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Background.  Herpes zoster is linked to amyloid-associated diseases, including dementia, macular degeneration, and diabetes 
mellitus, in epidemiological studies. Thus, we examined whether varicella-zoster virus (VZV)-infected cells produce amyloid.

Methods.  Production of intracellular amyloidogenic proteins (amylin, amyloid precursor protein [APP], and amyloid-β [Aβ]) 
and amyloid, as well as extracellular amylin, Aβ, and amyloid, was compared between mock- and VZV-infected quiescent primary 
human spinal astrocytes (qHA-sps). The ability of supernatant from infected cells to induce amylin or Aβ42 aggregation was quan-
titated. Finally, the amyloidogenic activity of viral peptides was examined.

Results.  VZV-infected qHA-sps, but not mock-infected qHA-sps, contained intracellular amylin, APP, and/or Aβ, and amyloid. 
No differences in extracellular amylin, Aβ40, or Aβ42 were detected, yet only supernatant from VZV-infected cells induced amylin 
aggregation and, to a lesser extent, Aβ42 aggregation into amyloid fibrils. VZV glycoprotein B (gB) peptides assembled into fibrils 
and catalyzed amylin and Aβ42 aggregation.

Conclusions.  VZV-infected qHA-sps produced intracellular amyloid and their extracellular environment promoted aggrega-
tion of cellular peptides into amyloid fibrils that may be due, in part, to VZV gB peptides. These findings suggest that together with 
host and other environmental factors, VZV infection may increase the toxic amyloid burden and contribute to amyloid-associated 
disease progression.
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Varicella-zoster virus (VZV) is latent in ganglionic neurons in 
>90% of the world population [1–3]. With aging and immuno-
suppression, VZV reactivates and travels transaxonally to mul-
tiple organs, typically producing zoster (shingles), as well as 
multisystem disease including stroke, keratitis, retinal necrosis, 
myelopathy, and gastritis with or without rash [4, 5]. Recent 
studies have linked zoster with 3 diseases characterized by am-
yloid deposition: dementia, neovascular age-related macular de-
generation (AMD), and diabetes mellitus (DM). In a retrospective 
cohort study of healthy and herpes zoster ophthalmicus subjects, 
herpes zoster ophthalmicus conferred a 2.97-fold greater risk of 
developing dementia, of which Alzheimer disease (AD) was most 
common, over a 5-year period (P < .001) [6]; this risk was still 

increased, but to a lesser degree, if zoster occurred in any derma-
tome (1.11-fold; P < .0014) and antiviral therapy reduced the risk 
[7]. Zoster also conferred a 4.62-fold increased risk of developing 
neovascular AMD over 3 years (P < .001) [8] and a deterioration 
in glycemic control among subjects with DM [9].

Although these previous studies show an epidemiolog-
ical association between VZV reactivation (zoster) and 3 
amyloid-associated diseases, the direct role of VZV infection 
in amyloid production has not been demonstrated. During 
reactivation from sensory ganglia, VZV can enter the central 
nervous system along neurites that synapse within the spinal 
cord. Because VZV preferentially infects spinal astrocytes [10, 
11], we determined whether VZV infection of primary human 
spinal astrocytes (HA-sps) produced increased levels of amy-
loid and amyloidogenic cellular peptides, including amyloid-β 
(Aβ) found in AD plaques and in drusen of AMD, as well as 
amylin found in AD plaques and pancreatic amyloid deposits 
in DM. Furthermore, we examined predicted amyloidogenic 
viral peptides within VZV glycoprotein B (gB) to determine 
whether they may contribute to VZV’s ability to accelerate am-
yloid deposition.
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METHODS

Cells and Virus

Quiescent primary HA-sps (qHA-sps; Sciencell) were cocultured 
with either VZV-infected HA-sps (40 plaque-forming units/
cm2; VZV Gilden strain, GenBank No. MH379685) or unin-
fected HA-sps (mock infected) as described [11]. Cells and 
supernatants (spun at 2000 RPM for 5 minutes to eliminate 
nonadherent VZV-infected cells [11]) were analyzed at 3 days 
postinfection (DPI; height of cytopathic effect).

