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Abstract: The tear meniscus contains most of the tear fluid and therefore is a good indicator
for the state of the tear film. Previously, we used a custom-built optical coherence tomography
(OCT) system to study the lower tear meniscus by automatically segmenting the image data with
a thresholding-based segmentation algorithm (TBSA). In this report, we investigate whether the
results of this image segmentation algorithm are suitable to train a neural network in order to
obtain similar or better segmentation results with shorter processing times. Considering the class
imbalance problem, we compare two approaches, one directly segmenting the tear meniscus
(DSA), the other first localizing the region of interest and then segmenting within the higher
resolution image section (LSA). A total of 6658 images labeled by the TBSA were used to train
deep convolutional neural networks with supervised learning. Five-fold cross-validation reveals
a sensitivity of 96.36% and 96.43%, a specificity of 99.98% and 99.86% and a Jaccard index of
93.24% and 93.16% for the DSA and LSA, respectively. Average segmentation times are up to
228 times faster than the TBSA. Additionally, we report the behavior of the DSA and LSA in
cases challenging for the TBSA and further test the applicability to measurements acquired with
a commercially available OCT system. The application of deep learning for the segmentation of
the tear meniscus provides a powerful tool for the assessment of the tear film, supporting studies
for the investigation of the pathophysiology of dry eye-related diseases.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Dry eye disease (DED) is a frequent disease of the ocular surface in which tear film instability
plays a major role [1–3]. In an effort to assess the state of the tear film in DED, the tear meniscus,
which is the concave tear surface at the upper and lower eyelid margins, has been widely studied
[4–6]. A variety of quantitative parameters describing the tear meniscus, ranging from tear
meniscus volume (TMV) [7] and radius of curvature (TMR) [8] to tear meniscus height (TMH)
[9], depth (TMD) [10] and tear meniscus area (TMA) [11] have been studied, employing different
devices and methods.
Optical coherence tomography (OCT) is based on interferometric principles. By measuring

the echo time delay of the back-scattered light, OCT can acquire high-resolution cross-sectional
images of a sample. Being non-invasive, the technology has become a clinical standard in
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ophthalmological care, where it is routinely used to investigate the anterior and posterior segment
of the eye [12].
When evaluating quantitative parameters in images, manual segmentation is often time

consuming and can introduce operator bias [3]. Automatic assessment, on the other hand, is
hampered by the high inter- and intra-individual variability that comes with in vivomeasurements.
Depending on the application, conventional segmentation algorithms, e.g. based on thresholding
and edge detection, can provide robust results, but at the price of high complexity [13].
Although known for a long time [14], machine learning has been increasingly used only in

the past decade to solve image classification [15] and segmentation [16] tasks, mainly driven by
advances in the parallelization capabilities of graphics processing units (GPUs) [17]. Using OCT
data, segmentation applications can range from detection of retinal layer boundaries [18,19],
macular edema [20] and macular fluid [21] to corneal layers [22] and intradermal volumes [23].

Class imbalance in deep learning describes the problem of having too few samples of a certain
class as compared to other classes in the dataset. For image segmentation, this means that the
structure of interest (foreground) covers only a small area in the image and therefore consists of
far less pixels than the background. This kind of class imbalance usually leads to neural networks
being very good at the detection of background pixels, while being worse at the detection of
relevant foreground structures. Currently there are two main approaches to mitigate this effect:
weighted loss functions and cascading (two-stage) networks. Weighted loss functions include
weights that emphasize the foreground pixels or introduce scaling factors that focus the training
on misclassified examples. They can reach complexities that consider smoothness constraints,
topological relations or valid shapes [24–26]. The main concept of cascading networks is the
employment of a series of neural networks, where the following model uses the output prediction
map of the previous one. This can, for example, be accomplished by a fully convolutional network
(FCN) segmenting within the segmented area of a previous one [27] or by segmenting within a
previously regressed bounding box [28].
In this manuscript, we present a new application of neural networks for the localization and

segmentation of the lower tear meniscus in ultrahigh-resolution (UHR-)OCT measurements.
The current dataset of healthy subjects with a normal tear film provides a low support of tear
meniscus pixels, an effect that will be even worse in DED patients. We therefore put the focus
on investigating the class imbalance in these types of measurements. In the following, we will
consider two deep learning segmentation approaches. One directly segments the tear meniscus in
the original image, while the second approach first localizes the tear meniscus and then segments
within the higher resolution region of interest (ROI). The goal is to investigate whether the
two-stage segmentation is necessary, and if so, if the localization is possible with a very simple
convolutional neural network (CNN). We will compare the localization results with a state of
the art network and the segmentation outputs with our previously published thresholding-based
segmentation algorithm (TBSA) [29], both quantitatively and qualitatively, and test the two deep
learning approaches on a measurement acquired with a commercially available OCT system.

2. Material and methods

2.1. Subjects

The tear meniscus measurements were obtained from ten healthy subjects (five female, five
male, age 31 ± 10 years). The study protocol was approved by the Ethics Committee of the
Medical University of Vienna and the study was performed in adherence to the guidelines of the
Declaration of Helsinki as well as Good Clinical Practice guidelines. All participants gave their
written informed consent.
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2.2. Data acquisition

Cross-sectional images of the lower tear meniscus were obtained using a custom-built UHR-OCT
system described in detail elsewhere [30]. In short, the Ti:Sa laser source with a central
wavelength of 800 nm provides an axial resolution of 1.2 µm in tissue, while the optics of the
setup produce a lateral resolution of 21 µm. Measurements were centered on the lower eyelid
margin and covered a volume of 2.9 × 4 × 2 mm3 (height × width × depth, in air).

