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Abstract

Motivation: The human microbiota is the collection of microorganisms colonizing the human body, and plays an in-
tegral part in human health. A growing trend in microbiome analysis is to construct a network to estimate the co-
occurrence patterns among taxa through precision matrices. Existing methods do not facilitate investigation into
how these networks change with respect to covariates.

Results: We propose a new model called Microbiome Differential Network Estimation (MDiNE) to estimate network
changes with respect to a binary covariate. The counts of individual taxa in the samples are modeled through a multi-
nomial distribution whose probabilities depend on a latent Gaussian random variable. A sparse precision matrix over all
the latent terms determines the co-occurrence network among taxa. The model fit is obtained and evaluated using
Hamiltonian Monte Carlo methods. The performance of our model is evaluated through an extensive simulation study
and is shown to outperform existing methods in terms of estimation of network parameters. We also demonstrate an
application of the model to estimate changes in the intestinal microbial network topology with respect to Crohn’s disease.

Availability and implementation: MDiNE is implemented in a freely available R package: https://github.com/kevinmc
gregor/mdine.

Contact: celia.greenwood@mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The human microbiota refers to the microorganisms residing on and
inside the human body. These organisms form symbiotic relation-
ships with their host and consequently have a direct effect on human
metabolism and host–environment interaction (Turnbaugh et al.,
2007). Additionally, the microbiota form ecological communities
influenced by body site, metabolic diversity and competition for
resources (Chu et al., 2017; Hibbing et al., 2010). In order to per-
form any kind of analysis of microbiome data, microbes are classi-
fied based on genetic similarity into units called operational
taxonomic units (OTUs). By mapping these OTUs to a reference
genome, they can be further grouped into taxonomic classifications
such as species, family or phylum. Technologies such as 16S riboso-
mal RNA sequencing allow researchers to get a snapshot of the
taxonomic makeup of microbiome samples in the form of counts of
each taxonomic group within each sample.

The co-occurrence patterns among taxa in the human gut micro-
biome are driven by metabolic interactions and competition for

resources (Levy and Borenstein, 2013). However, the development of
statistical methodology for the analysis of 16S sequencing data, in add-
ition to other metagenomic sequencing platforms, has largely focused
on the relative abundances and diversity of the various taxa found in
microbiome samples. Differences in microbial composition have been
linked to type I diabetes, obesity and stunted growth (Brugman et al.,
2006; Turnbaugh et al., 2009; Gough et al., 2015). While it is evident
that these methods have proven effective in capturing information
about changes in microbial composition, they do not directly address
the question of relationships between the taxa in a community. Co-
occurrence patterns can be represented through the use of networks,
where the nodes correspond to taxa and the edges define the correl-
ation patterns between the taxa. Statistical approaches to modeling
taxa co-occurrence networks have the potential to capture important
community characteristics that would otherwise go undetected in
abundance or diversity-based analyses. There is also value in estimat-
ing the difference between two co-occurrence networks, as it is then
possible to investigate how external factors are related to changes in
the network structure of the microbiome.
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A convenient way to model networks is through precision matrix
estimation, as the pattern of zeros occurring in the precision matrix
can be used to construct a network. Given a set of J random varia-
bles, pairwise covariances form a J� J covariance matrix R. The pre-
cision matrix is defined as the matrix inverse of the covariance
matrix, i.e. R�1 (Drton et al., 2007). The advantage of using the pre-
cision matrix lies in the off-diagonal elements, which can be trans-
formed to partial correlations between pairs of variables. That is,
the partial correlation rjj0 between variable j and variable j0, condi-
tional on all other variables can be calculated as:

rjj0 ¼ �
R�1

jj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1

jj R�1
j0j0

q (1)

(Kuismin and Sillanpää, 2017). If rjj0 ¼ 0, then variable j is
uncorrelated with variable j0 given all the other variables. As a re-
sult, the precision matrix gives an idea of how the variables are dir-
ectly related in the sense that it removes the possibility that an
observed association only exists through correlation with one or
more other variables.

In 16S sequencing analysis, nodes in the network are assigned to
the microbial taxa and edges correspond to non-zero entries in the
precision matrix. In the high-dimensional setting, when the number
of taxa is large relative to the sample size, sparsity (or an abundance
of zero entries) in the precision matrix must be assumed in order to
obtain stable estimates of the precision matrix elements (Chi and
Lange, 2014). Furthermore, if the number of taxa exceeds the sam-
ple size, then the covariance matrix is singular. The estimation of
sparse precision matrices in the Gaussian graphical setting is a well-
studied problem. Graphical LASSO (GLASSO) was proposed as an
efficient solution to the problem, and remains a standard in the do-
main of sparse precision matrix estimation (Friedman et al., 2008).
Nonetheless, several characteristics of 16S sequencing data inhibit
the use of Gaussian graphical models. Firstly, since the data are in
the form of counts, often with many zeros, the assumption of nor-
mality does not hold. More importantly, due to the nature of the
sequencing process, the data are compositional; that is, inherent fea-
tures of the sequencing process lead to varying read depths over
samples which can bias the observed correlations or similarity met-
rics. Proper inference can only be performed on the abundance of a
taxon relative to one or more of the other taxa (Gloor et al., 2017).