Reverse Transcription and Quantitative PCR

RNA was extracted and reverse transcribed as described 
[11]; cDNA was analyzed by quantitative polymerase 
chain reaction (qPCR) using primers for amylin (Life 
Technologies; Hs00169095_m1), amyloid precursor pro-
tein (APP; Integrated DNA Technologies; NM_201414), 
VZV (FWD: CGAACACGTTCCCCATCAA; REV: 
CCCGGCTTTGTTAGTTTTGG; probe: FAM/
T C C A G G T T T T A G T T G A T A C C A - / B k F Q / ) , 
and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH; 
FWD: CACATGGCCTCCAAGGAGTAA; REV: TGAGGGT- 
CTCTCTCTTCCTCTTGT; probe: VIC/CTGGACCACCAGC- 
CCCAGCAAG-/BkFQ/) as described [12]. Data were 
normalized to GAPDH and analyzed using the ∆∆ cycle 
threshold (Ct) method or ∆Ct method when only the VZV-
infected group had detectable transcripts.

Immunofluorescence Antibody Assay and Intracellular Thioflavin-T 

Fluorescence Assay

Quiescent HA-sps were plated in clear-bottom plates (24-
well µ-plate; ibidi) and infected. At 3 DPI, cells were washed 
with phosphate-buffered saline, fixed for 20 minutes in 4% 
paraformaldehyde, permeabilized with 0.1% Triton-X for 10 
minutes, and blocked in 5% normal goat serum. To deter-
mine VZV colocalization with amylin and amyloid or with 
Aβ and amyloid, 2 sets of immunofluorescence antibody as-
says (IFAs) were performed as described [11]. In the first set, 
mock- and VZV-infected qHA-sps were incubated with pri-
mary mouse anti-VZV gB (1:250 dilution; Abcam) and rabbit 
antiamylin antibodies (1:500; Abcam). In the second set, cells 
were incubated with primary rabbit anti-VZV 63 (1:10  000) 
[13] and mouse antiamyloid-β aa1–16 antibodies (1:500; 
BioLegend). Secondary antibodies were Alexa Fluor 647 goat 
anti-mouse and Alexa Fluor 594 goat anti-rabbit IgGs (both at 
1:500; Life Technologies). Nuclei were stained with 2  µg/mL 
4′,6-diamidino-2-phenylindole (DAPI; Vector Labs). To detect 
amyloid-like fibrillar structures comprised of amylin, Aβ, and/
or other amyloidogenic peptides, both sets were then incubated 
for 8 minutes at room temperature with filtered 1% thioflavin-T 
(Thio-T) in distilled water (MilliporeSigma), dehydrated 
in 75%, 80%, and 95% ethanol for 3 minutes each, and rehy-
drated in deionized water. Wells were imaged using an Olympus 

IX73 fluorescence microscope with cellSens imaging software 
(Olympus Corporation).

Acyclovir Treatment

HA-sps were plated on clear-bottom plates for IFA and in 24-well 
plates for DNA analysis then mock and VZV infected. After 24 
hours, 44 µM of acyclovir (MilliporeSigma) or vehicle dimethyl 
sulfoxide (DMSO) was added and replenished every 24 hours. 
At 1, 2, and 3 DPI, DNA was extracted and qPCR using primers 
for GAPDH and VZV was performed [11]; at 1 and 3 DPI, IFA 
analysis and a Thio-T assay as above was performed.

Amylin and Aβ ELISA

Mock- and VZV-infected cell supernatants were analyzed in du-
plicate for amylin by an enzyme-linked immunosorbent assay 
(ELISA; MilliporeSigma). Similarly, the processed forms of APP 
(Aβ38, Aβ40, and Aβ42) were quantified using the V-Plex Plus 
Aβ peptide panel 1 ELISA (Mesoscale Discovery).