An additional measurement was acquired with a commercially available Cirrus HD-OCT 4000
system (Carl Zeiss Meditec, Inc., Dublin, California, USA) in combination with a dedicated
anterior segment lens. The system has a lateral resolution of 20 µm and an axial resolution of 5
µm in tissue. The depth-ranges of the UHR-OCT and the Cirrus HD-OCT are approximately
1.5 and 2.1 mm in tear fluid, respectively, assuming a tear film group index of 1.341 for the
wavelength band of the light source [31].

2.3. Dataset

All images were obtained from volumetric measurements of ten different subjects and segmented
using the TBSA presented elsewhere [29]. In order to increase the pixel resolution of the image,
in a first step, the spectral signal was zero-padded before the discrete Fourier transform. While
the axial resolution that is given by the central wavelength and bandwidth of the laser light
source [32] remains unchanged, the larger number of axial pixels can be advantageous for image
segmentation tasks. In brief, the TBSA then uses cross-correlation to identify the ROI. Next, it
applies thresholding, detects the upper and lower tear meniscus boundaries and uses them to
estimate the tear meniscus area.
After the segmentation by the TBSA, all images were evaluated by an experienced grader

and only those with a suitable segmentation were retained. The final dataset consisted of 6658
images from all ten subjects with a resolution of 8192 × 512 pixel (height × width). The average
support of the tear meniscus, which is the amount of tear meniscus pixels divided by the amount
of background pixels, was 0.71%.

2.4. Comparison of two segmentation approaches

In order to use both the segmentation and the localization data obtained from the TBSA, we
decided to compare two different approaches. The first approach employs an FCN to segment the
tear meniscus area in a down-scaled 512 × 512 pixel version of the initial 8192 × 512 pixel OCT
image. Since the actual tear meniscus is relatively small in respect to the full cross sectional
image, only a limited area in the image contains relevant information. The second approach,
therefore, first localizes the tear meniscus and crops a ROI from the initial image in which the
tear meniscus covers a larger part of the image section. This ROI is then scaled to 512 × 128
pixels and segmented by a FCN. In this manuscript, these methods will be referred to as direct
segmentation approach (DSA) and localized segmentation approach (LSA) (Fig. 1). The LSA is
similar to Mask R-CNN [28], but differs in that the localization in our case is handled by a very
simple and fast CNN.

2.5. Data augmentation

Since most tear meniscus images that originate from a single subject are related, we used
data augmentation during the training phase to increase the variability of our dataset. For the
localization, the ground truth is modeled as the coordinates of the top left and bottom right
corner of a rectangular bounding box. These bounding boxes all have the same dimensions of
3000 × 130 pixels, which we chose empirically while designing the TBSA to allow for larger
tear menisci. We introduced some variation during the training process by multiplying in every
epoch each coordinate by a random value between 0.95 and 1 or 1 and 1.05, chosen so that
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Fig. 1. Schematic of both investigated segmentation approaches. The DSA rescales
and directly segments the initial image while the LSA first localizes the meniscus before
segmentation. FCN512 and FCN128 have similar architectures and only differ in their image
input dimensions (see also Fig. 3).

can only increase in area. Reducing the area could cut off parts of the tear meniscus and falsify
the ground truth data. For the segmentation we use Augmentor [33] to apply random rotations of
up to 5 degrees and slight random skewing to the images, each with a probability of 50% per
epoch. This generally increases the performance of a neural network, since it provides a wider
range of training data.

2.6. Network architectures

In the following paragraph, the neural network architectures for the localization and the
segmentation of the tear meniscus will be presented. All neural networks were implemented
using the Keras library [34] with TensorFlow [35] backend.

2.6.1. Meniscus localization.

For the localization of the tear meniscus, a network with a single convolutional layer was used
(Fig. 2). The ROI is modeled as a rectangular bounding box and the output of the network are the
x and y coordinates of the top left and bottom right corner of this bounding box. Before being
fed to the network, the initial 8192x512 pixel image is rescaled to 64x64 pixels. This design
aims to keep training and evaluation times very short. In order to prevent overfitting, L1 norm
regularization is applied to the convolutional layer and a dropout layer [36] is introduced before
the flattening. Batch normalization [37] is added before the rectified linear unit (ReLU) activation
layer to increase the training stability. The last fully connected layer uses a linear activation
function. For training, we used the mean squared error as loss function and stochastic gradient
descent with a learning rate of 1 ∗ 10−5, a Nesterov momentum of 0.999 and a batch size of 32.
To compare the localization performance with a state of the art network, we trained YOLOv3 and
Tiny YOLOv3, a smaller version of YOLOv3, on our dataset [38] . Best results were obtained

Fig. 1. Schematic of both investigated segmentation approaches. The DSA rescales
and directly segments the initial image while the LSA first localizes the meniscus before
segmentation. FCN512 and FCN128 have similar architectures and only differ in their image
input dimensions (see also Fig. 3).

the bounding box can only increase in area. Reducing the area could cut off parts of the tear
meniscus and falsify the ground truth data. For the segmentation we used Augmentor [33] to
apply random rotations of up to five degrees and slight random skewing to the images, each with
a probability of 50% per epoch. This generally increases the performance of a neural network,
since it provides a wider range of training data.