Several approaches have been developed to estimate networks in
microbiome data. SparCC and CCLasso directly model correlations
between taxa in a non-parametric manner (Friedman and Alm,
2012; Fang et al., 2015). MInt incorporates a Poisson-Multivariate
Normal model which estimates a precision matrix as well as covari-
ate effects on taxon abundances (Biswas et al., 2016). Sparse Inverse
Covariance Estimation for Ecological Association Inference
(SPIEC-EASI) runs GLASSO on the centered log-ratio transformed
counts (Kurtz et al., 2015). One common element of each of these
methods is that they model a single co-occurrence network among
the samples. Yet, there has been interest in estimating separate net-
works according to a condition, such as a treatment or a disease of
interest, to see how the network structure is affected (Bajaj et al.,
2012; Gough et al., 2015; Mahana et al., 2016; Ruiz et al., 2017).

Models to compare precision matrices exist in other contexts.
The Joint Graphical LASSO was proposed as a solution in the case
of Gaussian data (Danaher et al., 2014). Similarly, a non-parametric
method for differential network estimation was proposed by Zhao
et al. (2014). In this algorithm, the difference in precision matrices is
modeled directly, whereas the precision matrix within each group is
not explicitly estimated. To our knowledge, there is no existing dif-
ferential network estimation procedure for microbiome data based
on precision matrix estimation. Currently, a network estimation al-
gorithm must be run separately within each group of interest, effect-
ively reducing the sample size used to model each network.

In this article, we introduce a new model, called Microbiome
Differential Network Estimation (MDiNE, pronounced ‘em-dine’),
capable of estimating separate taxa co-occurrence networks for
groups defined by a binary variable. The method can also recover
the differences between each network, as well as provide interval

estimates for each parameter. Furthermore, estimates of how covari-
ates, including the binary variable of interest, associate with the rela-
tive abundance of the taxa can also be obtained. We perform a
simulation study to compare the performance of MDiNE against two
precision matrix-based methods: SPIEC-EASI and MInt.
Additionally, we illustrate the performance of MDiNE through an
application on 16S sequencing data from Crohn’s disease and con-
trol samples.

2 Methods

We have chosen a model that is based on the multinomial distribu-
tion, which allows us to address the compositional nature of the
data. The Dirichlet-Multinomial distribution has been proposed in
this context (Chen and Li, 2013; Holmes et al., 2012), and remains
a natural choice given that the Dirichlet distribution is a conjugate
prior for the multinomial distribution. Because of varying read
depths over samples, covariances should not be calculated on the
raw taxa counts. The most obvious way to deal with the problem is
to normalize by the total number of counts in each sample, so that
the abundance of each taxon j 2 f1; . . . ; J þ 1g is expressed as a pro-
portion pj. However, this introduces a sum constraint in each sam-

ple, such that
PJþ1

j¼1 pj ¼ 1. Any attempt at modeling the covariance

structure on a proportion would lead to a bias toward negative
covariances (van den Boogaart and Tolosana-Delgado, 2013).
Calculating covariances on compositional data also does not pre-
serve subcompositional coherence, a property that guarantees that
inference on a subset of taxa does not depend on whether or not
other taxa are included in the analysis (Aitchison, 1994).

Solutions have been proposed to address the question of measur-
ing associations in compositional data. Aitchison (1986) defined a
measure of association based on the variance of two compositional
components yi and yj: varðlogðyi=yjÞÞ, for i 6¼ j. If yi is highly linearly
correlated with yj, then the variance of the log-ratio will be small, and
equal to zero in the case that yi is exactly proportional to yj. This met-
ric, however, lacks an interpretable scale. Lovell et al. (2015) showed
that the above variance could be scaled down to a more easily inter-
pretable quantity called the ‘goodness-of-fit to proportionality’ statis-
tic. Erb and Notredame (2016) modified this statistic to be symmetric
and less prone to spurious proportionality. Proportionality-based as-
sociation metrics have recently been shown to outperform non-
composition based correlation and distance-based metrics in single-
cell transcriptomic data (Skinnider et al., 2019).