Peptides and Thio-T Fluorescence Assay

VZV gB was scanned for predicted amyloidogenic regions 
(waltz.switchlab.org). Based on 5 regions identified, peptides 
spanning 3 selected amyloidogenic regions of interest (ROI 1, 
2, and 3) and spanning a nonamyloidogenic region (NEG) were 
synthesized (GenScript Biotech Corp). Lyophilized peptides 
were resuspended in 50  μL DMSO then diluted in nanopure 
water (final concentration, 2 mg/mL). Human amylin was re-
suspended in nanopure water (final concentration, 156  μM). 
For aggregation assays, 10, 50, and 100 μg of each VZV peptide 
was further diluted in 200 μL of nanopure water with or without 
50 μM amylin (within the estimated physiological range [14]), or 
4 μM Aβ42 (optimized concentration for Thio-T and aggrega-
tion assays), and then incubated at 37°C for 24 hours or 1 hour, 
respectively. Five microliters of peptide solution was added to 
195  μL of nanopure water and 75  μL of 13.5  μM Thio-T (in 
50 mM glycine) in a black 96-well plate, incubated in the dark 
for 10 minutes, and analyzed on a fluorescence plate reader. 
Excitation and emission wavelengths were 440 and 490 nm, re-
spectively. Final concentrations for each VZV peptide solution 
were approximately 3, 15, and 30 μM. In a similar experiment, a 
low (5 μM) or high (50 μM) concentration of amylin was added 
to a constant 15 μM ROI 3 solution. All samples were run in 
triplicate.

Transmission Electron Microscopy

Mock- or VZV-infected cell supernatants were incubated with 
50 μM human amylin at 37ºC for 72 hours or with 4 μM Aβ42 
for 1 hour. A negative charge was applied to copper mesh grids 
coated with formvar and carbon using the PELCO easiGlow 
Discharge system. For each sample, 5  µL was applied to a 
charged grid for 20 seconds and blotted with Whatman filter 
paper. Grids were rinsed with MilliQ water, stained with 0.75% 
uranyl formate, rinsed with water, air dried, and imaged on 
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a FEI Tecnai G2 Biotwin transmission electron microscope 
(TEM; FEI Company) at 80 kV with an Advanced Microscopy 
Techniques side-mount digital camera.

Statistical Analysis

A 1-way ANOVA corrected for multiple comparisons was used 
to test for differences in Thio-T fluorescence intensities of the 
ROI and NEG peptides at 3, 15, and 30  µM alone, as well as 
in the presence of amylin or Aβ42. Individual t tests corrected 
for multiple comparisons were used to test for statistical signif-
icance between amylin alone versus amylin/ROI 3 at both the 
low and high concentrations. α was set at .05.

RESULTS

VZV-Infected qHA-sps Contain Amylin, APP/Aβ Peptides, and Amyloid

To determine if VZV alters amylin and APP transcripts, mock- 
and VZV-infected qHA-sp RNA was analyzed by reverse tran-
scription and qPCR at 3 DPI. Amylin transcripts were absent 
in mock-infected but present in VZV-infected qHA-sps (mean 
ΔCt ± SEM, 14.75 ± 0.67; n = 4). No differences in APP tran-
scripts were seen.

Mock- and VZV-infected cells were analyzed by IFA using 
antibodies against: (1) VZV gB or VZV 63, (2) amylin, and (3) 
Aβ aa1–16, which detects both full-length APP and its pro-
cessed forms (Aβ peptides), as well as by Thio-T fluorescence 
assay that detects β-sheets in amyloid-like fibrillar structures 
(prefibrillar oligomers and fibrils, referred to as amyloid here-
after). Mock-infected qHA-sps did not express VZV, amylin, or 
APP/Aβ and were Thio-T negative (Figure 1A and 1B, top rows). 
VZV-infected qHA-sps expressed VZV gB/63, amylin, and 
APP/Aβ and were Thio-T positive (Figure 1A and 1B, bottom 
rows; arrows indicate representative cells); amyloidogenic pro-
teins and amyloid were not seen in uninfected bystander cells. 
Overall, VZV infection of qHA-sps induced amyloidogenic 
protein expression and amyloid.