2.6. Network architectures

In the following paragraph, the neural network architectures for the localization and the
segmentation of the tear meniscus will be presented. All neural networks were implemented
using the Keras library [34] with TensorFlow [35] backend.

2.6.1. Meniscus localization.

For the localization of the tear meniscus, a network with a single convolutional layer was used
(Fig. 2). The ROI is modeled as a rectangular bounding box and the output of the network are the
x and y coordinates of the top left and bottom right corner of this bounding box. Before being
fed to the network, the initial 8192 × 512 pixel image was rescaled to 64 × 64 pixels. This design
aims to keep training and evaluation times very short. In order to prevent overfitting, L1 norm
regularization is applied to the convolutional layer and a dropout layer [36] is introduced before
the flattening. Batch normalization [37] is added before the rectified linear unit (ReLU) activation
layer to increase the training stability. The last fully connected layer uses a linear activation
function. For training, we used the mean squared error as loss function and stochastic gradient
descent with a learning rate of 1 ∗ 10−5, a Nesterov momentum of 0.999 and a batch size of 32.
To compare the localization performance with a state of the art network, we trained YOLOv3 and
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Tiny YOLOv3, a smaller version of YOLOv3, on our dataset [38]. Best results were obtained
using the available pre-trained weights as initialization and by employing stochastic gradient
descent with a learning rate of 3 ∗ 10−5 and a Nesterov momentum of 0.999.405
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using the available pre-trained weights as initialization and by employing stochastic gradient
descent with a learning rate of 3 ∗ 10−5 and a Nesterov momentum of 0.999.

Fig. 2. Architecture of the neural network for the localization of the tear meniscus. The
notation h x w x f represents the shape of the layer (h: height, w: width, f: number of
feature channels). Conv2d 3x3: 2-dimensional convolution with a 3x3 kernel, L1 reg: L1
norm regularization, batchnorm: batch normalization, ReLU: rectified linear unit, maxpool:
maximum pooling, FC: fully connected layer.

2.6.2. Meniscus segmentation.

The segmentation of the tear meniscus was performed with a U-Net-like architecture [16] modified
as shown in Fig. 3. Except for the layer dimensions, the network is very similar to our previously
published segmentation network [23]. In short, the main differences to Ronneberger’s U-Net are
a reduction in the amount of feature channels, a batch normalization layer before every rectified
linear unit (ReLU) activation layer, application of image padding for every convolution and a
sigmoid activation function instead of a softmax function for the last network layer.

For training, a differentiable version of the Jaccard distance, as described in [23], was employed
as loss function. We used stochastic gradient descent with a learning rate of 3.5 ∗ 10−5 and
5 ∗ 10−4 for DSA and LSA, respectively, a Nesterov momentum of 0.999 and a batch size of 4.

3. Results

3.1. Tear meniscus localization

The localization of the tear meniscus was evaluated by employing two different metrics. The
Jaccard index is defined as the intersection of the ground truth bounding box with the predicted
bounding box, divided by their union. The second metric will be referred to as pinc in the
following paragraphs and is defined as the ratio of the number of tear meniscus pixels within the
bounding box (Nbox) and the total number of tear meniscus pixels in the image (Nimage):

pinc =
Nbox
Nimage

. (1)

We used 5-fold cross-validation and split the 6658 images into five subsets of 1179 to 1543
images, each fold consisting of images from two of the ten subjects. We then trained the network
on four of the five folds and predicted the localization on the fifth. The results are shown in Table 1
for our proposed network and in Table 2 for YOLOv3 and Tiny YOLO. An average Jaccard index
of 78.85 % as well as an average pinc of over 99.99% indicate a successful localization of the ROI

Fig. 2. Architecture of the neural network for the localization of the tear meniscus. The
notation h x w x f represents the shape of the layer (h: height, w: width, f: number of
feature channels). Conv2d 3x3: 2-dimensional convolution with a 3x3 kernel, L1 reg: L1
norm regularization, batchnorm: batch normalization, ReLU: rectified linear unit, maxpool:
maximum pooling, FC: fully connected layer.

2.6.2. Meniscus segmentation

The segmentation of the tear meniscus was performed with a U-Net-like architecture [16] modified
as shown in Fig. 3. Except for the layer dimensions, the network is very similar to our previously
published segmentation network [23]. In short, the main differences to Ronneberger’s U-Net are
a reduction in the amount of feature channels, a batch normalization layer before every rectified
linear unit (ReLU) activation layer, application of image padding for every convolution and a
sigmoid activation function instead of a softmax function for the last network layer.

For training, a differentiable version of the Jaccard distance, as described in [23], was employed
as loss function. We used stochastic gradient descent with a learning rate of 3.5 ∗ 10−5 and
5 ∗ 10−4 for DSA and LSA, respectively, a Nesterov momentum of 0.999 and a batch size of 4.

