herbst,
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Morgensztern & Boshoff, 2018). Previous studies have found that many gene mutations
contribute to lung adenocarcinoma. The mutated genes include EGFR, KRAS, TP53,
STK11, NF1, and KEAP1. The EGFR-activating mutation frequency varies depending on
ethnicity and region. EGFR is correlated with the cell proliferation, invasion, survival, and
angiogenesis of tumors (Sharma et al., 2007). Oral EGFR tyrosine kinase inhibitors such
as gefitinib and erlotinib prolonged progression-free survival and the objective response
rate compared with traditional chemotherapy (Mok et al., 2009; Shepherd et al., 2005). The
inactivation of KEAP1 in KRAS mutations is related to the inhibition of glutaminase in
lung cancer (Romero et al., 2017). TP53 mutations are commonly found in advanced-grade
lung adenocarcinoma (Ahrendt et al., 2003). Precision medicine also provides genes that
are beneficial for the progression and survival of cancers. FGL2 is an important factor in
regulating the immune system. FGL2 is upregulated inGBM, promotingGBMdevelopment
by suppressing dendritic cell activities (Yan et al., 2015). However, the diagnostic value of
FGL2 in lung cancer is largely unknown. In this study, we systematically investigated the
expression profile and potential functions of FGL2 in lung adenocarcinoma.

First, we evaluated the expression of FGL2 in lung adenocarcinoma tissue and adjacent
normal tissue. Data obtained from the TCGA dataset and the Oncomine database indicated
that FGL2 expression was significantly lower in lung adenocarcinoma tissue than in
adjacent normal tissue. This implied that FGL2 might be a beneficial biomarker of lung
adenocarcinoma.

Second, we analyzed the relationship of the FGL2 level and the prognostic survival of
lung adenocarcinoma patients with three bioinformatics datasets. A high FGL2mRNA level
was correlated with better prognostic outcomes of lung adenocarcinoma, including overall
survival and progression-free survival. These results indicate that FGL2 might negatively
regulate the progression of lung adenocarcinoma.

Then, we explored the correlation between FGL2 expression and the immune status in
the tumor microenvironment of lung adenocarcinoma. FGL2 expression was positively
correlated with immune cell infiltration and immune marker sets in lung adenocarcinoma.
The immune cells included CD8+ T cells, CD4+ T cells, macrophages, B cells and dendritic
cells. CD8+ T cells (often called cytotoxic T lymphocytes or CTLs) are very important
for tumor surveillance. CD8+ T cells use three major mechanisms to kill tumor cells.
The first is the secretion of cytokines (primarily TNF-α and IFN-γ). Our results showed
that high FGL2 expression was positively correlated with IFN-γ production and signaling
and TNF-α production and signaling. The second major function is the production and
release of cytotoxic granules, which mainly contain perforin 1 (PRF1) and granzymes.
Our results showed that the expression level of FGL2 was positively correlated with the
expression levels of PRF1, granzyme K (GZMK ), GZMA, GZMH, GZMB, and GZMM.
The third antitumor function of CD8+ T cells is to induce the apoptosis of tumor cells
via Fas/Fas ligand (FasLG) interactions. Our results showed that the expression level of
FGL2 was positively correlated with the expression levels of Fas and FasLG. These results
show that high FGL2 expression is closely related to enhanced CD8+ T cell-mediated
antitumor activities. Dendritic cells (DCs) are considered important factors that provide
protective immunity against lung adenocarcinoma (Wang, Huang & Li, 2019). Inactive
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DCs are correlated with the poor prognosis of lung cancer patients. DCs present antigens
to activate antitumor T cells. Mature DCs in lung cancer express high levels of cytokines
and costimulatory molecules (CD40/80/86) to activate T cells (Macri et al., 2018). MHC
type II molecules on DCs promote the activation of CD4+ T cells. MHC type 1 molecules
on DCs promote the activation of CD8+ T cells (Liu & Cao, 2015). Except for activating T
cells, DCs can also recruit and activate NK cells by secreting C-C chemokine receptor type
5 (CCR5) at the tumor site (Liu et al., 2008). In our study, we found that FGL2 expression
was positively corelated to the infiltration of CD4+ T cells, CD8+ T cells, macrophages, B
cells and DCs in lung adenocarcinoma. In addition, the FGL2 level was positively correlated
with several subtypes of immune cells, including effector memory CD8+ T cells, activated
CD8+ T cells, activated CD4+ T cells, type 1 T helper cells, effector memory CD4+ T cells,
central memory CD8+ T cells, immature dendritic cells and natural killer T cells. These
results indicate that FGL2 plays an important role in antitumor immunity by enhancing
antitumor activities in lung adenocarcinoma.