VZV gB and Amyloid Persist After Acyclovir Treatment

To determine if ongoing VZV DNA replication is required for 
VZV gB expression and accumulation of amyloid, HA-sps were 
VZV infected then treated with vehicle or acyclovir at 1 DPI. 
PCR showed VZV DNA increasing in vehicle-treated cells over 
3  days, whereas acyclovir significantly reduced levels of VZV 
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Figure 1.  Varicella-zoster virus (VZV)-infected quiescent primary human spinal astrocytes (qHA-sps) contain amylin, amyloid precursor protein (APP)/amyloid-β (Aβ), and 
amyloid. Mock- and VZV-infected qHA-sps were analyzed at 3 days postinfection by an immunofluorescence antibody assay using antibodies against VZV glycoprotein B (gB) 
or open reading frame 63, amylin, and amyloid-β aa1–16 that detects full-length APP and its processed forms (Aβ peptides), as well as by a thioflavin-T (Thio-T) fluorescence 
assay that detects β-sheets in amyloid-like fibrillar structures (prefibrillar oligomers and fibrils). A, Mock-infected qHA-sps did not contain VZV gB or amylin and were Thio-T 
negative. VZV-infected qHA-sps contained VZV gB (red) and amylin (yellow) and were Thio-T positive (green; arrows indicate representative cells). Uninfected bystander cells 
in VZV cultures did not contain amylin and were Thio-T negative. B, Mock-infected qHA-sps did not contain VZV 63 or APP/Aβ and were Thio-T negative. VZV-infected cells 
contained VZV 63 (red) and APP/Aβ (yellow) and were Thio-T positive (green; arrows indicate representative cells). Uninfected bystander cells in VZV cultures did not contain 
APP/Aβ and were Thio-T negative. Blue corresponds to DAPI staining of cell nuclei (original magnification ×400).
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DNA at 2 and 3 DPI (Figure 2A). At 1 DPI in both cultures, 
VZV gB-positive cells had no to minimal expression of amylin 
or APP/Aβ (Figure 2B and 2C, respectively) and were Thio-T 
negative. However, at 3 DPI, amylin and APP/Aβ were found 
in VZV gB-positive cells, albeit with fewer infected cells in the 
acyclovir-treated cultures (Figure 3A and 3B; arrows indicate 
representative cells; field taken of acyclovir-treated cultures had 
most concentrated areas of infection).

VZV-Infected qHA-sps Produce an Amyloidogenic Extracellular 

Environment Independent of Secreted Amylin, Aβ40, or Aβ42 Concentrations

Mock- and VZV-infected cell supernatants did not contain de-
tectable amylin or Aβ38. No significant differences in Aβ40 or 
Aβ42 were detected between mock- and VZV-infected qHA-sps 
(Aβ40, mean ± SEM, 58.99 pg/mL ± 9.9 vs 23.99 pg/mL ± 10.34; 
Aβ42, mean ± SEM, 1.89 pg/mL ± 0.36 vs 1.20 pg/mL ± 0.41, 
respectively; P > .05, n = 2 and 3, respectively).

Although extracellular amyloidogenic peptides were not al-
tered, we tested whether supernatants differed in their ability 
to induce cellular peptide aggregation by adding amylin or 
Aβ42. After adding amylin, mock-infected cell supernatant 
revealed minimal amyloid fibrils, whereas VZV-infected cell 

supernatant showed abundant fibrils (Figure 4A, arrows). 
After adding Aβ42, mock-infected cell supernatant revealed 
globular aggregates that differed from the branching amyloid 
structures seen in VZV-infected cell supernatant (Figure 4B, 
arrows). Thus, VZV-infected cell supernatant contained fac-
tors that promoted aggregation of amylin into amyloid fibrils 
and, to a lesser extent, of Aβ42 into more branched amyloid-
like structures that were not induced by mock-infected cell 
supernatant.