3. Results

3.1. Tear meniscus localization

The localization of the tear meniscus was evaluated by employing two different metrics. The
Jaccard index is defined as the intersection of the ground truth bounding box with the predicted
bounding box, divided by their union. The second metric will be referred to as pinc in the
following paragraphs and is defined as the ratio of the number of tear meniscus pixels within the
bounding box (Nbox) and the total number of tear meniscus pixels in the image (Nimage):

pinc =
Nbox
Nimage

. (1)

We used five-fold cross-validation and split the 6658 images into five subsets of 1179 to 1543
images, each fold consisting of images from two of the ten subjects. We then trained the network
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Fig. 3. Architecture of the two neural networks for the segmentation of the tear meniscus.
The notation h x w x f represents the shape of the layer (h: height, w: width, f: number of
feature channels). The DSA uses FCN512 with n = 512 and the LSA uses FCN128 with n =
128.

Fig. 3. Architecture of the two neural networks for the segmentation of the tear meniscus.
The notation h x w x f represents the shape of the layer (h: height, w: width, f: number of
feature channels). The DSA uses FCN512 with n = 512 and the LSA uses FCN128 with n =
128.
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on four of the five folds and predicted the localization on the fifth. The results are shown in Table 1
for our proposed network and in Table 2 for YOLOv3 and Tiny YOLO. An average Jaccard index
of 78.85 % as well as an average pinc of over 99.99% indicate a successful localization of the ROI
by our proposed localization network. Although the CNN architecture for the localization is very
simple, it reached a pinc of 100% in three out of five validation-folds. In comparison, YOLOv3
and Tiny YOLO reached an average Jaccard index of 58.95% and 55.32% and an average pinc of
98.50% and 92.24%, respectively. The average localization times for a single image were 310 µs,
1 ms and 5 ms for our proposed network, Tiny YOLOv3 and YOLOv3, respectively, using an
Nvidia GeForce GTX 1080 Ti graphics card.

Table 1. Five-fold cross-validation results of the proposed network for the tear meniscus
localization.

Fold 1 2 3 4 5 mean

Jaccard
mean 0.7974 0.7909 0.7968 0.7793 0.7739 0.7885

std 0.0854 0.0804 0.0884 0.1061 0.1027 0.0927

pincpincpinc
mean 0.9999 1.000 1.000 0.9998 1.000 0.9999

std 0.0017 0.0000 0.0000 0.0081 0.0000 0.0035

Table 2. Five-fold cross-validation results of YOLOv3 and Tiny YOLOv3 for the tear meniscus
localization.

YOLOv3

Fold 1 2 3 4 5 mean

Jaccard
mean 0.6197 0.6199 0.5403 0.5892 0.5749 0.5895

std 0.1354 0.1477 0.1672 0.1152 0.1191 0.1533

pincpincpinc
mean 0.9785 0.9948 0.9748 0.9986 0.9811 0.9850

std 0.0920 0.0371 0.0879 0.0296 0.0522 0.0719

Tiny YOLOv3

Fold 1 2 3 4 5 mean

Jaccard
mean 0.5829 0.5135 0.5910 0.5771 0.4898 0.5532

std 0.1560 0.1651 0.1426 0.1928 0.1161 0.1615

pincpincpinc
mean 0.9558 0.8937 0.9892 0.8998 0.8542 0.9224

std 0.1406 0.2146 0.0467 0.2154 0.2918 0.1998

3.2. Tear meniscus segmentation

The image segmentation was performed using two different approaches. The one-step DSA
rescales the initial OCT image to 512 × 512 pixels and feeds it into the FCN512. The two-step
LSA first localizes the ROI in the initial image and then uses a 512 × 128 pixel image of the
ROI to segment the tear meniscus with the FCN128. The segmentations obtained from both
approaches in comparison to the TBSA are shown in Fig. 4 in the case of a typical lower tear
meniscus measurement. In Fig. 5, the comparison between the TBSA, DSA and LSA in the
context of challenging segmentation tasks is depicted. These instances are rare in healthy subjects
but present a good opportunity to visualize the algorithm’s behavior in edge cases.
The different performance metrics were calculated using five-fold cross-validation and are

given in Table 3 along with the estimated absolute areas. Each fold consisted of 1179 to 1543
images from two of the ten subjects. Results for each individual subject are shown in Appendix 1
(Table 4) and 2 (Table 5) for the DSA and LSA, respectively. The average support of the tear
meniscus, which is the amount of meniscus pixels in relation to background pixels, was 0.71%
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Fig. 4. Comparison between the thresholding-based segmentation algorithm (TBSA), the
direct segmentation approach (DSA) and the localized segmentation approach (LSA) in an
example case. The axes represent µm in tear fluid.

single image is on average 25 ms for the DSA and 7 ms for the LSA using an Nvidia Geforce
GTX 1080 Ti graphics card, which is 64 times or 228 times faster than the TBSA requiring 1.6 s.