Another way to handle compositional data is through the choice
of distribution to model the counts, along with an appropriate par-
ameterization. In 2013, Xia et al. (2013) introduced a logistic nor-
mal multinomial model capable of estimating associations between
taxa abundances and covariates that addresses some of the afore-
mentioned challenges. Define p ¼ ðp1; . . . ;pJ;pJþ1Þ as a vector of
proportions of Jþ1 different taxa in a sample. The logistic normal
multinomial model implicitly models the additive log-ratio trans-
formation of p, which is defined as:

alrðpÞ ¼ log
p1

pJþ1

� �
; . . . ; log

pJ

pJþ1

� �" #
; (2)

assuming each pj > 0. This transformation does indeed preserve
subcompositional coherence. Multivariate normality is assumed for
the transformed proportions, meaning that the precision matrix is ex-
plicitly defined as a parameter in the model. We therefore pursue an
extension to the model posited by Xia et al. by including two precision
matrices, as well as a penalization scheme to select network edges.

In contrast, the method SPIEC-EASI directly computes the cen-
tered log-ratios of the vector of observed taxa counts y ¼
ðy1; . . . ; yJ; yJþ1Þ as such:

clrðyÞ ¼ log
y1

gðyÞ

� �
; . . . ; log

yJ

gðyÞ

� �" #
: (3)

where gðyÞ ¼ ½
QJþ1

j¼1 yj�1=ðJþ1Þ, i.e. the geometric mean of the values in y.
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From there, a graphical estimation procedure such as GLASSO
is applied to the transformed data to obtain network estimates.
Yet, there is typically a large number of zero counts in 16S
sequencing data, which cannot be handled in the log-ratio trans-
formation. An arbitrary positive pseudo-count must be added be-
fore taking the transformation. The multinomial logistic model,
however, can handle zero counts without resorting to the addition
of a pseudo-count.

The statistical theory for penalized covariance matrices in a lo-
gistic multinomial normal model is complex. We choose to define
the model in a Bayesian framework, and obtain the model fit using
Markov Chain Monte Carlo (MCMC) methods. The priors placed
on the model parameters control the level of parsimony applied in
parameter estimation. Details of the MCMC methods used can be
seen in Section 2.4.

2.1 Model
Among N individuals we consider J taxa for inclusion in the net-
work analysis, along with a reference taxon Jþ1, which will not be
included in the network. The number of covariates in the model is
K. The counts of the taxa are contained in the matrix YN�ðJþ1Þ. The

total number of reads for individual i is denoted as Mi ¼
PJþ1

j¼1 yij.

Let Z ¼ ðz1; . . . ; zNÞ be a vector containing the binary covariate over
which the taxa co-occurrence networks are expected to vary. X ¼
ð1;X1; . . . ;XKÞN�ðKþ1Þ is the design matrix, and Xi� represents row i

of the design matrix containing individual i’s covariates. Our
method estimates how each of the covariates in the design matrix
relates to taxon abundance. The vector Z, which is of primary inter-
est for the network changes, could also be included in the design
matrix.

Assume the true proportions of the Jþ1 taxa in individual i’s
microbiome is pi� ¼ ðpi1; . . . ;piðJþ1ÞÞ such that 0 < pij < 1 for j 2
f1; . . . ; J þ 1g and

PJþ1
j¼1 pij ¼ 1. This implies that the proportions pij

were formed using only taxa that were observed in the dataset.
More information on the interpretation of the taxon proportions
can be seen in Supplementary Section S2. Then the vector of counts
for individual i, denoted by Yi�, can be modeled as a multinomial
distribution:

pðYi�jWi�;B;R
�1
0 ;R�1

1 Þ ¼
Mi!QJþ1
j¼1 yij!

YJþ1

j¼1

p
yij

ij ; (4)

where the proportions are parameterized through the additive log-
ratio transformation with respect to category Jþ1 as seen in
Equation 2:

log
pi1

piðJþ1Þ

� �
; . . . ;

piJ

piðJþ1Þ

� �" #
¼Wi� (5)

for j 2 f1; . . . ; Jg. Here, we model the row vector of log-ratio trans-
formed proportions for individual i, Wi�, as a multivariate normal
distribution whose parameters depend on the observed covariates X
and Z:

Wi�jB;R�1
0 ;R�1

1 � N
�
ðXi�BÞ>; ziR1 þ ð1� ziÞR0

�
: (6)

That is, the variance structure depends on the individual’s
binary covariate zi. The corresponding precision matrices R�1

0

and R�1
1 therefore, define the co-occurrence network structure of

the J taxa of interest within each group defined by Z. We note
that, unlike for a covariance matrix, calculating the two precision
matrices on a subset of taxa would give different results than if
we had calculated them on the full set of taxa, thus violating sub-
compositional coherence. This shift in the matrix elements,
however, represents a change in their interpretations, since we
would not longer be conditioning on the missing taxa. The parame-
ters in the matrix BðKþ1Þ�J define how each of the K covariates in X
relate to the abundances of the taxa relative to the reference cat-
egory Jþ1.