VZV gB Contains Amyloidogenic Sequences

The ability of supernatant from VZV-infected qHA-sps to in-
duce amyloid formation without increased amylin or Aβ levels 
raised the possibility that a viral peptide may contribute to am-
yloid formation. We focused on the transmembrane protein 
VZV gB because it is highly abundant during infection and rep-
resents the predominant antibody response in elderly subjects’ 
sera [15]. The Waltz algorithm predicted 5 amyloidogenic 
sequences within VZV gB (GenBank, ABW06910.1). Of these, 
we selected 3 amyloidogenic regions of interest (ROI 1–3) and 
1 region predicted to be NEG to synthesize and investigate 
(Figure 5A and 5B).
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Figure 2.  Acyclovir decreases varicella-zoster virus (VZV) DNA accumulation and no amyloid is detected early in infection. A, Primary human spinal astrocytes (HA-sps) 
were VZV infected then treated with either acyclovir or vehicle at 1 and 2 days postinfection (DPI). The VZV DNA fold change at 2 and 3 DPI, relative to the sample’s corre-
sponding 1 DPI, was compared between vehicle- and acyclovir-treated HA-sps. At 2 and 3 DPI, the VZV DNA fold changes in acyclovir-treated cells were significantly lower 
than in vehicle-treated cells. **P < .01, ***P < .001; n = 3 independent experiments. B, Vehicle- and acyclovir-treated HA-sps were analyzed at 1 DPI by an immunofluo-
rescence antibody assay using antibodies against VZV glycoprotein B (gB) or open reading frame 63, amylin, and amyloid-β (Aβ) aa1–16 that detects full-length amyloid 
precursor protein (APP) and its processed forms (Aβ peptides), as well as by a thioflavin-T (Thio-T) fluorescence assay that detects β-sheets in amyloid-like fibrillar structures 
(prefibrillar oligomers and fibrils). At 1 DPI, both vehicle- and acyclovir-treated, VZV-infected HA-sps contained VZV gB (red), no to minimal amylin (yellow), and were Thio-T 
negative. C, Similarly, both treatment groups expressed VZV 63 (red), minimal amyloid-β (yellow), and were Thio-T negative. Blue corresponds to DAPI staining of cell nuclei 
(original magnification ×400). Abbreviations: Acy, acyclovir; Veh, vehicle.
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VZV gB Peptides Self-Aggregate Into Amyloid Fibrils and Accelerate 

Amylin and Aβ42 Aggregation

Synthesized viral peptides were tested for their ability to form 
amyloid using Thio-T. As ROI concentrations increased from 
3 µM to 15 µM to 30 µM, ROIs 1 and 2 showed significant fold 
increases in fluorescence intensity compared to their lowest 
concentrations, indicating that these peptides self-aggregated 
to form amyloid (Figure 6A). In contrast, ROI 3 and the NEG 
peptide did not have increased fluorescence, indicating that 
they did not self-aggregate and form amyloid (Figure 6A). At 
the highest peptide concentration (30  µM), ROI 1 produced 
abundant amyloid fibrils on TEM, whereas NEG had no detect-
able fibrils (Figure 6B), confirming that fluorescence intensities 
were measuring amyloid.

To test whether VZV gB peptides accelerated amyloid forma-
tion in the presence of amylin, different concentrations (3 µM, 
15 µM, or 30 µM) of ROI 1–3 and of the NEG peptide were in-
cubated with 50 µM amylin for 24 hours then assayed by Thio-T. 
Compared to amylin alone, ROI 1 dose-dependently increased 
amyloid formation when added to amylin (Figure 6C). ROI 2 
did not significantly increase amyloid formation in the presence 
of amylin. Interestingly, although ROI 3 did not self-aggregate, 

it significantly increased amyloid formation in the presence of 
amylin (Figure 6C). NEG peptide did not influence amyloid ag-
gregation in the presence of amylin (Figure 6C). Similarly, dif-
ferent concentrations of each ROI 1–3 and NEG peptide (3 µM, 
15 µM, or 30 µM) were incubated with 4 µM Aβ42 for 1 hour. 
Compared to Aβ42 alone, both ROI 1 (3, 15, and 30 µM) and 
ROI 3 (15 and 30 µM) peptides had significant fold increases 
in fluorescence (Figure 6D). Similar to amylin, the ROI 2 and 
NEG peptide did not accelerate Aβ42 aggregation (Figure 6D). 
Given the ability of ROI 3 to act as a catalyst, 15 µM of ROI 3 
was incubated with a low (5 µM) or high (50 µM) concentra-
tion of amylin. Compared to 5 µM amylin alone, the addition of 
15 µM of ROI 3 significantly reduced fluorescence, indicative of 
decreased amyloid (Figure 7). In contrast, compared to 50 µM 
amylin alone, the addition of 15 µM of ROI 3 significantly in-
creased fluorescence, indicative of increased amyloid (Figure 7).