There were some low correlation values for certain gene markers assayed to ascertain
correlation between immunemarkers and FGL2 expression. As for B cells, Table 1 indicated
the correlation of B cells gene markers varied from 0.21–0.316. In Table 2, the correlation
of B cells gene markers varied from 0.24–0.29. In addition, Fig. 3A indicated the correlation
between FGL2 and B cells was 0.409. The results showed that FGL2 has not possessed strong
correlation with B cells in the tumor microenvironment of lung adenocarcinoma. Tumor
infiltrating B cells appear in every stage of lung cancer and play critical roles in shaping
tumor progression. However, the B cells functions in antitumor immunity of lung cancer
are controversial (Wang et al., 2019). Some studies demonstrated that tumor infiltrating B
cells have protective effects on anti-tumor immunity in lung cancer, while other studies
revealed that tumor infiltrating B cells have inhibitory effects on antitumor immunity in
lung cancer. Owning to the B cells functions in antitumor immunity is dualistic, FGL2
might possessed poor or moderate correlation with B cells in the tumor microenvironment
of lung adenocarcinoma. Apart from B cells, Fig. 3A showed correlation between FGL2
and CD4+ T cells was 0.373. This result indicated that the correlation between FGL2 and
CD4+ T cells was moderate at best. Previous studies found that the role of CD4+ T cells in
antitumor activity of lung cancer is dualistic (Zheng, Hu & Yao, 2017). Some types of CD4+

T cells impair the functions of cytotoxic T lymphocytes to promote the tumor development,
while some types of CD4+ T cells induce the activation of cytotoxic T lymphocytes to exert
antitumor immune response. This might explain the reason that correlation between FGL2
and CD4+ T cells was poor and moderate in lung adenocarcinoma.

Finally, we performed functional enrichment analysis to explore the biological
functions of FGL2 in lung adenocarcinoma. GO and KEGG analyses indicated
that FGL2-correlated genes are mainly enriched in pathways involved in T cell
proliferation/differentiation/activation and antigen processing and presentation. GSEA
showed that FGL2 expression was positively correlated with enhanced tumor killing. These
results further indicate that FGL2 enhances antitumor activities in lung adenocarcinoma.

In the research conducted by Zhu et al. titled ‘‘Stroma-derived fibrinogen-like protein 2
activates cancer-associated fibroblasts to promote tumor growth in lung cancer’’, they found
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that FGL2 could promote tumor growth of lung cancer by activating cancer-associated
fibroblasts using a mouse model of Lewis lung carcinoma (Zhu et al., 2017). In the research
conducted by Yan et al. (2019) titled ‘‘FGL2 promotes tumor progression in the CNS by
suppressing CD103+ dendritic cell differentiation’’, they found FGL2 accelerated tumor
progression of GBM by suppressing CD103+ dendritic cell differentiation. In our study, we
extracted data of lung adenocarcinoma patients from different clinical databases such as
TCGA, PrognoScan, and TIMER. We found that FGL2 expression was significantly lower
in lung adenocarcinoma tissue compared with adjacent normal tissue. A high expression
level of FGL2 was correlated with better prognostic outcomes of lung adenocarcinoma
patients. We speculated that FGL2might play differential roles in distinct models of cancer.

In the mouse model of Lewis lung carcinoma, FGL2 induced an activated and pro-
tumorigenic phenotype of cancer-associated fibroblasts in the tumor microenvironment
(TME). Cancer-associated fibroblasts, also known as tumor-associated fibroblast, promote
tumorigenic features by producing cytokines, or initiating extracellular matrix remodeling
in the tumor microenvironment (Erdogan & Webb, 2017). The cytokines could disrupt
normal cell functions, such as normal cell cycle regulation to active their pro-tumor
actions (Öhlund, Elyada & Tuveson, 2014). In addition, cancer-associated fibroblasts
produce and secret angiogenic factors such as fibroblast growth factor (FGF), and vascular
endothelial growth factor (VEGF) to stimulate angiogenesis supporting the formation of
tumors and the proliferation of cancer cells and metastasis (Shiga et al., 2015).