3.3. Segmentation of a measurement from a commercial system

In Fig. 6, a cross-sectional image acquired with a commercially available Cirrus HD-OCT 4000
system (Carl Zeiss Meditec, Inc., Dublin, California, USA) and the corresponding segmentation
results employing the DSA and LSA are depicted. As can be seen in Fig. 6(A), the network
correctly segments the tear meniscus in the center of the image, but, in addition, falsely identifies
pixels in the lower left corner of the image that includes part of the iris. This can be explained
by the larger depth range of the Cirrus HD-OCT system as compared to the UHR-OCT, which
generates images that contain deeper lying structures of the anterior eye segment. These structures
were not present in the training dataset that was entirely acquired with the UHR-OCT. However,
when only considering the segmentation within the bounding box, the DSA accurately determines
the tear meniscus region Fig. 6(A). The LSA depicted in Fig. 6(B), being limited to the ROI,
provides a correct segmentation of the tear meniscus.

Fig. 4. Comparison between the thresholding-based segmentation algorithm (TBSA), the
direct segmentation approach (DSA) and the localized segmentation approach (LSA) in an
example case. The axes represent µm in tear fluid.

and 4.18% for the DSA and LSA, respectively. The mean sensitivity was 96.36% and 96.43%, the
mean specificity was 99.98% and 99.86% and the mean Jaccard index was 93.24% and 93.16%
for DSA and LSA, respectively, which indicates a good performance of both approaches overall.
The segmentation time of a single image is on average 25 ms for the DSA and 7 ms for the LSA
using an Nvidia GeForce GTX 1080 Ti graphics card, which is 64 times or 228 times faster than
the TBSA requiring 1.6 s.

3.3. Segmentation of a measurement from a commercial system

In Fig. 6, a cross-sectional image acquired with a commercially available Cirrus HD-OCT 4000
system (Carl Zeiss Meditec, Inc., Dublin, California, USA) and the corresponding segmentation
results employing the DSA and LSA are depicted. As can be seen in Fig. 6(A), the network
correctly segmented the tear meniscus in the center of the image, but, in addition, falsely identified
pixels in the lower left corner of the image that includes part of the iris. This can be explained
by the larger depth range of the Cirrus HD-OCT system as compared to the UHR-OCT, which
generates images that contain deeper lying structures of the anterior eye segment. These structures
were not present in the training dataset that was entirely acquired with the UHR-OCT. However,
when only considering the segmentation within the bounding box, the DSA accurately determines
the tear meniscus region. The LSA depicted in Fig. 6(B), being limited to the ROI, provides a
correct segmentation of the tear meniscus.
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Fig. 5. Comparison between the TBSA (column 2), DSA (3) and LSA (4) in rare cases of
challenging segmentation tasks (1). None of the images were part of the training dataset. (A)
Not segmented lateral cavity (orange arrow), (B) irregular meniscus shape, (C) small debris
and (D) larger debris cutting the tear meniscus area in two parts. Green arrows indicate
example areas where the bordering pixels are included in or excluded from the tear meniscus
area. The red arrow indicates a non-segmented region of the tear meniscus area. The blue
arrow indicates holes in the segmented area, where debris is present. Images in columns
1-3 are cropped from a 512x512 pixel image, while images in column 4 are cropped from a
512x128 pixel image. The axes represent µm in tear fluid.
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512 × 128 pixel image. The axes represent µm in tear fluid.
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Table 3. Cross-validated results for the tear meniscus segmentation. Values are averages over all
folds weighted by the number of images in the fold. Std is the standard deviation.

Metric DSA LSA

Support
mean 0.0071 0.0418

std 0.0021 0.0136

Jaccard index
mean 0.9324 0.9316

std 0.0432 0.0474

Dice coeff.
mean 0.9644 0.9638

std 0.0261 0.0318

Accuracy
mean 0.9995 0.9972

std 0.0003 0.0027

Sensitivity
mean 0.9636 0.9643

std 0.0361 0.0262

Specificity
mean 0.9998 0.9986

std 0.0001 0.0024

Metric DSA LSA TBSA

Absolute area (mm2)

mean 0.01895 0.01826 0.01832

std 0.00827 0.00842 0.00848

relative to TBSA 1.034 0.997 1.000
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Fig. 6. Segmentation of a lower tear meniscus image acquired with a commercially available
Cirrus HD-OCT system. A) The initial image has been scaled to 512x512 pixels and was
segmented with the DSA (green). The result of the tear meniscus localization is shown as a
yellow bounding box. B) Segmentation of the image by the LSA (yellow). Both networks
had only been trained on UHR-OCT images. The axes represent µm in tear fluid.

4. Discussion

In this manuscript we presented the segmentation of the tear meniscus based on two different
approaches with FCNs that have been trained on images processed with the previously published
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4. Discussion

In this manuscript, we presented the segmentation of the tear meniscus based on two different
approaches with FCNs that have been trained on images processed with the previously published



Research Article Vol. 11, No. 3 / 1 March 2020 / Biomedical Optics Express 1549

TBSA. For the DSA, after the standard OCT post-processing procedures and rescaling, the images
were used for training without any further modification. For the LSA, involving an initial search
of the ROI, the localization of the tear meniscus reached 99.99 % pinc with a very simple CNN
architecture, indicating that almost every tear meniscus pixel was correctly surrounded by the
bounding box. Comparing the localization results of the introduced network with those of the
more complex YOLOv3 and Tiny YOLOv3 revealed that, in our case, this simple architecture
was sufficient and even performed better when regarding Jaccard index and pinc. Evidently these
networks are designed for more advanced tasks, involving a multitude of classes, and would
outperform our network in more complex cases. As a result of the localization, the support of
tear meniscus increased approximately by a factor of six.
The mean Jaccard index of 93.24% and 93.16% and the mean sensitivity of 96.36% and

