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Abstract: Optical coherence tomography angiography (OCTA) is a promising imaging modality
for microvasculature studies. Meanwhile, deep learning has achieved rapid development in
image-to-image translation tasks. Some studies have proposed applying deep learning models to
OCTA reconstruction and have obtained preliminary results. However, current studies are mostly
limited to a few specific deep neural networks. In this paper, we conducted a comparative study
to investigate OCTA reconstruction using deep learning models. Four representative network
architectures including single-path models, U-shaped models, generative adversarial network
(GAN)-based models and multi-path models were investigated on a dataset of OCTA images
acquired from rat brains. Three potential solutions were also investigated to study the feasibility
of improving performance. The results showed that U-shaped models and multi-path models are
two suitable architectures for OCTA reconstruction. Furthermore, merging phase information
should be the potential improving direction in further research.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT), a powerful imaging modality in biomedical studies and
healthcare, allows for the non-invasive acquisition of depth-resolved biological tissue images by
measuring the echoes of backscattered light [1,2]. Depending on its excellent ability to resolve
the axial information, OCT is successfully applied to neurology, ophthalmology, dermatology,
and cardiology for structural imaging [3–5]. Meanwhile, with the development of light source
and detection techniques, OCT is also expanded for functional imaging, for instance, optical
coherence tomography angiography (OCTA) [6–8].
Different from the traditional fluorescein angiography, OCTA, a new OCT-based imaging

modality, could noninvasively obtain high-quality angiograms without using any contrast agents.
The objective of OCTA is to extract the variation of OCT signals caused by the movement of red
blood cells to provide microvasculature contrast against the static retinal tissue. Hence, various
OCTA algorithms have been invented to calculate the differences of OCT signals obtained at the
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same location within a short time sequence. Generally, the OCTA algorithms can be classified
into three categories, i.e., intensity-signal-based algorithms, phase-signal-based algorithms, and
complex-signal-based algorithms. phase-based algorithms, such as Doppler variance [9] and
phase variance [6], merely use the phase part of the OCT signal to map the microvasculature.
However, most of the phased-based algorithms are sensitive to phase noise, therefore elimination
of motion artifacts is required. Unlike phase-based algorithms, intensity-based algorithms, such
as speckle variance, correlation mapping [10], power intensity differential [11] and split-spectrum
amplitude decorrelation angiography [12] use different statistics (variance, correlation, squared
difference, and decorrelation) of OCT signal intensity to compute the blood flow information.
Hence, the influence of the phase noise and motion artifacts can be relieved. However, the
algorithms cannot apply to the scenarios where the flow induces the Doppler variation only in
the phase part of the OCT signal. In contrast, the complex-signal-based algorithms [13,14] use
both the intensity and phase information in reconstruction. Some representative algorithms,
such as the split-spectrum amplitude and phase-gradient angiography (SSAPGA) [15] have
significantly improved the OCTA imaging quality. In summary, the three traditional categories
of OCTA algorithms calculate the flow intensity through different methods to measure OCT
signal changes across temporally consecutive cross-sectional images (B-scans) taken at the same
location. However, due to the limitations of analytical methods, the traditional OCTA algorithms
can only utilize a fraction of information in the OCT signal variation.
In recent years, deep learning (DL) has achieved phenomenal success. As a representative

category of DL methods, the convolutional neural network (CNN) [16–20] has greatly promoted
the progress of various computer vision tasks and has become a popular option in visual and
perception-based tasks. In the field of ophthalmology, various CNN models have been developed
for disease classification, object segmentation and image enhancement. In order to utilize the
DL’s great capability to mine the underlying connection between data, some DL-based solutions
have been proposed to be alternatives to traditional analytic OCTA algorithms. Lee et al. [21]
proposed an attempt to use a U-shaped auto-encoder network to generate a retinal flow network
from the clinical data, but the result was not quite satisfactory and the structural details of small
vessels were difficult to be distinguished from OCT noise. Meanwhile, Liu et al. [22] also
proposed a DL-based pipeline for OCTA reconstruction and obtained promising results in in-vivo
studies. Although the results have demonstrated the superiority of the DL-based pipeline to
the traditional OCTA algorithms, they only adopted one single-path network modified from the
DnCNN, a network originally designed for image denoising [18], as the DL-model to verify their
pipeline. In fact, with the rapid development of technology, various new CNN structures have
been proposed for image-to-image translation tasks (e.g., image denoising, super-resolution, and
image synthesis). Most of these models can be extended to OCTA reconstruction. Therefore, in
order to fully utilize the current research achievements of DL and explore the future direction
of DL-based OCTA methods, it is necessary to scrutinize the current network architectures for
image translation tasks and investigate their suitability for OCTA reconstruction.