Equivalently, the inverse transformation for the additive log-
ratio transformed data is expressed as:

pij ¼

exp fWijg
1þ

PJ
j¼1 exp fWijg

if j ¼ 1; . . . ; J

1

1þ
PJ

j¼1 exp fWijg
if j ¼ J þ 1

8>>><
>>>:

(7)

Given that we are implementing a Bayesian framework, non-
informative (high-variance) normal priors are assumed for each
element of B. The full model is summarized in Equation 12. The po-
tentially large number of parameters in R�1

0 and R�1
1 relative to the

sample size N necessitates a procedure to shrink the off-diagonal ele-
ments of these two matrices. We now outline a prior-based shrink-
age strategy in the model.

2.2 Inducing sparsity
To solve the problem of unstable estimates of precision matrices
resulting from inadequate sample size (as mentioned in the introduc-
tion), we must apply a penalization scheme to the elements of R�1

0

and R�1
1 . In a Bayesian framework, strategic priors can be used on

the model parameters to shrink estimates toward zero. In our model,
we apply a Laplace prior centered around zero and with inverse
scale parameter k to induce sparsity in the off-diagonal elements of
the two precision matrices. This is the Bayesian equivalent to adding
an L1 penalty term to the log-likelihood in the maximum likelihood
framework, where the following maximization would take place:

arg max
R�1

0 ;R�1
1

lðYjX;R�1
0 ;R�1

1 ;B;WÞ þ kðjjR�1
0 jj1 þ jjR�1

1 jj1Þ; (8)

where l represents the log-likelihood of the hierarchical model as
defined in Section 2.1. jj � jj1 denotes the sum of the absolute values

of the matrix elements of R�1
0 or R�1

1 .
As the diagonal elements are constrained to the set of positive

real numbers, an exponential prior with rate parameter k=2 is used
for these elements instead (Khondker et al., 2013; Wang, 2012).

Let s
ð0Þ
jj0 and s

ð1Þ
jj0 represent the value in row j and column j0 of the

matrices R�1
0 and R�1

1 , respectively. Then the priors for the elements

of R�1
0 are:

pðsð0Þjj0 jkÞ ¼
k
2

exp f�kjsð0Þjj0 jg if j 6¼ j0

k
2

exp f� k
2

s
ð0Þ
jj0 g1 ðs

ð0Þ
jj0 > 0Þ if j ¼ j0:

8><
>: (9)

The priors for the elements of R�1
1 are defined likewise with the

same k. This single value of k will then control the amount of param-
eter shrinkage in the two precision matrices. The current parameter-
ization implies that a higher value of k will correspond to smaller
elements in absolute value; that is, a precision matrix with off-
diagonal elements closer to zero.

2.3 Choice of k
In the MCMC framework, the value of the penalization parameter k
can be specified as a hyperparameter in the model along with its
own prior distribution. In the Bayesian Graphical Lasso, a Gamma
prior is applied to the Laplace penalization parameter (Wang,
2012), since this leads to its full conditional itself following a
Gamma distribution. In our model, we specify an exponential prior
on k, as it is a special case of the Gamma distribution, but only
includes a single hyperparameter. In order to avoid choosing an ar-
bitrary hyperparameter in the exponential prior, we use an empirical
Bayes-like procedure that is similar to what is outlined in Biswas
et al. (2016).

We start by estimating an initial multinomial logistic regression
model using the counts Y as the outcome and the covariates X as
predictors, which gives an initial estimate B̂. From there, we obtain
the residuals of the model (on the log-ratio scale), Ê, and calculate
the empirical covariance matrices separately for residuals of samples
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with zi ¼ 0 and zi ¼ 1. To obtain initial, naı̈ve estimates R̂�1
0 and

R̂�1
1 , we take the generalized inverses of the empirical covariance

matrices. We can plug in our initial estimates ŝ
ð0Þ
jj0 and ŝ

ð1Þ
jj0 into

pðkjR�1
0 ;R�1

1 Þ and maximize with respect to k to obtain an initial
estimate:

k̂ init ¼ arg max
k>0

pðkjR̂�1

0 ; R̂
�1

1 Þ

¼ arg max
k>0

�Y
j< j0

k2exp �k
�
jŝð0Þjj0 j þ jŝ

ð1Þ
jj0 j
�� �	 


�
YJ

j¼1

k2exp� k
2

�
ŝ
ð0Þ
jj þ ŝ

ð1Þ
jj

��	 
�

¼ JðJ þ 1ÞX
j< j0

�
jŝð0Þjj0 j þ jŝ

ð1Þ
jj0 j
�
þ 1

2

XJ

j¼1

�
ŝ
ð0Þ
jj þ ŝ

ð1Þ
jj

�
(10)

In the full model, we specify an exponential prior on k having
expected value equal to the initial estimate k̂ init so that k is sampled
over a reasonable region:

pðkÞ � Exponentialðk̂�1

initÞ: (11)