96.43% for DSA and LSA, respectively, indicate a good agreement between the training data and
the segmentations. In most cases, the difference between the two approaches is the exclusion or
inclusion of pixels at the edge of the tear meniscus area (see Fig. 4). Two factors influence this
local difference: first, the TBSA is based on Otsu’s method, which creates a separate threshold
value for the binarization of each image. Depending on the signal-to-noise ratio of the image, the
cutoff-value might include or exclude these border pixels. Second, the two different processes of,
on the one hand, downscaling the ground-truth area (TBSA) and, on the other hand, segmenting
the downscaled images (DSA and LSA), do not necessarily yield the same results, given that the
resolution on the depth axis is reduced by a factor of 16. Although the performance metrics of
DSA and LSA are very similar, an analysis of the relative and absolute areas (Table 3) revealed
an overestimation by the DSA and a slight underestimation by the LSA when compared to the
TBSA. This can be explained by the fact that the deviation of a single pixel from the ground truth
represents more area in the case of the DSA than in the LSA. The over- and underestimation
can also be seen when visualizing the segmented area (e.g. see green arrows Fig. 5). The
overall difference between both approaches, however, is negligible compared to other factors like
intra-subject variability [10].
The neural networks show a large improvement in processing times compared to the TBSA,

which can be attributed to the fact that the neural networks run on the GPU whereas the TBSA
runs on the CPU. Although the LSA consists of more steps, it is faster than the DSA. The
additional localization time of the LSA of 310 µs is negligible, while the lower image resolution
requires fewer computationally demanding convolution operations. Nonetheless, both methods
have the potential for video-rate and real-time segmentation applications.
In our previous work [29], we presented lower tear meniscus images that were challenging

for the TBSA. These cases, which have not been part of the training dataset, are depicted in
Fig. 5 and show the behavior of the segmentation in rare edge cases. The first case (Fig. 5(A))
demonstrates an advantage of the neural networks compared to the TBSA. While the TBSA
was limited by proceeding in each A-scan from the top until it encountered tissue, the neural
network is not and correctly segments the whole tear meniscus area. In the case of an irregular
tear meniscus shape (Fig. 5(B)), the TBSA already performed well and so does the LSA, whereas
the DSA omits part of the tear meniscus area. For case C (Fig. 5(C)) it is important to mention
that the training dataset only contained images where the debris was small enough to not be
considered by the TBSA, which was achieved by removing islets from the thresholded image.
The network has therefore only seen cases of a single continuous area as training data, where, if
present, debris was included in the tear meniscus area. Interestingly, in the present case, on one
hand, both approaches included parts of the debris in the area, which the TBSA did not, but, on
the other hand, also created small holes in the segmentation. Fortunately, this problem could
easily be solved with a flood-fill operation, that would not alter correctly segmented images and
only improve the segmentations containing holes. In Fig. 5(D), different depth-ranges the debris
is probably too large to be considered part of the segmented area, since it borders not only the
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surrounding tissue, but also the air-tear-interface at the top of the image. Although the DSA and
LSA slightly improve upon the segmentation of the area under the debris, this case still remains
an open challenge.
Further improvements to the networks could be made by increasing the number of images

from different subjects in the training dataset. Potentially including measurements of non-healthy
subjects, e.g. DED patients, would make the application more robust in a wider range of
cases. Furthermore, measurements acquired with different OCT-systems would reduce the
device-dependency of the networks. As long as there is a good representation of different devices,
the application could be used on data from systems it has not been trained on, which might
reduce the problem of device-dependant measurements [39,40]. This is possible because the
tear meniscus can be resolved with a standard resolution OCT, like the Cirrus HD-OCT system,
and does not require the superior axial resolution of an UHR-OCT. Although in some cases
different depth-ranges of different systems could lead to a false positive segmentation (Fig. 6),
using networks in cascade like the LSA could reduce this erroneous detection. However, on such
a multi-system scale, it might be necessary to use a more complex CNN than the one presented
here for the localization.

In summary, both DSA and LSA provided good results close to the ground truth and performed
better than the TBSA regarding segmentation time and segmentation of atypical cases. Given the
good performance metrics of the DSA, the problem of class imbalance does not strongly affect
the segmentation of measurements from healthy subjects. This might still change in the case of
DED patients, where the tear meniscus dimensions are much smaller, which reduces the support
even further. Comparing DSA and LSA, the future employment of the LSA seems favourable
due to the shorter segmentation time and the potentially higher robustness in unseen cases, as
shown by the challenging segmentation cases and the Cirrus HD-OCT measurement example.
This presumes that the localization continues to perform robustly across different devices, which
still requires further investigation and potential adjustments.