In our previous work [22], we demonstrated the DL-based pipeline for OCTA reconstruction.
Building on this foundation, more comprehensive investigations have been conducted, and four
representative network architectures were investigated, i.e., single-path model, U-shaped model,
generative adversarial network (GAN)-based model and multi-path model. The effectiveness of
each architecture was investigated using an in vivo animal dataset. The OCTA reconstruction
results were quantitatively evaluated to reflect the performance of comparative studies. Three
potential solutions (i.e., loss function optimization, data augmentation and merging phase
information) were also investigated to study the feasibility of improving the performance.
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2. Methods

2.1. Conventional OCTA reconstruction

A typical OCT signal at lateral location xl, axial location zl and time t in a B-scan can be written
as:

S(xl, zl, t) = A(xl, zl, t) · ei·Φ(xl,zl,t), (1)

where A and Φ are the signal amplitude and phase component, respectively. As mentioned above,
OCTA algorithms are mainly categorized into three categories. Among them, complex-signal-
based OCTA algorithms are widely used in the field due to their comprehensive utilization of
amplitude and phase information of the OCT signal. The SSAPGA algorithm, as a representative
complex-signal-based OCTA algorithm, maps the microvasculature with a simple correction
of phase artifacts via phase gradient method, demonstrating superior performance over other
conventional OCTA algorithms. The SSAPGA method can be described as Eqs. (2) and (3).

SSAPG(xl, zl, t) =

1 − 1
Rl−1

1
M |

∑M
m=1

∑Rl−1
r=1

2Am(xl,zl,t+(r−1)·∆t)·Am(xl,zl,t+r ·∆t)·ej·ρ·PGm(xl ,zl ,t+(r−1)·∆t)

[Am(xl,zl,t+(r−1)·∆t)]
2
+[Am(xl,zl,t+r ·∆t)]

2

(2)

PG(xl, zl, t + (r − 1) · ∆t) =
d(∆Φ(xl, zl, t + (r − 1) · ∆t))

dzl (3)

In the equations, Rl, M and ρ are the number of repetitions at the same B-scan location, the
number of narrow split spectrum bands and the weight parameter that controls the contribution
from phase gradient contrast, respectively.

2.2. Deep learning-based OCTA pipeline

In this work, the DL-based OCTA pipeline proposed in [22] was employed in the comparative
study. As shown in Fig. 1, the pipeline deals with OCTA reconstruction as an end-to-end image
translation task and consists of three phases, i.e., training data preparation, model learning and
OCTA predicting.
In the training data preparation, a learning set of the instance-label pairs {(xn, yn)}Nn=1 of

ground truth image y ∈ RH×W and their corresponding multi-channel OCT structural image
x ∈ RC×H×W were constituted for DL-based OCTA reconstruction, where n is the index of the
image pair; C, H and W are the numbers of input channels, rows and columns of the image. Each
cross-sectional image pair (x, y) in the learning set corresponds to a slow-axis location. At each
slow-axis location, 48 consecutive B-scans was firstly registered by a rigid registration algorithm
[23] and further calculated using the SSAPGA algorithm to generate a label angiogram y with
high signal-to-noise ratio (SNR); meanwhile, registered consecutive B-scans (OCT structure
images) were randomly selected as the multi-channel OCT structural image x.

In the model learning phase, the learning set was first split into a training set {(xp, yp)}Pp=1 and
a validation set {(xq, yq)}

Q
q=1. Then, four representative DL models were selected to investigate

the performance of each model, finding out the most promising DL architectures for OCTA
reconstruction. The training of each models consisted of forward propagation, loss function
calculation and back propagation steps. That is, the input x was sent to the respective neural
network to output the predicted image z ∈ RH×W; then the loss between the predicted image z and
the ground truth image y was calculated; finally, the back-propagation procedure passed the loss
value back to the network to compute the gradient, and updated the layer weights. Meanwhile,
the validation set was used to monitor the model training process with the peak signal-to-noise



Research Article Vol. 11, No. 3 / 1 March 2020 / Biomedical Optics Express 1583

Fig. 1. A schematic diagram of deep learning-based optical coherence tomography
angiography pipeline.

ratio (PSNR) as the quantitative metric. The PSNR can be defined as:

PSNR = 10 · lg

(
MAX2

y

MSE

)
, (4)

where, MAXy is the maximum value of ground truth image and the MSE is the mean square error
between the ground truth y and predicted image z. The expression of MSE can be formulated as:

MSE =
∑

H,W(z − y)2

H ×W
. (5)

As for the OCTA predicting, the consecutive B-scans at each slow-axis location are extracted and
registered; then the angiogram can be reconstructed from the B-scans using the model trained in
the learning stage of the process.