More details on the choice of the parameter k and how it can be
estimated can be seen in Supplementary Section S1. In summary, the
full model can then be written as:

Yi�jpi�;B;Wi�;R�1
0 ;R�1

1 ; k �MultinomialðMi; pi�Þ
Wi�jB;R�1

0 ;R�1
1 ; k � NormalððXi�BÞ>; ziR1 þ ð1� ziÞR0Þ

s
ðzÞ
jj0 jk � Laplaceð0; kÞ

s
ðzÞ
jj jk � Exponentialðk=2Þ

k � Exponentialðk̂�1

initÞ
Bkj � Normalð0;10000Þ;

(12)

for each i 2 f1; . . . ;Ng; j 2 f1; . . . ; Jg; j0 2 f1; . . . ; j� 1g; k 2
f1; . . . ; Kþ 1g, and z 2 f0; 1g.

The expression for the joint posterior distribution
pðW;B;R�1

0 ;R�1
1 ; kjYÞ can be seen in Supplementary Section S3.

2.4 Parameter estimation
The model is fit through Hamiltonian Monte Carlo (HMC) sam-
pling facilitated by the Stan language (Carpenter et al., 2017). One
particular advantage of HMC is its efficiency in the case of corre-
lated parameters, which can be a significant hurdle in other Monte
Carlo simulation strategies (Rannala, 2002). To ensure positive

semi-definiteness of R�1
0 and R�1

1 , we parameterize them through

their Cholesky decompositions, so that R�1
0 ¼ L0L>0 and

R�1
1 ¼ L1L>1 , for lower-triangular matrices L0 and L1. Note that

Stan also allows matrices to be declared as covariance matrices,
hence preserving positive semi-definiteness during the HMC sam-
pling process. Estimates for each parameter are obtained by calculat-
ing the posterior mean from the obtained MCMC samples. For the
results in this paper, each model was run for 1000 samples in four
chains, with the first half of samples taken as warm-up.
Convergence was verified through trace plots and calculation of the
potential scale reduction factor.

2.5 Simulation design
A simulation study was undertaken to evaluate the performance of
MDiNE against that of MInt and SPIEC-EASI. To ensure realistic
count data, we based the simulation parameters on data coming
from the American Gut Project, which is a publicly available,
crowdfunded human microbiome database http://humanfoodpro
ject.com/americangut. The zero-inflated negative binomial (ZINB)
model was previously shown to be a good choice for simulating real-
istic microbiome count data (Kurtz et al., 2015). Therefore, we
chose to simulate data through the ZINB model in a way that

replicated the distributions of the most common fecal microbial
families found in the American Gut data.

The data generating process involved the ‘Normal to Anything’
method (Cario and Nelson, 1997; Kurtz et al., 2015), where corre-
lated taxa vectors were simulated from a multivariate normal distri-
bution and were transformed to a ZINB model based on the
American Gut data. ZINB parameters were estimated separately for
individuals with asthma (310 subjects) and without asthma (3193
subjects). The parameters for subjects with asthma were used to
simulate data for subjects in the zi ¼ 1 group and the parameters for
subjects without asthma were used for the zi ¼ 0 group. Details on
the American Gut data simulation procedure can be seen in
Supplementary Section S4.

We ran 12 simulation scenarios, with differing sample sizes and
numbers of taxa: N 2 f50; 100; 500;750g and J 2 f5;10; 25g. We
ran 100 replications for each scenario.

We also performed a simulation where data were generated dir-
ectly from the model assumed in MDiNE. This simulation allowed in-
vestigation of parameter bias and precision for the precision matrix
elements in MDiNE, which cannot be obtained through the first data
generation mechanism. Details of this additional simulation study
can be found in the Supplementary Section S5.

2.6 Metrics of comparison
Since the model assumptions are substantially different between
MDiNE and the other two network methods, the values in the esti-
mated precision matrices cannot be directly compared.
Consequently, our primary metrics of performance are sensitivity
and specificity of network edge detection and a measure of overall
network structure. In particular, we consider the area under the re-
ceiver operating curve (AUC) for detection of edges. Even for these
metrics, the comparison of methods is tricky. Although the param-
eter k controls the amount of shrinkage in MDiNE, none of the off-
diagonal elements of R�1

0 or R�1
1 can be set exactly to zero, in con-

trast to MInt and SPIEC-EASI. As such, we considered an edge to
exist in the MDiNE estimates if its credible interval did not contain
zero. The use of interval estimates to direct variable selection has
precedent in Bayesian penalization procedures (Khondker et al.,
2013; Li et al., 2010; Park and Casella, 2008). We note, however,
that such an approach should only be used to detect potentially im-
portant links between taxa. Setting elements of a precision matrix to
zero based on interval estimates does not necessarily preserve posi-
tive semi-definiteness.