5. Conclusion

Deep learning was employed for the segmentation of the lower tear meniscus in healthy subjects.
Two different segmentation approaches were developed and provided a segmentation performance
close to the ground truth. Robust localization of the tear meniscus was achieved with a very
simple CNN architecture. Segmentation times of the neural networks were up to two orders
of magnitude faster than the previous algorithm and showed better performance in rare edge
cases. Future improvements of the dataset could include data from non-healthy subjects and data
from different OCT systems. When considering multi-system training for the segmentation of
OCT-measurements, cascading localization and segmentation networks shows great potential.
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A. Appendix

A.1. Performance metrics of the DSA for individual subjects

Table 4. Performance metrics of the DSA for individual subjects. Std is the standard deviation.

Subject Jaccard Dice Accuracy Sensitivity Specificity

1
mean 0.9566 0.9778 0.9995 0.9802 0.9997

std 0.0143 0.0076 0.0002 0.0111 0.0001

2
mean 0.9296 0.9630 0.9995 0.9594 0.9998

std 0.0418 0.0236 0.0003 0.0270 0.0001

3
mean 0.9342 0.9654 0.9996 0.9660 0.9998

std 0.0420 0.0386 0.0003 0.0425 0.0001

4
mean 0.8856 0.9380 0.9990 0.9263 0.9996

std 0.0639 0.0386 0.0005 0.0506 0.0001

5
mean 0.9322 0.9647 0.9995 0.9630 0.9998

std 0.0264 0.0151 0.0002 0.0261 0.0001

6
mean 0.9418 0.9699 0.9995 0.9603 0.9998

std 0.0219 0.0119 0.0002 0.0233 0.0001

7
mean 0.9043 0.9464 0.9992 0.9234 0.9998

std 0.0999 0.0652 0.0009 0.1017 0.0001

8
mean 0.9401 0.9690 0.9996 0.9651 0.9998

std 0.0155 0.0083 0.0001 0.0165 0.0001

9
mean 0.9244 0.9605 0.9997 0.9558 0.9999

std 0.0276 0.0154 0.0001 0.0243 0.0001

10
mean 0.9091 0.9510 0.9997 0.9734 0.9998

std 0.0665 0.0406 0.0002 0.0233 0.0002
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A.2. Performance metrics of the LSA for individual subjects

Table 5. Performance metrics of the LSA for individual subjects. Std is the standard deviation.

Subject Jaccard Dice Accuracy Sensitivity Specificity

1
mean 0.9594 0.9792 0.9974 0.9825 0.9984

std 0.0146 0.0078 0.0008 0.0091 0.0008

2
mean 0.9347 0.9658 0.9972 0.9579 0.9990

std 0.0379 0.0211 0.0015 0.0287 0.0007

3
mean 0.9338 0.9657 0.9976 0.9675 0.9988

std 0.0203 0.0110 0.0006 0.0153 0.0006

4
mean 0.8729 0.9275 0.9920 0.9389 0.9952

std 0.1085 0.0815 0.0103 0.0596 0.0106

5
mean 0.9280 0.9625 0.9968 0.9542 0.9987

std 0.0220 0.0120 0.0012 0.0220 0.0007

6
mean 0.9402 0.9689 0.9968 0.9593 0.9989

std 0.0309 0.0184 0.0023 0.0192 0.0023

7
mean 0.9161 0.9548 0.9955 0.9442 0.9982

std 0.0648 0.0408 0.0048 0.0345 0.0037

8
mean 0.9350 0.9663 0.9977 0.9567 0.9992

std 0.0202 0.0109 0.0007 0.0225 0.0005

9
mean 0.9213 0.9587 0.9983 0.9664 0.9990

std 0.0311 0.0176 0.0005 0.0247 0.0005

10
mean 0.9044 0.9457 0.9981 0.9670 0.9987

std 0.1037 0.0759 0.0028 0.0242 0.0029

Funding

Christian Doppler Research Association; Austrian Federal Ministry for Digital and Economic
Affairs ; National Foundation for Research, Technology, and Development; Carl Zeiss Meditec
Inc. as industrial partner of the Christian Doppler Laboratory for Ocular and Dermal Effects of
Thiomers.

Acknowledgment

The authors would like to thank Dr. Ali Fard and Dr. Homayoun Bagherinia for interesting and
inspiring discussions about the segmentation of OCT data.

Disclosures

The authors declare no conflicts of interest.

References
1. J. L. Gayton, “Etiology, prevalence, and treatment of dry eye disease,” Clin. Ophthalmol. 3, 405–412 (2009).
2. K. F. Farrand, M. Fridman, I. Özer Stillman, and D. A. Schaumberg, “Prevalence of diagnosed dry eye disease in the

United States among adults aged 18 years and older,” Am. J. Ophthalmol. 182, 90–98 (2017).
3. J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg,

H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS
II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3),
539–574 (2017).

https://doi.org/10.2147/OPTH.S5555
https://doi.org/10.1016/j.ajo.2017.06.033
https://doi.org/10.1016/j.jtos.2017.05.001


Research Article Vol. 11, No. 3 / 1 March 2020 / Biomedical Optics Express 1553

4. J. C. Mainstone, A. S. Bruce, and T. R. Golding, “Tear meniscus measurement in the diagnosis of dry eye,” Curr. Eye
Res. 15(6), 653–661 (1996).

5. A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota,
“Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2),
232–237.e1 (2007).