2.3. Image translation and typical network architectures

Image translation, also known as image-to-image translation, is an important field in computer
vision. The goal is to establish a mapping from an image in the source domain to a corresponding
image in the target domain through learning. The field includes various type of problems
such as super-resolution [19,24–26], noise reduction [18,27] and image synthesis [28–32].
Encoder-decoder network-based models [18,19,24,25] and GAN-based models [28,29,31,33] are
two mainstream types of implementation in image-to-image translation. For encoder-decoder
network-based models, the goal is to train a single CNN model with a particular structure
to convert one input image into the target image. According to the different architectures of
the CNN, the encoder-decoder network-based models can be further divided into single-path
models, U-shaped models, and multi-path models. On the other hand, Pix2Pix GAN [28] and
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CycleGAN [29], which work on datasets consisting of paired images and unpaired images,
respectively, represent two fundamental frameworks for GAN-based models. Considering that
the cross-sectional image pairs in our study are spatially aligned, the Pix2Pix GAN is more
suitable for OCTA reconstruction than CycleGAN.
In this work, we investigated four representative CNN models, which are DnCNN for single-

path models, U-Net [17] for U-shaped models, residual dense network (RDN) [19] for multi-path
models and Pix2Pix GAN for GAN-based models. Preliminary experiments based on the 1/10
of the full dataset were performed for parameter tuning. Important hyperparameters, such as
learning rate and batch size, were investigated, respectively. Early stopping was employed in
the training phase, ensuring that the DL models can obtain the optimal model parameters in the
training phase.

2.3.1. Single-path model

As a representative DL architecture, single-path models offer a simple yet effective way to
implement image translation. The network structures of single-patch models are line-shaped
and without any skip connections, as in SRCNN [24] and VDSR [25] for super-resolution and
DnCNN for noise reduction. In this work, we employed a modified DnCNN as the representative
single-path model and investigated it in the OCTA pipeline. The network structure is shown in
Fig. 2. This network included 20 convolutional layers. The first layer consisted of 64 filters of
size 4 × 3 × 3 to handle the four input OCT structural images and utilized the rectified linear
units (ReLU) [34] as the activation function. Each layer in layers 2 ∼ 19, which were used to
extract the features gradually, included 64 filters of size 64× 3× 3, batch normalization (BN) [35]
and ReLU. With a single filter of size 64 × 3 × 3, the last layer yielded the predicted angiogram
reconstructed from the four structural images. The network parameters were denoted as Θ for
this end-to-end system. For a given training set P = {(xp, yp)|p = 1, 2, . . . , P}, the model was
trained by minimizing the mean squared error (MSE) between the ground truth images yp and
reconstructed images z = F(xp;Θ). The loss function is characterized by:

L(Θ) =
1
P

P∑
p=1
‖F (xp;Θ) − yp‖22 . (6)

Fig. 2. The structure of the DnCNN for OCTA reconstruction. (Conv: convolutional layer;
R: ReLU layer; B: BN layer.)

As for the training details, we initialized the weights by the method in [36] and used Adam
optimization algorithm [37] to minimize the loss function. The learning rate, batch size, and
epoch were set to 1 × 10−4, 32 and 50, respectively.

2.3.2. U-shaped model

As one of the most important DL architectures, U-shaped models refer to a category of networks
with symmetrical structures [17,38,39]. Among these models, U-Net, which was first proposed
by Ronneberger et al. has achieved promising performance in image segmentation tasks. Since
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then, various U-shaped models were proposed to further improve segmentation performance and
extend the application scope. Depending on the high efficiency in training and the multi-level
feature concatenation, U-shaped models are also widely used for image reconstruction in medical
imaging, such as X-ray computed tomography (CT) and photoacoustic imaging (PAT). Hence,
U-Net was selected as the representative of U-shaped models in the OCTA pipeline to study
whether the U-Net can capture the variation among the structural images to reconstruct the
angiograms.
The network structure is shown in Fig. 3, which was divided into two parts, i.e., contracting

encoder and expanding decoder. In the encoder part, the down-sampling procedure was performed
hierarchically through five stages. Each down-sampling stage contained two 3 × 3 convolutions,
followed by BN and Leaky ReLU [36], and a 2 × 2 max-pooling with a stride of 2. In the first
stage, 32 feature maps were extracted from the 4-channel input. Then, the number of feature maps
was doubled in each stage. In the decoder part, the features extracted by the encoder part were
up-sampled sequentially. Each up-sampling stage contained one 2× 2 deconvolution with a stride
of 2 and two 3 × 3 convolutions followed by BN and Leaky ReLU. After each deconvolution,
the feature maps from the symmetric layer in the encoder path were stacked as extra channels
through skip connections. In this process, the feature maps were halved in each stage of the
decoder. In the last layer, a 3 × 3 convolution was used to reconstruct the angiogram.

