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Abstract

Purpose of review: The field of neurotrauma research faces a reproducibility crisis. In 

response, research leaders in traumatic brain injury (TBI) and spinal cord injury (SCI) are 

leveraging data curation and analytics methods to encourage transparency, and improve the rigor 

and reproducibility. Here we review the current challenges and opportunities that come from 

efforts to transform neurotrauma’s big data to knowledge.

Recent Findings: Three parallel movements are driving data-driven-discovery in neurotrauma. 

First, large multicenter consortia are collecting large quantities of neurotrauma data, refining 

common data elements (CDEs) that can be used across studies. Investigators are now testing the 

validity of CDEs in diverse research settings. Second, data sharing initiatives are working to make 

neurotrauma data findable, accessible, interoperable and reusable (FAIR). These efforts are 

reflected by recent open data repository projects for preclinical and clinical neurotrauma. Third, 

machine learning analytics are allowing researchers to uncover novel data-driven-hypotheses and 

test new therapeutics in multidimensional outcome space.

Summary: We are on the threshold of a new era in data collection, curation, and analysis. The 

next phase of big data in neurotrauma research will require responsible data stewardship, a culture 

of data-sharing, and the illumination of ‘dark data’.
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Introduction

As the push for more transparency, rigor, and reproducibility in neuroscience research 

accelerates with mandates from funders and journals, it is worth considering how to best 

achieve these goals in complex neurological disorders such as neurotrauma (TBI and SCI). 
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We argue that one solution is for researchers and clinicians to recognize neurotrauma as a 

“Big Data” problem. The term “Big Data” was first characterized in the internet technology 

field in the early 21st century as data that is difficult to work with because it is ‘big’ 

according to at least one of three attributes (the 3V’s): Volume, Velocity, and Variety [1]. In 

the context of neurotrauma informatics, each of the 3Vs are represented to varying degrees. 

The mapping of complete genomes presents an issue of volume, where a single high-

throughput sequencing experiment can produce several terabytes (1012 bytes) of data [2]. 

Real-time critical care multi-monitoring allows data collection at a higher velocity than ever 

before (e.g., 60 data-points/sec) [3,4]. However, we argue that for the world of neurotrauma 

research, the key to transforming big-data-to-knowledge lies in the way we handle data 

variety [5,6]. The complexity and heterogeneity of neurotrauma, both between individuals 

and within individuals as injury processes evolve over time, require analytical methods that 

can leverage this complexity to inform decision making. Here we will discuss the current 

strategies for harmonizing large clinical and preclinical data collection efforts, and recent 

trends in multivariate analyses and machine learning aimed at integrating multimodal 

neurotrauma datasets.

Exploiting Data Sharing to Improve Reproducibility

Over the past 25 years, the burgeoning field of neuroinformatics has made great strides by 

bringing the large volume and variety of data together from across research institutions and 

disciplines. Shared public data repositories, including the Allen Brain Atlas, the US BRAIN 

Initiative, the European Human Brain Project, and the Big-Data-To-Knowledge (BD2K) 

initiative have increased in size and scope in recent years [7–10]. Further, in the past 10 

years public neuroscience databases have been federated through the Neuroscience 

Information Framework (NIF), a vast public resource developed through NIH Blueprint 

Consortium which now houses the world’s largest searchable collection of neuroscience data 

(http://neuinfo.org). NIF developed its infrastructure into SciCrunch, a scalable technology 

that allows scientific communities to create custom portals for curating, searching, 

accessing, and sharing their data with one another [11]. NIF/SciCrunch incorporate the data 

stewardship principles of findability, accessibility, interoperability, and reusability (FAIR) 

that are the guiding elements of data sharing efforts throughout the broader scientific 

community [12]. In the realm of neurotrauma, one successful example of community-driven 

FAIR data stewardship is coming from the preclinical spinal cord injury research 

community. In a series of NIH- and NGO-sponsored workshops and symposia at 

international neuroscience conferences over the last 3 years, leaders in basic and clinical 

neurotrauma research, along with bioinformaticians and industry representatives, have 

developed a data sharing community. As a result of those meetings, the Open Data 

Commons for Spinal Cord Injury (ODC-SCI) is being developed with multiple non-profit 

and federal stakeholders, and though still nascent, it is growing in size and breadth of 

datasets, demonstrating grass-roots community engagement [6].