In the mouse model of brain tumor, Yan et al. demonstrated that FGL2 promotes GBM
tumor progression by suppressing CD103+ dendritic cell differentiation. The function
of dendritic cells and their subtypes in GBM has not been elucidated clearly (Srivastava
et al., 2019). Dendritic cells might interplay with other types of immune cells including
macrophages, T cells, and microglia in the tumor microenvironment (TME). Some
researchers considered that certain subsets of dendritic cells recognize and present tumor
antigens to induce the T cells immune responses (D’Agostino et al., 2012). If the CD103+

dendritic cell differentiation was suppressed, the antigen processing functions of dendritic
cells might be impaired in GBM. So, FGL2 might promote GBM tumor progression by
suppressing CD103+ dendritic cell differentiation.

In our study, we demonstrated FGL2 was positively correlated with T cells, especially
CD8+T cells activation in the tumor microenvironment of lung adenocarcinoma patients.
CD8+T cells, also known as cytotoxic T lymphocytes (CTLs), play important role of
antitumor immune response in the tumor microenvironment (Aerts & Hegmans, 2013).
CTLs could recognize and kill tumor cells by the complex formation of T-cell receptor
(TCR) and human leukocyte antigen class (HLA). TCR and related signaling molecules
could activate the transduction cascade to induce immune synapse and stimulate antitumor
responses of CTLs (Farhood, Najafi & Mortezaee, 2019). Then, the activated CTLs produce
and secret cytotoxic granules such as granzymes and perforin into the targeted tumor
cells. Adhesive and co-stimulatory molecules including CD80/CD86, CD11a/CD18,
and lymphocyte function-associated antigen 1 (LFA-1) are important in the process
of TCR-mediated CTLs antitumor effects (Durgeau et al., 2018). CTL-associated antigen
4 (CTLA-4) and programmed death-1 receptor (PD-1)-ligand (PD-L1) are checkpoint
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receptors could be targeted to relieve CTLs exhaustion. Antigen presenting cells (APCs)
such as dendritic cells (DCs) andmacrophages could activate naïve CD8+ T cells by binding
the TCRs with CD3 and other costimulatory molecules. FGL2 is mainly expressed in APCs
such as DCs and macrophages. So, we infer that FGL2 might activate CTLs functions to
exert anti-tumor effects by stimulating APCs to bind naïve CD8+ T cells.

In brief, FGL2 might play different roles in different types of cancer models. In lung
cancer animal model conducted by Zhu et al., FGL2 might promote tumor progress
by activating cancer-associated fibroblasts in tumor microenvironment. In GBM animal
model, FGL2 promotesGBMprogress by suppressingCD103+ dendritic cell differentiation.
In clinical databases of lung cancer patients, FGL2 exhibited antitumor activities by
activating CTLs in the tumor microenvironment of lung cancer.

There are no significant differences in the expression levels of FGL2 between patients
with or without EGFR or KRAS mutations in the TCGA database. There is no significant
correlation between FGL2 and other genes implicated in lung adenocarcinoma such as
EGFR, KRAS, TP53, STK11, NF1, and KEAP1. We speculated that FGL2 might indirectly
affect those genes in lung adenocarcinoma by changing the immune status in the tumor
environment. EGFR regulates several signaling transduction cascades such as MAPK, JNK,
and Akt signaling pathways, leading to tumor cell proliferation, cell cycle progression,
angiogenesis, and metastasis (Bethune et al., 2019). EGFR-targeted therapy such as EGFR
tyrosine kinase inhibitors (EGFR-TKIs) alters the tumor microenvironment in lung
cancer (Matsumoto et al., 2019). EGFR-TKIs could increase cytotoxic CD8+ T cells and
dendritic cells in the tumor environment of lung cancer (Jia et al., 2019). FGL2 also increase
cytotoxic CD8+ T cells and dendritic cells in the tumor environment of lung cancer. So,
FGL2 might affect EGFR by influencing immune status in tumor environment of lung
cancer. KRAS is important in promoting cell survival and growth in tumor cells. Almost
30% patients with lung adenocarcinoma are positive for KRAS gene mutation (Tomasini
et al., 2016). KRAS is a strong initiator of tumorigenesis in lung adenocarcinoma. It is
also a predictive response to targeted therapy of lung adenocarcinoma (Dias Carvalho
et al., 2018). KRAS is related with immune-suppressed state by regulating components
of adaptive and innate immune response (Cullis, Das & Bar-Sagi, 2018). Mutant KRAS
could up-regulate immunosuppressive cells in tumor such as myeloid-derived suppressor
cells (MDSCs), CD4+FoxP3+ T regulatory cells, and CD19+IL10+ B regulatory cells.
These immunosuppressive cells could suppress the activities of tumoricidal cells such
as CD8+ T cytotoxic cells, natural killer (NK) cells in the tumor microenvironment.
On the contrary, FGL2 could increase the levels of tumoricidal cells such as CD8+ T
cytotoxic cells, natural killer (NK) cells in the tumor microenvironment. So, FGL2 affect
KRAS by influencing immune status in tumor environment of lung cancer. TP53 is
regarded as tumor suppressor gene that it could prevent genome mutation. TP53 could
activate DNA repair process and arrest cell proliferation by holding cell cycle (Uehara &
Tanaka, 2018). Mutation of TP53 leads to tumor escape from senescence and apoptosis.
Activation of TP53 could increase the levels of tumor-infiltrating leukocytes such as CD8+