Fig. 3. The structure of the U-Net for OCTA reconstruction. (Conv: convolutional layer;
LR: Leaky ReLU layer; B: BN layer; Max-Pool: max-poling layer; Deconv: deconvolution
layer.)

To train the network, we initialized the weights using the method in [36] and adopted the MSE
loss function with Adam optimizer. The learning rate, batch size, and epoch were set to 1 × 10−4,
32 and 50, respectively.

2.3.3. Multi-path model

As a kind of effective DL architectures, multi-path models refer to the very deep line-shaped
asymmetric networkswith skip connections. ResNet [16] andDenseNet [40] are two representative
networks of multi-path models, which use residual connection and dense connection as the
key to design the network structure, respectively. Figure 4 demonstrates the principles of the
residual connection and dense connection, where vl and Tl(∗) represents the output and non-linear
transformation of lth convolutional layer, respectively. It can be seen that the residual connection
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bypasses the middle convolution layers as the identity mapping:

vl = T(vl−1) + vl−3. (7)

This identity mapping is helpful for the backpropagation of the gradient flow, therefore makes it
possible to train a very deep network. On the other hand, the dense connection is the connections
from any layer to all subsequent layers. That is, for each convolutional layer, the input is a
concatenation of all the output of previous layers:

vl = T([v0, v1, . . . , vl]). (8)

This concatenation of feature maps reduces feature redundancy and further improves efficiency
and performance.

Fig. 4. The schematic diagram of Residual connection and Dense connection. (Conv:
convolutional layer; R: ReLU layer.)

Owing to the advanced characteristics, the residual connection and dense connection are
widely used in image translation tasks [41,42]. As the network combing through both residual
connection and dense connection, the RDN has achieved significant performance enhancement
in super-resolution tasks. Hence, a modified RDN was selected as the representative multi-path
model in this study.
The network structure of the RDN is shown in Fig. 5, where the residual dense block (RDB)

served as the basic module. There were four parts in the RDN structure. The first two layers,
which belong to the shallow feature extraction net, were used to extract shallow features from
input to the global residual path and RDBs. Then, the hierarchical features were obtained through
20 successive RDBs, and the feature maps from all the RDBs were concatenated to form the dense
hierarchical features. Each RDB consisted of seven convolutional layers with block residual
connection and dense connection to get high-quality local features. Afterward, two convolution
layers were used to fuse the dense hierarchical features for global residual learning. Finally, the
last convolution layer reconstructed the angiogram.
To train the network, we used the method in [36] to initialize the weights and adopted the

MSE loss function with the Adam optimizer. The learning rate, batch size, and epoch were set to
1 × 10−4, 32 and 50, respectively.

2.3.4. GAN-based model

As an important family of DL networks, GANs [43] have been vigorously studied in recent
years for a wide variety of problems. Typically, in the GAN system, a generator network and
a discriminator network are coupled and trained simultaneously. The generator is trained to
learn a mapping from a random noise vector, and output a realistic ("fake") image which the
discriminator cannot distinguish from "real" image. Meanwhile, the discriminator is trained
to discriminate between "real" and "fake" images. Among various GAN structures [28,29,44],
Pix2Pix GAN, which is based on the idea of conditional GAN (cGAN) [43], is an outstanding
architecture for image translation tasks with datasets of paired images. Therefore, Pix2Pix GAN
was chosen for our investigations.
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Fig. 5. The structure of the RDN for OCTA reconstruction. (Conv: convolutional layer; R:
ReLU layer.)

The structure and training procedure of the Pix2Pix GAN are shown in Fig. 6. We employed
the same U-Net model in Fig. 3 as the generator and a Patch GAN [28] as the discriminator.
There were five 4 × 4 convolutional layers in the Patch GAN. Except for the last layer, all the
convolution layers were with a stride of 2 and used Leaky ReLU as the activation functions. In
the layers 2 ∼ 4, instance normalization [28] was added between convolution and ReLU. The
number of feature maps was doubled in each layer. In such a GAN system, the goal is to learn an
effective mapping of the generator to predict the angiograms. Here, the training set takes the
form of P = {(xp, yp)|p = 1, 2, . . . , P}, and the mappings of generator and discriminator were
defined as G and D, respectively. Then, the loss function could be expressed as the combination

Fig. 6. The structure of the Pix2Pix GAN for OCTA reconstruction. (Conv: convolutional
layer; LR: Leaky ReLU layer; I: instance normalization layer.)
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of adversarial loss [43] and global L2 loss:

LP2P(G,D) = Ex,y[log D(x, y)] + Ex
[
log(1 − D

(
x,G (x)

)
)
]
+ λEx,y [‖y − G(x)‖2] , (9)

where E is a statistical expectation and λ is the weight term to balance the adversarial loss and
global L2 loss. The adversarial loss promotes the network to achieve sharp results and the global
L2 loss ensures the correctness of low-frequency information in predicted image z = G(x).
In this study, the generator and discriminator were trained through an alternating iterative

scheme to optimize the overall objective of Eq. (9). Method [43] was used to initialize both
the generator and the discriminator. Adam optimizers with learning rate 1 × 10−4 and 2 × 10−4
were used for generator and discriminator, respectively. Meanwhile, the λ was 1000 to adjust
the weight of global L2 loss. Moreover, the batch size was set to 1 to meet the architectural
characteristic of the Pix2Pix GAN.