It is also valuable to compare networks based on measures that
capture the overall network structure. Weighted natural connectivity
is a measure of structural robustness in that it measures the extent to
which the connectivity of the network is vulnerable to edge deletion
(Xiao-Ke et al., 2013). Details on its calculation can be seen in
Supplementary Section S6.

2.7 Data application
We performed a network analysis on a dataset from Gevers et al.
(2014). The data consisted of publicly available 16S sequencing
measures from a multi-cohort study of new-onset Crohn’s disease.
To avoid potential problems arising from mixing samples from dif-
ferent cohorts, we only analyzed samples from the Risk
Stratification and Identification of Immunogenetic and Microbial
Markers of Rapid Disease Progression in Children with Crohn’s
Disease (RISK) study https://clinicaltrials.gov/ct2/show/
NCT00790543. The participants in the RISK cohort were all
18 years of age or younger and were recruited from 28 centers in
Canada and the USA. Cases were subjects with newly diagnosed
Crohn’s disease and controls were subjects presenting with non-
inflammatory gastrointestinal conditions.

Samples from mucosal tissue biopsies of the terminal ileum were
available for 314 Crohns patients and 192 controls. The analysis
focused on the family taxonomic level, with 15 families included in
the network, and all other families summed into a single reference
taxon. We examined network differences between Crohn’s samples
and controls (i.e. zi ¼ 1 for Crohn’s patients, and zi ¼ 0 for
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controls). The Crohn’s disease status was also included in the model
matrix X, in addition to age, sex and antibiotic use. The dataset
included preprocessed.biom files, and OTU tables and taxonomic
information were extracted using the phyloseq package in R
(McMurdie and Holmes, 2013). Results from the data application
can be seen in Section 3.3.

3 Results

3.1 Simulation results
Here, we present the results of the American gut dataset based simu-
lation study which employed the performance metrics outlined in
Section 2.6, and compare the results of MDiNE to those of SPIEC-
EASI and MInt. In Supplementary Figures S2 and S3, we show that
the simulated data reasonably replicates the distribution of the
observed counts in the American Gut study data.

First, we examined the AUC achieved within each estimation
method. Figure 1 shows AUC distributions over 100 simulation
scenarios. The results are shown separately for groups z¼0 and
z¼1 and are further split up by number of taxa (J) and sample size
(N). It is evident that MDiNE generally outperforms the other meth-
ods in terms of AUC across all scenarios. It also appears for MDiNE
that there is an improvement in AUC as the sample size N increases.
There is also a considerable amount of variability across datasets in
AUC among all methods in the J¼5 scenario.

One important observation is the reduced accuracy of edge detec-
tion in all methods in the J¼25 scenario. Even with the large sample
size N¼750, the AUC is generally less than 0.75. This result may not
be surprising considering there are 25� ð25þ 1Þ=2 ¼ 325 parameters
to estimate within each precision matrix, for a total of 650 parameters,
in addition to the covariate effects in B. Even if many elements of the
matrix are zero, there are a large number of parameters to estimate
relative to the sample size. Since all three methods use some kind of se-
lection or shrinkage procedure, there is generally a bias toward zero in
the estimates of the precision matrix elements. This means that all three
methods tend to err on the side of specificity for edge detection.

MDiNE is also capable of detecting edge differences in the net-
works (i.e. the elements of R�1

1 � R�1
0 ). In Supplementary Figure S4,

we present the AUC for MDiNE for detecting differences in the net-
work. Again, the performance is greatly dependent on sample size,
with very little power to detect network differences in the N¼50
scenarios. A relatively large sample size is necessary to properly de-
tect differences in network edges. Since MInt and SPIEC-EASI do
not have parameters that allow us to vary the amount of sparsity in
the difference between precision matrices, we are unable to calculate
the AUC for those two methods.

In order to assess overall structure of the estimated networks, we
calculated the weighted natural connectivity (based on partial

correlations), as defined in Supplementary Equation 15, and com-
pared to the natural connectivity in each true simulated partial cor-
relation matrix. Figure 2 shows the distribution of the logarithm of
the squared error (square of the estimated minus simulated values)
of the natural connectivity over the simulation replications.

In general, MDiNE outperformed the other methods in terms of
estimating natural connectivity. Interestingly, there was not much
improvement in estimation accuracy as sample size increased. There
was also an increase in the variance of estimation accuracy for
MDiNE in the J¼25 case. Other methods also demonstrated
increased variability in this measure of network accuracy, but less so
than MDiNE.

3.2 Testing parameter estimation in MDiNE
3.2.1 Estimation accuracy

Next, we examined the results of the simulation where data were
generated under the model assumed in MDiNE. Supplementary
Figure S5 shows the squared errors averaged over the elements of
R�1

0 and R�1
1 . As expected, there was a considerable improvement in

estimation accuracy as sample size increased. For a fixed sample
size, the errors increased with respect to the number of taxa included
in the analysis. We also plotted the squared errors for the difference
in the precision matrices R�1

1 � R�1
0 in Supplementary Figure S6,

and observed a similar result. The same pattern was also present,
though to a lesser extent, in the abundance effects B (Supplementary
Fig. S7). The estimation accuracy for B generally improved over
sample size.