6. M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and
L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).

7. R. Fukuda, T. Usui, T. Miyai, S. Yamagami, and S. Amano, “Tear meniscus evaluation by anterior segment
swept-source optical coherence tomography,” Am. J. Ophthalmol. 155(4), 620–624.e2 (2013).

8. N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume
and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).

9. H. Oguz, N. Yokoi, and S. Kinoshita, “The height and radius of the tear meniscus and methods for examining these
parameters,” Cornea 19(4), 497–500 (2000).

10. S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement
by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447
(2009).

11. D. I. Park, H. Lew, and S. Y. Lee, “Tear meniscus measurement in nasolacrimal duct obstruction patients with
fourier-domain optical coherence tomography: novel three-point capture method,” Acta Ophthalmol. 90(8), 783–787
(2012).

12. J. G. Fujimoto and W. Drexler, “Introduction to OCT,” in Optical Coherence Tomography: Technology and
Applications (Springer International Publishing, 2015), pp. 3–64.

13. M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation:
Achievements and challenges,” J. Digit. Imaging 32(4), 582–596 (2019).

14. F. Rosenblatt, The Perceptron, a perceiving and recognizing automaton (project Para), Report: Cornell Aeronautical
Laboratory (Cornell Aeronautical Laboratory, 1957).

15. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,”
Neural Inf. Process. Syst. 25(2), (2012).

16. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” CoRR
abs/1505.04597 (2015).

17. R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics processors,” in
Proceedings of the 26th Annual International Conference on Machine Learning, (2009), ICML ’09, pp. 873–880.

18. L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer
boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt.
Express 8(5), 2732–2744 (2017).

19. A. Shah, L. Zhou, M. D. Abrámoff, and X. Wu, “Multiple surface segmentation using convolution neural nets:
application to retinal layer segmentation in OCT images,” Biomed. Opt. Express 9(9), 4509–4526 (2018).

20. C. S. Lee, A. J. Tyring, N. P. Deruyter, Y. Wu, A. Rokem, and A. Y. Lee, “Deep-learning based, automated
segmentation of macular edema in optical coherence tomography,” Biomed. Opt. Express 8(7), 3440–3448 (2017).

21. T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S.
Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT
using deep learning,” Ophthalmology 125(4), 549–558 (2018).

22. V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R.
M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep
learning,” Biomed. Opt. Express 10(2), 622–641 (2019).

23. M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L.
Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice
using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).

24. T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International
Conference on Computer Vision (ICCV), (IEEE Computer Society, Los Alamitos, CA, USA, 2017), pp. 2999–3007.

25. A. BenTaieb and G. Hamarneh, “Topology aware fully convolutional networks for histology gland segmentation,” in
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. R.
Sabuncu, G. Unal, and W. Wells, eds. (Springer International Publishing, 2016), pp. 460–468.

26. H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating
shape models for semantic segmentation,” in MICCAI, (2017).

27. P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel,
P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V.
Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded
fully convolutional neural networks,” CoRR abs/1702.05970 (2017).

28. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” (2017).
29. H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and

R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using
ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).

https://doi.org/10.3109/02713689609008906
https://doi.org/10.3109/02713689609008906
https://doi.org/10.1016/j.ajo.2007.04.006
https://doi.org/10.1016/j.preteyeres.2018.04.002
https://doi.org/10.1016/j.ajo.2012.11.009
https://doi.org/10.1001/archopht.122.9.1265
https://doi.org/10.1097/00003226-200007000-00019
https://doi.org/10.3928/15428877-20090901-01
https://doi.org/10.1111/j.1755-3768.2011.02183.x
https://doi.org/10.1007/s10278-019-00227-x
https://doi.org/10.1364/BOE.8.002732
https://doi.org/10.1364/BOE.8.002732
https://doi.org/10.1364/BOE.9.004509
https://doi.org/10.1364/BOE.8.003440
https://doi.org/10.1016/j.ophtha.2017.10.031
https://doi.org/10.1364/BOE.10.000622
https://doi.org/10.1364/BOE.10.001315
https://doi.org/10.1364/BOE.10.002744


Research Article Vol. 11, No. 3 / 1 March 2020 / Biomedical Optics Express 1554

30. R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl,
T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear
film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8),
5578–5583 (2013).

31. V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P.
Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization
using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).

32. W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical
coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G.
Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.

33. M. D. Bloice, P. M. Roth, and A. Holzinger, “Biomedical image augmentation using Augmentor,” Bioinformatics
35(21), 4522–4524 (2019).

34. F. Chollet, et al., “Keras,” https://keras.io (2015).
35. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.

Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.
Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).

36. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent
neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

37. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate
shift,” CoRR abs/1502.03167 (2015).

38. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv (2018).
39. P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M.

Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical
coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188
(2017).

40. H. H. Chan, Y. Zhao, T. A. Tun, and L. Tong, “Repeatability of tear meniscus evaluation using spectral-domain
Cirrusreg HD-OCT and time-domain Visantereg OCT,” Contact Lens and Anterior Eye 38(5), 368–372 (2015).

https://doi.org/10.1167/iovs.13-11920
https://doi.org/10.1364/OE.23.021043
https://doi.org/10.1093/bioinformatics/btz259
https://keras.io
https://doi.org/10.1097/ICO.0000000000001086
https://doi.org/10.1016/j.clae.2015.04.002