3. Experimental setup

3.1. Spectral-domain OCT system

A customized spectral-domain OCT system [22] was used to acquire the OCT B-scan images for
OCTA. The system used a wideband super luminescent diode with a central wavelength of 845
nm and a full width at half maximum bandwidth of 30 nm as the light source, and adopted a fast
line scan CCD attached to a high-speed spectrometer with a 28 kHz line scan rate as the detector.
The axial resolution and lateral resolution of the system were 10 µm and 12 µm, respectively.

3.2. OCTA dataset and experimental protocol

In this study, an OCTA dataset of brain tissue from four Sprague Dawley rats was acquired.
Firstly, a 4 mm × 4 mm bone window was prepared through a craniotomy for each rat. Then, six
data volumes were obtained from the four rats by the OCT system. For each volumetric scan, the
field of view (FOV) and imaging depth were 2.5 mm × 2.5 mm and 1 mm, respectively. Two
of the rats were scanned twice using different FOVs, and the interval between the two scans
was no less than one day. A total of 300 slow-axis locations were sampled as the data volume.
In each slow-axis location, 48 consecutive B-scans with pixel size 1024 × 300 were captured.
Following the above-mentioned pipeline, 1800 cross-sectional image pairs were calculated from
six volumes to form the OCTA dataset and each image pair includes four randomly selected
structural OCT images and one label angiogram.

The training dataset and test dataset were carefully designed so as to avoid using data acquired
on the same animal in both datasets. 1500 image pairs (from five volumes acquired from three
rats) as the training set and the remaining 300 image pairs (from one volume of the remaining rat)
as the test set. Based on the same dataset, comparative studies were carried out for the quantitative
analysis and evaluation of the four representative network models. All the networks were
implemented via Pytorch (https://pytorch.org/) on NVIDIA GPUs. DnCNN, U-Net, RDN, and
Pix2Pix GAN were selected as the respective representative network for the studies. The detailed
network structures and parameter settings are elaborated in Section 2.3. Meanwhile, SSAPGA
as the reference method was also implemented for comparison. In addition, considering that
2-input and 3-input imaging protocols are alternatively used for OCTA in practical applications
to increase the imaging speed, 2-channel and 3-channel models are further trained and discussed.

3.3. Evaluation metrics

For all the networks, PSNR, structural similarity (SSIM) [45] and the Pearson correlation
coefficient (R) were used as quantitative evaluation metrics. All three metrics were calculated
between the ground truth image y and the predicted image z. PSNR measures image distortion
and noise level between two images. The larger the PSNR, the better the quality of predicted

https://pytorch.org/
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image z is. The calculation of PSNR can be found in Eqs. (4) and (5). SSIM is a metric to
evaluate the structural consistency between the target image and the reference image by fusing
the information of brightness, contrast, and structure. The value of SSIM is between 0 and 1, and
can be denoted as follow:

SSIM(y, z) =
(2µyµz + C1)(2σzy + C2)

(µ2y + µ
2
z + C1)(σ

2
y + σ

2
z + C2)

, (10)

where µy and δy terms are themean value and the standard deviation of ground truth y, respectively;
µz and δz terms characterize the mean value and the standard deviation of predicted image z,
respectively; δzy represents the cross-covariance between y and z. The C1 and C2 terms are
constants used to avoid numerical instability of the numerator and denominator. R reflects the
degree of linear correlation between two images, which is between 0 and 1. The Formula for R is:

R(y, z) =
σyz

σzσy
, (11)

where, δyz is the covariance between y and z. For both SSIM and R, a larger value represents a
better result.

4. Result and discussion

Representative reconstructed angiograms from four consecutive B-scans via SSAPGA and four
DL models are shown in Fig. 7. It can be seen that the DL-based methods were able to predict
enhanced blood flow signals with less speckle noise compared with the traditional 4-input
SSAPGA algorithm. Although compared with the ground truth image, the predicted angiograms
were prone to overemphasize local smoothing due to relatively limited input information (4 input
vs 48 input), some DL methods, such as RDN, still successfully predicted the blood flow signal
while preserving a certain degree of high-frequency details.