Together, these results indicate that specific VZV gB pep-
tides can self-assemble to form amyloid and can accelerate am-
yloid fibrillization when exposed to an amyloidogenic cellular 
peptide. In addition, it appears that the decrease or increase 
in amyloid formation with ROI 3 is dependent on amylin 
concentrations.
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Figure 3.  Acyclovir does not prevent the accumulation of amylin, amyloid-β, or amyloid at 3 days postinfection (DPI) in varicella-zoster virus (VZV)-infected primary human 
spinal astrocytes (HA-sps). A, Vehicle- and acyclovir-treated HA-sps were analyzed at 3 DPI by an immunofluorescence antibody assay using antibodies against VZV glyco-
protein B (gB) or open reading frame 63, amylin, and amyloid-β (Aβ) aa1–16 that detects full-length amyloid precursor protein (APP) and its processed forms (Aβ peptides), 
as well as by a thioflavin-T (Thio-T) fluorescence assay that detects β-sheets in amyloid-like fibrillar structures (prefibrillar oligomers and fibrils). At 3 DPI, both vehicle- and 
acyclovir-treated, VZV-infected HA-sps contained VZV gB, amylin, and were Thio-T positive. B, Similarly, both treatment groups expressed robust VZV 63, amyloid-β, and 
were Thio-T positive. Arrows indicate representative cells containing VZV, amyloidogenic peptides, and amyloid. Blue corresponds to DAPI staining of cell nuclei (original 
magnification ×400).
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DISCUSSION

The spectrum of disease produced by protein misfolding and 
aggregation into toxic, proinflammatory amyloid species con-
tinues to expand with clinical disease corresponding to sites 
of aggregation, such as the brain, retina, and pancreas in AD, 
AMD, and DM, respectively. Triggers for amyloid formation 
are multifactorial and complex, involving interactions be-
tween environmental and host factors (genetic variants and 
age-associated changes such as decreased glymphatic clearance, 
altered extracellular matrix proteins, and immunosenescence); 
however, infectious agents have been proposed as triggers [16–
18]. Elucidating the role of infection in amyloid disease pro-
gression is essential as pathogens may serve as early therapeutic 
targets.

Epidemiological reports show that VZV reactivation (zoster) 
increases dementia and neovascular AMD risk and decreases 
glycemic control in DM patients [6–9, 19]. Herein, we extended 
these association studies by demonstrating that direct VZV in-
fection of qHA-sps increased expression of amyloidogenic pro-
teins, amylin and APP/Aβ, and produced intracellular amyloid. 

These effects still occurred with acyclovir treatment indicating 
that cells already infected with VZV will continue to accumulate 
amyloidogenic peptides and amyloid within 3 DPI. However, in 
vivo and in the presence of immune cells/degrading enzymes, 
the persistence of VZV gB and continued amyloid accumula-
tion may vary. VZV infection also resulted in an extracellular 
environment that promoted cellular peptide aggregation into 
amyloid fibrils that may be due, in part, to VZV gB peptides. 
These findings suggest that in combination with host and envi-
ronmental factors, as well as virus-induced inflammation and 
cell death, VZV infection may accelerate toxic amyloid forma-
tion, contributing to amyloid-associated disease progression.