We also performed an analysis on credible interval coverage,
which can be viewed in Supplementary Section S8.2. The analysis
showed that coverage greatly depended on the sample size relative
to the number of parameters in the model.

3.2.2 Effect of k
To demonstrate the shrinkage effects of the Laplace and exponential
priors on the elements of R�1

0 and R�1
1 , we plotted the estimated val-

ues of these elements over values of the penalization parameter k
(Fig. 3). It is clear that the value of k had a profound impact on the
magnitudes of the estimated parameters in both precision matrices.
For values greater than 210 the estimates for all parameters were
very close to zero (though never exactly equal to zero). We note that
specifying an unnecessarily large value for the penalization param-
eter could cause issues with the HMC sampler and hence lead to un-
stable parameter estimates.

The impact of k was also evaluated through the condition num-

bers of R̂�1
0 and R̂�1

1 . The condition number of a positive-definite
matrix is calculated as the ratio of the largest and smallest eigenval-
ues of the matrix (Won et al., 2013). A large condition number
implies that a covariance matrix is ill-conditioned, leading to

Fig. 1. The AUC for network edge detection in each of MDiNE, MInt and SPIEC-

EASI based on simulated data. The results vary over the number of taxa included in

the network (J), the sample size (N) and the two precision matrices corresponding to

groups z¼0 and z¼1

Fig. 2. Log squared error of the weighted natural connectivity in each of MDiNE,

MInt and SPIEC-EASI based on simulated data. The results vary over the number

of taxa included in the network (J), the sample size (N) and the two precision matri-

ces corresponding to groups z¼ 0 and z¼ 1
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numerical instability in inversion. The condition number for the esti-
mated values of the two matrices over different values of k are
shown in Figure 3. For very small values of k the condition number
was large. The condition number steadily decreased for larger values
of k, clearly demonstrating that the penalization parameter was able
to prevent against an ill-conditioned precision matrix when its size
was large relative to the sample size. The distributions of the esti-
mated values of k over the 100 simulation replications are shown in
Supplementary Figure S1. As expected, higher values of k were gen-
erally estimated for higher numbers of taxa included in the network
analysis.

3.3 Data application results
We applied MDiNE to the Crohn’s disease dataset described in
Section 2.7. The estimated family networks for Crohn’s and control
samples are shown in Figure 4. It appears that there were more posi-
tive co-occurrences in the control samples, whereas there were some
additional negative co-occurrences in the Crohn’s samples. There
were also important differences in the relative abundances of
Bacteroidaceae, Porphyromonadacea and Lachnospiraceae.

An important advantage of MDiNE over existing methods is the
ability to detect significant changes in family co-occurrences with re-
spect to Crohn’s status. Figure 5 characterizes the differences between
the Crohn’s and control networks. Only associations that significantly
differ between the two networks, based on 90% credible intervals,
were included in the figure. Based on this criterion, only five family–
family co-occurrence associations differed significantly between the

Crohn’s cases and controls: Lachnospiraceae and Enterobacteriaceae;
Lachnospiraceae and Erysipelotrichaceae; Erysipelotrichaceae and
Fusobacteriaceae; Erysipelotrichaceae and Veillonellaceae; and
Porphyromonadaceae and Pasteurellaceae.

The most pronounced shift in co-occurrence was between
Lachnospiraceae and Enterobacteriaceae, with a modest positive co-
occurrence in controls that essentially disappears in Crohn’s (partial
correlations 0.1619 and 0.0051, respectively). Both Lachnospiraceae
and Erysipelotrichaceae were previously shown to highly contribute
to dissimilarity between aphthous ulcers (new-onset Crohn’s) and
healthy control mucosa samples (O’Brien et al., 2018). MDiNE esti-
mated Enterobacteriaceae to be more abundant in Crohn’s samples
and Lachnospiraceae to be less abundant, which is consistent with
previous work (Frank et al., 2007; Morgan et al., 2012). Thus,
MDiNE has been able to show an important change between Crohn’s
and control samples in community structure beyond previous know-
ledge of differential abundance for Lachnospiraceae and
Enterobacteriaceae.

Next, we compared the estimated networks between MDiNE,
SPIEC-EASI and MInt. Since SPIEC-EASI cannot handle covari-
ates, we estimated the networks without adjusting for age, sex or
antibiotic status. Results can be seen in Supplementary Section S9.1.