Table 1 summarizes the quantitative performance of the five OCTA algorithms with different
input protocols on the cross-sectional angiograms. Each evaluation index was made by averaging
the corresponding results in the test dataset. As shown in the table, all the DL-based models
demonstrate better PSNR, SSIM, and R compared to the traditional SSAPGA, indicating that the
deep neural networks have effectively utilized their modeling capability to mine more intrinsic
connections from OCT signals for OCTA reconstruction. The overall performance of the four
DL-based models can be ranked in the following order: RDN > U-Net > Pix2Pix GAN >
DnCNN. One of the major explanations is the use of skip-connection, which was adopted
in RDN, Pix2Pix GAN and U-Net, was absent in the DnCNN. As mentioned in section 2.3,
skip-connections can improve the vanishing-gradient problem in the training procedure of very
deep neural networks and is benefactive to the hierarchical feature fusion. This is important
for the OCTA reconstruction because such a property is beneficial for DL-based models to
learn multi-level representations under different receptive fields or different scales to capture
tiny changes of the OCT signals in angiogram reconstruction. For U-Net and Pix2Pix GAN,
the skip-connection is used in concatenating the low-level features and symmetrical high-level
features, which belong to the encoding path and decoding path, respectively. For RDN, the
residual connection and the dense connection, as two variants of the skip-connection, are used
together to facilitates the sufficient application of hierarchical features along the feedforward path
in the network. All these connection architecture designs in U-Net, Pix2Pix GAN and RDN help
models extract more informative features from the training images with less mid/high-frequency
information loss to yield the reconstructed OCTA images. However, compared with U-Net and
Pix2Pix, the RDN effectively combined the residual connection and dense connection, which
should further ensure the model increase the network depth without sacrifice the trainability.
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Fig. 7. Reconstructed cross-sectional angiograms via different algorithms; for visual
comparison, all the results shown in figure is the same region-of-interest (ROI) (337 × 371)
extracted from the original cross-sectional angiogram; (a) ground truth image obtained from
SSAPGA algorithm with 48 consecutive B-scans as input; (b)-(f) reconstructed angiograms
through corresponding OCTA algorithms with 4 consecutive B-scans as input.

Table 1. The average PSNR(dB)/SSIM/R results of the cross-sectional angiograms with different
algorithms and protocols (The best results are highlighted).

Scale SSAPGA DnCNN U-Net Pix2Pix RDN

4 inputs 39.20±0.96 43.76±0.82 44.39±0.91 44.20±0.91 44.40 ± 0.91
PSNR 3 inputs 38.26±0.75 42.91±0.76 43.57±0.95 43.59±0.91 43.73 ± 0.89

2 inputs 35.89±0.81 41.80±0.81 42.16±0.98 42.44±0.89 42.53 ± 0.92
4 inputs 0.971±0.006 0.982±0.003 0.986 ± 0.003 0.985±0.004 0.986 ± 0.003

SSIM 3 inputs 0.965±0.006 0.979±0.004 0.981±0.003 0.982±0.004 0.984 ± 0.003
2 inputs 0.949±0.008 0.976±0.004 0.977±0.004 0.976±0.005 0.978 ± 0.004
4 inputs 0.931±0.013 0.974±0.007 0.975 ± 0.007 0.974±0.008 0.975 ± 0.006

R 3 inputs 0.915±0.010 0.969±0.008 0.970±0.008 0.970±0.008 0.972 ± 0.007
2 inputs 0.868±0.014 0.959±0.012 0.959±0.011 0.961±0.011 0.962 ± 0.011
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Hence, depending on both the efficient feature fusion and the strong expression capability, RDN
has achieved the best performance in this study.
A volumetric OCT data can be rendered in 2D slices along different dimensions, such as the

cross-sectional visualization as mentioned before, or as enface representations. In angiogram
applications, the scanned results are conventionally converted to enface maximum intensity
projection (MIP) to facilitate vasculature visualization. Therefore, the performance of different
methods was also compared in a MIP enface view in this study. Table 2 shows the calculated
evaluation indices obtained by the five OCTA algorithms with different input protocols on the
MIP enface angiogram.

Table 2. The PSNR(dB)/SSIM/R results of the MIP enface angiogram with different algorithms and
protocols (The best results are highlighted).