To our knowledge, VZV induction of amylin expression is 
the first demonstration of a virus regulating human amylin ex-
pression and provides a potential link between VZV infection, 
DM, and cognitive impairment. Amylin, a 37-residue peptide 
hormone that is expressed in pancreatic β cells, is cosecreted 
with insulin in the same vesicle  and plays a role in glycemic 
regulation. In obese and insulin-resistant individuals, elevated 
circulating amylin levels (hyperamylinemia) are seen. Increased 
amylin concentrations lead to misfolding and oligomer/fibril 
formation in pancreatic islets, which deplete β cells and con-
tribute to DM. Hyperamylinemia has also been associated 
with cognitive decline [20] with amylin and/or Aβ aggregates 
detected in AD brains [21, 22]. Aside from pancreatic β cells, 
amylin gene expression has been detected in neuroendocrine 
cells of the stomach, dorsal root ganglion [23–25], and devel-
oping kidney [26], although its function in these different cell 
types is not well characterized. The ability of VZV infection to 
induce intracellular amylin expression in astrocytes raises the 
intriguing possibility that during virus infection/reactivation, 
multiple cell types can be infected and induced to produce 
amylin. Depending on the ability of the infected cells to package 
and secrete amylin, hyperamylinemia may develop or worsen—
leading to increased amyloid deposition. The spectrum of VZV-
infected cells that produce and secrete amylin that can serve 
as a “seed” for amyloid formation remains to be determined. 
However, it is well established that VZV can infect neurons and 
glia, retina and associated vasculature, and pancreas in the con-
text of AD, AMD, and DM, respectively, supporting the biolog-
ical plausibility that infection at specific sites can contribute to 
different types of amyloid-associated diseases.

Determining how VZV induces amylin expression and 
amylin’s function during viral infection provides potentially 
promising new avenues for future investigation. Specific amylin-
inducing factors include monocyte chemoattractant protein-1 
[27], tumor necrosis factor-α [28], and fatty acids [29]. Among 
these, fatty acids are likely candidates because VZV can increase 
fatty acid synthesis during infection [30], contributing to VZV 
glycoprotein maturation and to the synthesis of complete in-
fectious virions [31]. The function of amylin during VZV in-
fection still needs to be investigated. Amylin production may 
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Figure 4.  Varicella-zoster virus (VZV)-infected quiescent primary human spinal 
astrocytes (qHA-sps) produce an amyloidogenic extracellular environment. A, When 
incubated with 50  µM amylin for 72 hours, conditioned supernatant from mock-
infected qHA-sps showed rare amyloid fibrils (red arrows), whereas supernatant 
from VZV-infected qHA-sps produced abundant amyloid fibrils (red arrows), as visu-
alized by transmission electron microscopy. B, When incubated with 4 µM amyloid-
β42 (Aβ42) for 1 hour, supernatant from mock-infected qHA-sps showed condensed 
amyloid fibrils, whereas supernatant from VZV-infected qHA-sps produced slightly 
more branched and elongated amyloid fibrils.
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be antimicrobial—either through the formation of voltage-
dependent, relatively nonselective ion channels in the cell mem-
brane that kill the cell [32] or through amyloid formation that 
entraps the virus [17]. Alternatively, amylin/amyloid may play 
a different role, as demonstrated by functional amyloids found 
from bacteria to mammals that form biofilms and scaffolds, reg-
ulate melanin synthesis, and epigenetically control polyamines 
and information transfer (reviewed in reference [33]).

While VZV infection did not alter APP transcripts, APP pro-
tein was detected in VZV-infected cells but not mock-infected 
cells. This is consistent with a previous study showing that astro-
cytes contain APP transcripts but no protein due to a translation 
block; activation by interleukin IL-1α (IL-1α) or IL-1β releases 
this block and APP protein is produced [34]. In our case, VZV 
infection did not activate astrocytes, as demonstrated by the lack 
of infection-induced cytokine production [35]. Instead, VZV 
induced alterations within infected cells, but not uninfected 
bystander cells, and most likely released the APP translational 
block,  leading to APP protein and/or Aβ peptide production. 
Thus, VZV-induced upregulation of 2 amyloidogenic cellular 
proteins (amylin and APP/Aβ) most likely promotes the for-
mation of intracellular amyloid. It is important to note that 
in diseases associated with extracellular amyloid deposits, in-
cluding AD, it has been proposed that the deposits originate 

intracellularly (reviewed in reference [36]), raising the possi-
bility that following infection and subsequent virus-induced ap-
optosis, intracellular amyloid is released extracellularly, serving 
as a “seed” for further aggregation extracellularly.