Supplementary Figure S12 contains the estimated networks in
Crohn’s cases and control samples for each of the estimation meth-
ods. It is evident that the edge density differed greatly between the
methods, with MInt resulting in a very edge-dense network, and

Fig. 3. (Top) The MDiNE coefficient shrinkage paths for elements of R�1
0 and R�1

1

over values of k. (Bottom) The condition number of each matrix over the values of

k. The data came from the N¼50, J¼5 scenario. Note the horizontal axes are on a

base-2 logarithmic scale
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at Bioinformatics online.)
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SPIEC-EASI resulting in a much more sparse network. SPIEC-
EASI also appears to have mostly identified negative taxon co-
occurrences, whereas both MDiNE and MInt uncovered both posi-
tive and negative co-occurrences.

A natural question to ask is: to what extent do the three methods
agree with respect to network edges? To test this we plotted the con-
cordance between the methods in a Venn diagram, shown in
Supplementary Figure S13. There appears to be much more con-
cordance between MDiNE and MInt with respect to network edges,
as they agreed on 30 edges in the control samples, and 34 edges in
the Crohn’s samples. There were only six edges common to both
MDiNE and SPIEC-EASI. These six edges were identified in all
three methods.

The convergence of MDiNE was verified in Supplementary
Section S9.2. Traceplots and examination of the potential scale re-
duction factor confirmed proper mixing of chains and adequate con-
vergence. These results are displayed in Supplementary Figures S14–
S17. In Supplementary Sections S9.3 and S9.4, we investigate the
sensitivity to the choice of reference category as well as the assump-
tion of normality in the log-ratio transformed data. Finally, in
Supplementary Section S9.5, we randomly split the Crohn’s dataset
into two subsets of equal size and ran MDiNE in both. We compared
estimates from both subsets, and showed that the results are quite
reliable.

This analysis has shown that there are important differences in
co-occurrences between several highly abundant families in the in-
testinal microbiota of Crohn’s and control samples. Significance of
such differences would not have been detected using previous net-
work estimation methods.

4 Discussion

We have introduced a new microbiome network estimation model
that generally outperformed two existing precision matrix-based
methods, both in terms of estimating individual taxon associations,
as well as overall network structure. More importantly, we have
defined our model in a way that differences between the associations
in two networks defined by a binary variable could be directly esti-
mated. As the model parameters were estimated through MCMC
sampling, interval estimates for all model parameters were easily
obtained. Though we presented an example from the 16S sequenc-
ing platform, MDiNE could be used on any count-based platform,
such as RNA-seq data.

Attention must be drawn to the more broad issue of sample size
in network inference. If the desire is to perform inference on individ-
ual co-occurrences in the network, then it should be noted that
applying a network estimation method with built-in regularization
will tend to under estimate the number of true associations if the
sample size is not sufficiently large. Even for a modest number of
taxa (say 25), a relatively large sample size is required to ensure ad-
equate credible interval coverage, due to the rapidly increasing num-
ber of parameters to estimate with increasing network size. We
believe this fact has not been properly explored in the literature, and
extra study of this problem would be beneficial. Additionally,
though the model can handle a modest number of zero counts, the
method should not be run on taxa with an excess of zeros, since
there is no zero-inflation parameter. We therefore suggest filtering
out taxa with a high proportion of zeros in one or both of the groups
zi ¼ 0 or zi ¼ 1 before proceeding to run MDiNE.

An important limitation of MDiNE is its running time. Though
MCMC sampling has its advantages, the computational burden is
always a factor. For example, on Compute Canada’s Graham clus-
ter, with an Intel E5-2683 v4 Broadwell 2.1 GHz processor using 4
cores (one for each MCMC chain), the running times for the
N¼500, J¼25 simulations ranged from 95 to 117 min for 1000
MCMC iterations. Regardless, MDiNE benefits from a Bayesian im-
plementation because interval estimates can be obtained for both
the network edges as well the changes in taxon–taxon associations
with respect to the binary variable Z. Existing methods would have
to rely on bootstrap sampling schemes or edge stability measures in
order to determine the importance of associations between taxa.

These additional procedures would greatly increase their computa-
tional times.

For the moment, the MDiNE model only applies to a single binary
covariate defining two networks. In future work, we plan to extend
the method to estimate how the networks change with respect to a
continuous covariate. This is a challenging problem, as the estimated
precision matrix must be positive semi-definite for every possible value
of the covariate. Some additional structure will need to be assumed in
the parameterization of the precision matrix to satisfy this constraint.

5 Conclusion

We have developed a powerful new precision matrix-based network
estimation tool called MDiNE which facilitates the comparison of
networks defined by a binary covariate. Furthermore, interval esti-
mates can be obtained both for network parameters as well as the
difference between networks, which is not currently possible in
existing microbiome network estimation methods.

Software

We have developed an R package called mdine. The package is cur-
rently available on Github https://github.com/kevinmcgregor/mdine.
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