Within the TBI research community, data sharing has been driven at the federal level in the 

form of the Federal Interagency TBI Research (FITBIR) informatics system and repository, 

a joint venture of the US Department of Defense and NIH. FITBIR contains clinical TBI 

research data with data deposition mandated as a condition of funding of clinical studies and 
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data collection guided by the expert-consensus-driven NINDS TBI common data elements 

(CDEs) [13,14]. This effort has now been extended to preclinical TBI research, providing 

common data collection standards that may enable easier data sharing in the future [15,16].

The development of ODC-SCI, FITBIR and other data sharing communities allows 

researchers to not only share published data, but also unpublished data (‘dark-data’) which 

may include pilot studies, parametric or metadata from published studies, or results from 

failed studies [5]. Bringing dark data to light is an important concept for the future of data 

sharing and knowledge discovery. Given that most published findings are highly distilled 

and compressed into a narrative in order to present the most impressive of positive results, 

we are left with a ‘long tail of dark data’ that, while not deemed essential for a high-impact 

publication, represent the vast silent majority of data collected (Fig.1). By sharing this siloed 

data across the scientific community, we reduce experimental redundancy and waste, as well 

as create exciting new opportunities for data-driven discovery through multidimensional 

analysis of pooled data resources. In the following section we will highlight some of the 

challenges and recent successes in this approach.

Refining the TBI Common Data Elements

Given the wide variety of TBI data that is now being collected, an important issue for 

handling this data is ensuring that there are consistent measurement standards across studies. 

In response to the lack of success in a number of previous TBI clinical trials, the 

International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) 

aggregated long-tail data from thousands of TBI patients from previous trials [17–19]. 

Among the successful outcomes from this effort has been the development of draft common 

data elements, which were built upon, sanctioned and codified by the National Institute of 

Health as the TBI-CDEs [20,21]. The development and implementation of TBI-CDEs for 

TBI research has been crucial for the harmonization of datasets from different trials and 

studies. The TBI-CDEs have undergone revisions over the course of the past 10 years, 

guided in part by prospective clinical observational studies Transforming Research and 

Clinical Knowledge for TBI (TRACK-TBI) [22] and the TBI Endpoints Development (TED) 

Initiative [23]. This led to TBI-CDE v2.0, and currently consists of variables across 

demographic, neuroimaging, fluid biomarkers, genomics, neurocritical care monitoring, and 

measures of behavioral and cognitive recovery. In the past year, the NINDS also partnered 

with the Department of Defense to develop a new set of CDEs specifically for sports-related 

concussion (SRC), one of the leading causes of TBI in the US [24,25].

While it is clear that data standardization has been necessary to adequately compare results 

within and between studies, recent work has been aimed at comparing and validating 

measures in order to further refine the CDEs, and eliminate redundancies that may be 

present in the over 900 measures included in CDE v2.0. For example, Harburg et al., 

recently investigated the rating variables for computed tomography (CT) imaging that are 

included in the CDEs [26]. Given that CT findings are among the most important factors for 

clinical prognosis and TBI trial inclusion, researchers sought to determine which of the 22 

CT CDE characteristics were most reliable. They found the inter-rater reliability of some CT 

measures (Marshall Grade, Sub- and Extradural Hemmorrhage, Midline Shift) to be high, 
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even when comparing novice raters to experienced neuroradiologists. In contrast, other TBI-

CDE measures such as the Fisher Grade, Depressed Fracture, and Intracranial Air were 

much less reliable. Similarly, Ngwenya et al. investigated the extent to which CDEs for 

subjective cognitive complaints after mild TBI (mTBI) were in concordance with one 

another. They compared the acute concussion evaluation (ACE) and the Rivermead Post 

Concussion Symptoms Questionnaire (RPQ) of the 228 mTBI patients, and found only 

moderate agreement between these two measures [27]. Although these instruments are 

meant to measure the same construct, the authors determined the RPQ was a better surrogate 

for cognitive impairment. These results demonstrate the need to be vigilant when testing the 

convergent and discriminant validity of the many CDEs that overlap, and that more 

parametric studies like these are needed in order to continue refining the TBI-CDEs [28].