Our finding that VZV-infected cell supernatant in-
duced amyloidogenic peptide aggregation and formed 
amyloid fibrils, independent of secreted amylin or Aβ pep-
tides, support the notion that VZV infection produces an 
amyloidogenic environment by stimulating the production 
of amyloid-promoting factors, by decreasing the activi-
ties of amyloid-inhibiting factors, or by both. Such factors 
have been reported, including (1) antichymotrypsin and 
apolipoprotein E that serve as pathological chaperones/am-
yloid catalysts binding to Aβ peptides and facilitating po-
lymerization into amyloid filaments [37, 38], and (2) matrix 
metalloproteinase-9 that degrades amyloid fibrils [39].

Finally, aside from cellular amyloid-promoting factors, 
amyloidogenic peptides from pathogens have been described. 
Notably, peptides derived from human immunodeficiency virus-1 
gp120 coreceptor binding region formed fibrils that enhanced in-
fectivity in vitro [40] and an internal fragment of herpes simplex 
virus-1 gB, homologous to the carboxyl-terminal region of Aβ42, 
self-assembles into fibrils and accelerates Aβ42 fibrillization in 
primary rat cortical neurons in vitro [41]. We expanded upon 

A BVZV envelope glycoprotein B

Extracellular

ROI 1

ROI 2

ROI 3

NEG

Intracellular

ROI 1: GDIIYMSPFFGL

ROI 2: VAAFFAYRYV

ROI 3: MISTYVDLNLT

NEG: PMKALYPLTT

Transmembrane

(*, denotes predicted amyloidogenic sequence)

Figure 5.  Varicella-zoster virus (VZV) glycoprotein B (gB) protein contains amyloidogenic sequences. A, Using the Waltz algorithm, 5 regions of VZV gB were predicted to 
be amyloidogenic; 3 peptides were selected spanning these amyloidogenic regions (*) and synthesized for further investigation (regions of interest [ROI] 1, 2, and 3; yellow). 
In addition, a peptide spanning a nonamyloidogenic region in VZV gB was synthesized (NEG; blue). B, Peptide structures are shown for ROI 1, ROI 2, and ROI 3, and NEG.
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these studies by identifying 3 unique regions of VZV gB that 
can self-assemble, accelerate Aβ42 and amylin fibrillization, or 
both. ROI 1 self-assembled and accelerated Aβ42 and amylin 
fibrillization. However, although ROI 2 self-assembled, it did 
not accelerate Aβ42 or amylin fibrillization. In contrast, ROI 3 
failed to self-assemble, yet acted as a catalyst for Aβ42 and amylin 
fibrillization. A  recent study revealed concentration-dependent 
effects of amylin on AD pathology [42]. Lower concentrations of 
amylin appeared to reverse Aβ-induced tau phosphorylation and 
neuronal damage but high concentrations accelerated these pro-
cesses [42]. Similarly, we found concentration-dependent amylin 
effects on amyloid formation. When combined with a constant 
ROI 3 concentration, a low concentration of amylin reduced am-
yloid, whereas a high concentration of amylin increased amyloid, 

compared to amylin alone. The cleavage/degradation of VZV gB 
during infection to produce amyloidogenic/catalytic peptides and 
the physical characteristics mediating the unique properties of the 
VZV gB peptide fragments is an essential next step, but our find-
ings suggest that during infection of cells with elevated levels of 
amyloidogenic cellular peptides from environmental or host fac-
tors (ie, amylin-producing pancreatic β cells), the viral peptides 
may accelerate amyloid formation. 

VZV-induced intracellular deposition of amyloid and the 
ability of viral peptides to self-aggregate and form amyloid fi-
brils challenge the notion that a pathogen must be present in 
diseased tissue to be causative. We must now consider contribu-
tions of virus-induced intracellular amyloid and viral peptides 
to amyloidogenesis, because even after viral DNA and RNA 
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have been cleared, both intracellular amyloid released extracel-
lularly from infected cells and residual viral peptides can po-
tentially serve as a nidus for amyloid formation, inflammation, 
and/or cytotoxicity. Because clinical disease can occur decades 
after the initial insult, our examination of diseased, amyloid-
containing tissues may miss earlier contributions from patho-
gens. The identification of these pathogens and the underlying 
mechanisms by which they promote an amyloidogenic environ-
ment will provide early therapeutic targets that may potentially 
attenuate progression of amyloid-associated diseases.
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