Scale SSAPGA DnCNN U-Net Pix2Pix RDN

4 inputs 14.62 17.31 20.00 20.43 22.14
PSNR 3 inputs 14.16 20.16 19.27 19.72 20.89

2 inputs 13.27 17.44 20.82 19.68 20.53

4 inputs 0.527 0.702 0.714 0.714 0.712

SSIM 3 inputs 0.500 0.677 0.690 0.685 0.686

2 inputs 0.432 0.605 0.625 0.616 0.633
4 inputs 0.837 0.928 0.929 0.929 0.929

R 3 inputs 0.815 0.918 0.922 0.919 0.920

2 inputs 0.763 0.898 0.899 0.895 0.901

It can be seen that every DL-based algorithm outperforms SSAPGA. Across all the recon-
struction results, U-Net and RDN have achieved the top two overall performance. On the other
hand, although the Pix2Pix GAN outperformed the U-Net under the 4-input protocol, it failed to
keep high effectiveness across all the protocols. This may due to the inherent characteristic of
the GAN which makes it difficult to train. Adopting special stable training techniques for GAN
should be one potential solution to solve the problem, however it is not the case in this study. In
order to keep relative fairness of the comparison, we adopted the uniform training strategy for all
the DL-based models and found that it is hard to keep the balance between the generator and the
discriminator in Pix2Pix GAN to achieve superior performance. Consequently, under the normal
training strategy, the performance of Pix2Pix GAN has not met expectations.

Figure 8 shows the 4-input reconstructed results of the MIP enface angiogram using different
algorithms. It can be seen that DL-based models have demonstrated obvious advantages
over 4-input SSAPGA in noise suppression and microvessel reconstruction. Meanwhile, the
local smoothing problem existing in Fig. 8(c) of DnCNN has been somewhat alleviated in the
reconstructed results of the Pix2Pix GAN, U-Net, and RDN.When we further compared Figs. 8(d)
∼ 8(f), it can be found that RDN-based angiogram contains more high-frequency details than the
angiograms obtained by Pix2Pix GAN and U-Net. However, it also suffered from some wavy
artifacts, which are unobvious in the Figs. 8(d) and 8(e). The wavy artifacts were essentially
caused by the strong sample motion during the acquisition process of 48 consecutive B-scans
at each slow-axis location. Hence, the trouble influenced the performance of all the DL-based
models. The reason why the RDN was more sensitive to the sample motion than the others
should be attributed to the extremely high expression capability of the network, which needs
more balanced training data to reduce the wavy artifacts. On the other hand, U-Net, depending
on its moderate model size and high efficiency in computation and training, has an intrinsic
advantage to learn a relatively generalized model from limited training data. As a result, U-Net
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and U-Net-based Pix2Pix GAN suffered less from the wavy artifacts, which is also reflected in
the higher SSIM values in the Table 2.

Fig. 8. Reconstructed MIP enface angiograms through different algorithms; for visual
comparison, an ROIs are labeled by the rectangular box, and the 2.5-fold magnified images
of the ROIs are also provided in the right of the original image; (a) ground truth image
obtained via SSAPGA algorithm with 48 consecutive B-scans as input; (b)-(f) reconstructed
angiograms via corresponding OCTA algorithms with 4 consecutive B-scans as input.

Based on the discussion above, we believe that U-shaped models and multi-path models should
be two suitable categories of architectures for OCTA reconstruction tasks. U-shaped model is
more suitable for the tasks with small data size and limited computational power. On the other
hand, multi-path models should play a full part under sufficient training data and computational
power.

Finally, an additional experiment was conducted to investigate the robustness of the DL-based
OCTA reconstruction to noise. We assumed the noise is additive white Gaussian noise (AWGN),
which is the most common noise existing in OCT images. Noisy B-scans, which were generated
by adding AWGN with a certain noise level to the test set, were tested by the trained 4-input
RDN model for demonstration. In the experiment, four noise levels, i.e., σ ∈ [4, 6, 8, 10],
were respectively used to generate the noisy inputs for OCTA reconstruction. The MIP enface
angiograms of the results are shown in the Fig. 9. It can be seen that, the trained DL-model
demonstrated certain robustness to the AWGN. With the noise level σ = 4 and σ = 6, the
reconstructed MIP enface angiograms successfully preserved the primary vascular composition
without generating obvious false blood flow signal. Although there was some degradation of
the reconstruction quality, the results are acceptable with such high noise levels of σ = 8 and
σ = 10. In fact, σ of [0, 2] is hampered to OCT [46], and severely limit OCTA performance
due its intrinsic high-frequency sensitivity. Table 3 summarized the corresponding quantative
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evaluation. The quantitative results verify the visual perception of Fig. 9 and indicate that the
well-trained DL-based OCTA models are robustness to AWGN.

Fig. 9. Reconstructed MIP enface angiograms under the AWGN with different noise levels;
(a) ground truth image obtained via SSAPGA algorithm with 48 consecutive B-scans as
input; (b) original reconstructed angiogram of RDN without AWGN; (c)-(f) reconstructed
angiograms of RDN with different AWGN.

Table 3. The PSNR(dB)/SSIM/R results of the MIP enface angiograms reconstructed by the 4-input
RDN under different noise levels.