Shedding Light on Dark-Data through Analytics

The recent multicenter TBI data collection and curation efforts are now presenting an 

opportunity to thoughtfully apply analytical approaches that will be both sensitive and 

robust. Given the attention to statistical rigor brought by the current reproducibility crisis in 

neurotrauma research [29,30], it is crucial that the great wealth of data that comes from these 

large TBI clinical studies be analyzed and interpreted in ways that yield stable, generalizable 

findings. A typical neurotrauma research article is likely to include a handful of statistically 

significant univariate measures among many tests that were run. Despite a presumably large 

amount of data collected from a number of domains, often only those analyses that best fit 

the a priori hypothesis are shown, making replication that much more improbable. We have 

gained valuable insight for how best to analyze these types of multimodal datasets from 

recent preclinical work. Haefeli et al., analyzed multiple preclinical TBI drug therapy 

experiments, and succinctly demonstrated the lurking problem inherent in running a 

multitude of univariate tests [31]. With a total of 202 rat subjects and 30 outcome variables 

collected per subject, analysis would require 6,000 pair-wise t-tests, or 300 main effects and 

interactions by ANOVA to completely capture every possible point of significance (Fig.2) 

[31]. This illustrates that if one had reported any small handful of the significant effects 

found (as would be expected in a typical scientific report), one would run the high risk of 

capitalizing on chance and reporting a false-positive finding (statistically known as ‘family-

wise Type I error’) [32]. To address this issue, Haefeli et al. used a machine learning 

approach of non-linear principal component analysis (NL-PCA) to integrate raw source data 

from multiple outcome measures across multiple studies. This approach provides the 

opportunity to observe significant relationships between multiple diverse outcome measures 

that might otherwise be missed by conventional univariate analysis of each outcome 

analyzed separately. In this case, Haefeli et al. were able to reveal a synergistic effect 

between a neurotrophic factor and an inflammatory agent, and a further interaction with 

physical training after TBI.

This multivariate approach is now proving useful in clinical TBI studies as well. TRACK-

TBI investigators recently demonstrated the utility of analyzing a large panel of blood-based 

biomarkers or imaging biomarkers collected early after TBI as a multivariate ensemble 

rather than testing the significance of each one individually [33–36]. This approach provides 

a descriptive insight into which candidate markers were most closely cross-correlated, as 
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well as the predictive value of these clusters as an ensemble on diagnostic and prognostic 

measures. Data-driven approaches are also being used to validate groups of CDEs as 

multivariate clusters that may better capture the underlying construct better than individual 

measures. For instance, the Glasgow Outcome Scale- Extended (GOS-E) is the most used 

outcome CDE in TBI, in part due to its simplicity and ease of use. But there is a tradeoff 

between simplicity and specificity, as many have noted that the GOS-E may be too crude 

and non-specific to accurately represent the complex and heterogenous nature of recovery 

from TBI [37–39]. Nelson et al., tested whether a multidimensional assessment battery may 

be more useful and informative. By integrating other domains, such as emotional and 

cognitive tests into a multivariate cluster, they uncovered that a significant number of TBI 

patients who had reached the ceiling of the GOS-E measure (score of 8, Full Recovery) 

could be still be classified as impaired by the multivariate measure [28].

Another powerful feature of a multivariate approach is that by starting from a data-driven 

perspective, new hypotheses can be generated. Nielson et al. recently used a machine 

learning tool called topological data analysis (TDA) to investigate novel predictors of 

outcome after mild TBI [40]. Rather than use a typical regression model that tests predictors 

of a single outcome measure (such as GOS-E), the TDA approach places each patient in the 

multidimensional ‘syndromic space’ of all outcome measures, and then by mapping this 

topology to different predictors, one can rapidly determine which predictors most clearly 

reflect the patient distribution in this space (Fig.3). Using this approach, they observed that 

specific genetic polymorphisms were predictive of unfavorable outcome after mild TBI. In 

this way, they were able to discover novel stratification of patients based on underlying 

genetic predisposition, and provided an avenue for future hypothesis testing of these 

polymorphisms as potential mild TBI biomarkers.

Limitations and Analytical Challenges

As the volume, velocity and variety of neurotrauma data continues to increase, so too will 

the probability that data fields are missing values. This data-feature, known in statistical 

literature as ‘missingness’, can arise for multiple reasons, from equipment failures to 

subject-related issues such as loss-to-follow-up. Data-management decisions made (either 

consciously or unconsciously) to deal with missing data can have a major effect on the 

power and validity of results from neurotrauma big data. Missing values analysis (MVA) is a 

sub-discipline within data-science that has its roots in the 1970s [41,42], but the principles of 

MVA are well-suited to be applied to the heterogenous and often incomplete data collected 

in our current neurotrauma research. However, MVA has yet to be systematically 

incorporated into neurotrauma research. One of the most fundamental questions addressed 

by MVA is whether data is missing at random, or if there is perhaps a systematic, latent 

factor (e.g. cognitive decline causing loss-to-follow-up) that is responsible for the pattern of 

missingness. Understanding this issue informs the subsequent decision-making process for 

how the missing data is handled.