T cells in tumor microenvironment (Guo et al., 2017). FGL2 also increases the levels of
tumor-infiltrating leukocytes such as CD8+ T cells in tumor microenvironment. So,
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FGL2 possesses synergic effects with TP53 to enhance antitumor immunity in tumor
microenvironment. STK11, known as liver kinase B1 (LKB1), regulates cell polarity and
regarded as tumor suppressor. Loss of STK11would lead to cell polarity disorganization and
induce tumor growth. Koyama et al. found that loss of STK11/LKB1 induced neutrophil
recruitment and inflammatory mediator production to suppress the T cells in tumor
environment of lung cancer (Koyama et al., 2016). In addition, STK11/LKB1 inactivated
mutations were related with reduced expression of PD-1 ligand PD-L1 in tumor cells.
So, we infer that FGL2 exert synergic effects with STK11 to enhance the cytotoxic T
lymphocytes activities in tumor environment of lung adenocarcinoma. NF1 is regarded
as a tumor suppressor in lung cancer negatively regulates RAS signaling pathway. NF1
mutations present in similar patients populations with KRAS mutation (Redig et al., 2016).
We infer that FGL2 affect KRAS by influencing immune status in tumor environment
of lung adenocarcinoma. So, FGL2 might affect NF1 function by influencing immune
status in tumor environment of lung adenocarcinoma. KEAP1 has been shown to interact
with nuclear factor erythroid 2-related factor 2 (NRF2). KEAP1-NRF2 pathway play
important role in oxidative response by inducing anti-inflammatory and antioxidant
effects. KEAP1 mutation is correlated with poor prognosis of lung cancer (Frank et al.,
2018). Aberrant KEAP1-NRF2 pathway activity alters the immune microenvironment of
lung adenocarcinoma. KEAP1 mutation is associated reduced leukocyte infiltration of
tumor microenvironment in lung adenocarcinoma (Thorsson et al., 2018). We infer that
FGL2 affects the KEAP1 effect by influencing immune status in tumor environment of lung
adenocarcinoma. So, we infer some indirect correlations might explain the mechanism
of FGL2 affecting other genes. FGL2 might affect other genes functions by influencing
immune status in tumor environment of lung adenocarcinoma.

CONCLUSION
In this study, we explored the expression profile and potential effects of FGL2 in
lung adenocarcinoma. We found that FGL2 expression was significantly lower in lung
adenocarcinoma tissue than in adjacent normal tissue. High FGL2 mRNA expression was
correlated with better prognostic outcomes of lung adenocarcinoma patients, including
overall survival and progression-free survival. These results indicate that FGL2 might
function as a negative regulator of lung adenocarcinoma. Then, we investigated the
potential mechanism of FGL2 in lung adenocarcinoma. FGL2 was positively correlated
with the infiltration of immune cells, including CD8+ T cells, CD4+ T cells, macrophages,
B cells and dendritic cells, in lung adenocarcinoma. These results imply that FGL2 exerts its
antitumor effects by enhancing immune cell infiltration in lung adenocarcinoma. GO and
KEGG functional enrichment analyses and GSEA also showed that FGL2 expression was
positively correlated with enhanced tumor killing. Thus, we propose that FGL2, which is
positively associated with enhanced antitumor activities mediated by T cells, is a beneficial
marker for lung adenocarcinoma treatment outcomes. In this study, we used bioinformatic
analysis to discover the potential roles of FGL2 in lung adenocarcinoma. In the future
studies, in vivo and in vitro experiments will carry out to demonstrate the role of FGL2 in
modulating the T cell-mediated immune response in lung adenocarcinoma.
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