RDN RDN + AWGN

Without Noise σ = 4 σ = 6 σ = 8 σ = 10

PSNR 22.1354 21.6584 21.5274 20.9981 20.4828

SSIM 0.7118 0.6910 0.6514 0.5924 0.5368

R 0.9287 0.9231 0.9104 0.8908 0.8685

5. Improvement exploration

Some potential solutions were pilot explored for further improving the DL-based OCTA
reconstruction. Considering the training efficiency of the network, U-Net was chosen as the basic
model for the investigation. Three schemes were investigated via the basic model, i.e., L1 loss
replacement, data-augmentation, and phase information merging.
For the first scheme, the L1 loss was used to replace the original MSE loss in the U-Net.

Referred to Eq. (6), the L1 loss can be defined as:

L(Θ) =
1
P

P∑
p=1
|F(xp;Θ) − yp |. (12)

As for the second scheme, random data-augmentation was implemented while inputting training
data into the network. That is, for each cross-sectional image pair, during the reading process,
180◦ clockwise rotate and horizontal flip were randomly conducted on the original image pair.
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As for the third scheme, the cross-sectional image pairs were reorganized by adding three OCT
phase images into the image pairs. The OCT phase images, which correspond to the four OCT
structural images [15], were calculated through the phase gradient angiography method.

All three pilot studies adopted the same training strategy and parameter setting with the basic
U-Net model in Section 2.3. Only the 4-input image protocol was tested in these experiments.
The results of the MIP enface angiograms are shown in the Table 4.

Table 4. The PSNR(dB)/SSIM/R results of the MIP enface angiogram with different improvement
schemes (The best results are highlighted).

U-Net U-Net + L1 U-Net + Augmentation U-Net + Phase

PSNR 20.00 20.27 20.34 21.30
SSIM 0.714 0.717 0.722 0.750
R 0.929 0.930 0.931 0.938

A plethora of information can be deduced from Table 4. First, the L1 loss replacement has
improved the reconstruction quality of OCTA. It may be attributed to the advantage of L1 loss
in preserving the low-frequency information. However, the improvement is relatively limited.
Hence, designing a more suitable loss function for OCTA tasks is a direction that remains

Fig. 10. Reconstructed MIP enface angiograms via different algorithms; for visual
comparison, two ROIs are labeled by rectangular boxes, and the corresponding 2.5-fold
magnified images of the ROIs are also provided in both sides of the figure; (a) ground
truth image obtained from SSAPGA algorithm with 48 consecutive B-scans as input; (b)
reconstructed angiograms through basic U-Net model; (c) reconstructed angiograms through
U-Net model with phase information fusion.
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to be explored in further studies. Secondly, the effectiveness of data-augmentation has been
demonstrated. One possible explanation for this is that data-augmentation help mitigate the
overfitting problem of the U-Net to a certain extent, resulting in better generalization for the
trained model. Therefore, it is meaningful to build a larger dataset with proper data-augmentation
techniques for OCTA tasks. Finally, similar to the traditional analytic OCTA algorithms, merging
phase information also exerts a positive impact on the performance of the DL models. Figure 10
shows the reconstructed results of the MIP enface angiogram through phase information merging.
Compared to the basic U-Net model, the microvessel pointed by red and brown arrows present
higher reconstructive precision. Meanwhile, the vessel areas marked by the green arrow and
dotted circle demonstrate better connectivity of edge and less wavy artifacts. The corresponding
quantitative metrics of the two ROIs are also provided in the Table 5. It can be seen that all
the metrics of the phase merging scheme have obtained obvious improvement relative to the
corresponding metrics of the basic U-Net model. Hence, given the great modeling capability
of the DL models, merging phase information into the training process to comprehensively use
OCT signals for accurate OCTA reconstruction is a new impetus for DL-based OCTA tasks.

Table 5. The PSNR(dB)/SSIM/R results of the ROIs from MIP enface angiogram with merging phase
information (The increase relative to basic U-Net model is also provided for each metrics).

U-Net U-Net + Phase

PSNR SSIM R PSNR SSIM R

ROI-yellow 20.06 0.750 0.938 21.14 (+5.37%) 0.784 (+4.64%) 0.947 (+0.93%)

ROI-red 20.41 0.719 0.911 21.57 (+5.64%) 0.768 (+6.70%) 0.927 (+1.76%)

6. Conclusion

In this study, we conducted a comparative study on the DL-based OCTA reconstruction algorithms.
Four representative models from the field of image translation were investigated using the DL-
based OCTA pipeline. From the results, we found that U-shaped models and multi-path models
were two suitable architectures for OCTA reconstruction. As an extension of the study, preliminary
explorations of three potential solutions for further improvement of the DL-based OCTA tasks
were conducted. The results showed that merging phase information should be the potential
improving direction in the further research of DL-based OCTA reconstruction algorithms.
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