Conclusions

As the field of neurotrauma continues to scale up in data collection efforts over the next 

decade, taking a big-data framework will ensure that our curation and analytic approaches 
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are designed to embrace the heterogeneity of neurotrauma data, not as an obstacle to 

overcome, but an advantage that can be leveraged to facilitate precision in knowledge-

discovery. Continued refinement and validation of common data elements will be needed to 

streamline data harmonization across centers. Likewise, analyses that are sensitive to the 

multidimensionality of neurotrauma data will be necessary to facilitate reproducibility 

across studies. Current open data initiatives are bringing the disparate knowledge domains 

together and democratizing research, and we are beginning to see the fruits of these labors. 

Our efforts must be agile and adaptable as technology advances, and our minds must remain 

open to ideas that are increasingly driven by data.
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Key Points

• The Big Data problem in neurotrauma research is characterized by the wide 

variety of data collected in preclinical and clinical studies.

• Data sharing between research centers and the continued refinement of 

common data elements are beginning to have a positive impact on research 

findings.
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Figure 1. 
Illustration of long-tail and ‘dark’ data. Studies that have plotted data set size against the 

number of data sources reliably uncover a skewed distribution. Well-organized big data 

efforts featuring homogenous, well-organized data represent only a small proportion of the 

total data collected by scientists. A very large proportion of scientific data falls in the long-

tail of the distribution, with numerous small independent research efforts yielding a rich 

variety of specialty research data sets. The extreme right portion of the long tail includes 

data that are unpublished; such as siloed databases, null findings, laboratory notes, animal 

care records, etc. These dark data hold a potential wealth of knowledge but are often 

inaccessible to the outside world. Modified from Ferguson et al., 2014.
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Figure 2. 
Univariate versus Multidimensional Analytical Workflows. (a) Collected outcomes measures 

in a preclinical model of TBI. Measures span information about lesion characteristics, 

motor, cognitive and general health domains. (b) Variables selected in an arbitrary fashion. 

Bar graphs reflect estimated marginal means of significant main effects and line graphs 

reflect significant interactions. (c) Frequency distribution and piechart of univariate p-values, 

illustrating the hundreds univariate analyses that could come this diverse dataset. (d) A 

model workflow to analyze all outcome measures from a multivariate approach. Outcome 
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variables of all 202 rats are fed into a non-linear principal component analysis (NL-PCA). 

NL-PCA handles different analysis levels (e.g., ordinal and numeric) in the dataset by 

optimal-scaling transformations. The NL-PCA loading pattern shows the weight of every 

outcome variable on the obtained PCs. Individual subject-level PC scores are calculated by 

summing the optimally-transformed data variable values weighted by loadings. A linear 

mixed model (LMM) can then be used to run a single hypothesis test on the 

multidimensional outcome measure (i.e., PC score). Modified from Haefeli et al., 2017.
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Figure 3. Integrating Diverse Clinical TBI Data.
Model of multivariate dimension reduction. (a) Patients are tracked across multiple domains 

(function, biomarkers, imaging, providing connections (lines) across domains to improve 

patient classification using the full syndromic space. (b) Multivariate pattern detection lens 

can be used to categorize (colors) patients across all domains. (c) Patient grouping by 

multivariate lens. (d) Topological visualization renders patient groups into individual nodes, 

colored by the multivariate lens. Edges (black lines) indicate individuals appearing in both 

groups producing a syndromic map of patient clusters. Network Topology For Identifying 
Novel Predictors of Outcome. Patients with traumatic brain injury were mapped onto a 

topological data network, highlighting color schemes for CT (e) and MRI (f) brain lesion 

pathology and whether they had a confirmed diagnosis of PTSD (DSM IV) at 6 months 

post-TBI (g). Patients in the circled regions of the network were identified due to substantial 

dysfunction measured by the GOS-E both at 3 months (h) and 6 months (i) post-TBI, 

compared with other patients in the network with no CT pathology and no diagnosis of 

PTSD. Data-driven exploration of these patients in the network revealed a significant 

categorical enrichment for the PARP1 SNP (g), Panels e-g yes (1 = red) vs, no (0 = blue); 

Panels h-i GOS-E range from less than 3 (blue) to 8 (red); Panel j PARP1 allele A/A = 1 = 

blue, A/T = 2 = yellow/green, T/T = 3 = red. Modified from Nielson et al., 2017.
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