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Abstract: Measuring intracranial pressure (ICP) is necessary for the treatment of severe
head injury but measurement systems are highly invasive and introduce risk of infection and
complications. We developed a non-invasive alternative for quantifying ICP using measurements
of cerebral blood flow (CBF) by diffuse correlation spectroscopy. The recorded cardiac pulsation
waveform in CBF undergoes morphological changes in response to ICP changes. We used
the pulse shape to train a randomized regression forest to estimate the underlying ICP and
demonstrate in five non-human primates that DCS-based estimation can explain over 90% of the
variance in invasively measured ICP.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The pressure environment of the brain, located in a confined space inside the skull, is driven by
three volume compartments – cerebrospinal fluid (CSF), cerebral blood volume, and brain tissue.
According to the Monro-Kellie Doctrine [1], intracranial pressure (ICP) remains constant if the
net volume of all compartments are unchanged. This delicate equilibrium can be disrupted in
diseases that alter the volume of one of the three compartments outside the limits for which the
other two can compensate. For instance, the brain tissue can swell in cases of traumatic brain
injury (TBI) and infections such as meningitis. Blood volume can change in hemorrhagic and
ischemic stroke. Finally, CSF can be produced excessively or absorbed insufficiently in diseases
such as hydrocephalus [2].
The measurement of ICP is an important diagnostic tool and regulating the level of ICP

when it exceeds normal bounds has been demonstrated to improve patient outcome in brain
injuries, including TBI [3–6], and hydrocephalus [7]. The measurement of ICP and the regulation
thereof through external ventricular drains (EVD) can prevent the often severe consequences
of intracranial hypertension, including malperfusion of the brain tissue leading to ischemia [8].
Aside from the primary use of ICP to guide interventions, secondary information can also be
derived from knowledge of its value. One example that shows increasing interest and growing
importance in research as well as clinical applications is the calculation of cerebral perfusion
pressure (CPP) and, in combination with it, the assessment of cerebral autoregulation (CA).
CPP is defined as the difference between mean arterial blood pressure (MAP) and ICP and
approximates the pressure gradient between inflowing arterial blood and outflowing blood in the
venous sinus. Clinical studies indicate better patient outcome when optimizing CPP to maintain
intact CA [9,10]. Information about CA, which is the ability of the brain to maintain constant
blood flow despite changes in CPP, is often derived from CPP or a function of it [11]. Therefore,
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it too relies on measurements of ICP. Lassen’s curve characterizes CA as a range of CPP in which
cerebral blood flow (CBF) remains approximately constant [12]. In an autoregulated brain, a
clear plateau is expected with only minor CBF changes despite changing CPP. Another metric for
CA is the pressure reactivity index, which is defined as the moving correlation between ICP and
MAP [13], which also requires the measurement of ICP.

Despite the benefit offered by information about ICP [14], its measurement is not free of risks.
The most common instruments used to measure ICP are invasive pressure transducers placed
into the parenchyma, ventricles, or just below the skull [15,16]. ICP is also often measured from
an EVD that can be opened to drain CSF and closed to measure the pressure inside the EVD that
corresponds to the pressure inside the cerebral ventricle [16]. All these devices allow for ICP
measurements with varying precision and reliability [17], but are highly invasive in that a hole
needs to be drilled into the skull and the device needs to reside inside the brain. Alternatively,
ICP can be measured using lumbar puncture manometry, which measures CSF pressure in the
spinal cord. This method reduces (but does not eliminate) risks for the patient but provides only
a transient measurement at a distant point, and requires unobstructed cerebrospinal fluid flow
in the spine [18]. Because of the high risk, ICP measurements are only considered in high risk
patients, in which the benefits of measuring or regulating ICP outweigh the risk of surgery, and
potential complications like hemorrhage and infection. For example, in adult TBI patients a
Glasgow Coma Scale of < 8 in combination with an abnormal computer tomography scan is
the recommended requirement for invasive ICP measurements [19]. For pediatric care, other
guidelines apply to address the benefit to risk ratio [20]. A non-invasive alternative to current
ICP monitors would reduce the risk of ICP measurements tremendously and give valuable access
to additional information in less severe brain injuries that do not meet the requirements for
an invasive procedure. Furthermore, it can open the field to a wealth of research in healthy
volunteers to help understand the dynamics of ICP and its relationship to various disease states.

Non-invasive ICP measurement has been proposed by other research groups using a variety
of approaches [21,22]. ICP changes can be indicated by impedance mismatches between the
carotid artery to a peripheral artery (e.g. a finger) as measured by the dicrotic notch delay [23].
Incompressible cerebrospinal fluid carries ICP to the tympanic membrane [24] or the optical
nerve sheath [25], where ICP can be measured as a displacement or diameter change, respectively.
Ultrasound can be used to measure time of flight from one ear to the other across the brain [26],
the blood velocity in the middle cerebral artery [27], or the pulsatility index of cerebral blood
flow velocity as measured with transcranial doppler (TCD) [28,29], as well as the critical closing
pressure [30]. Recently, an ultrasound based mathematical model of cerebral hemodynamics
has shown potential to estimate non-invasive ICP based on pulsatile information [31]. All these
ultrasound-based measurements can be correlated to ICP [28]. However, many of these examples
only measure relative changes in ICP, distinguish only between highly elevated and normal ICP,
or are not suited for long-term bedside measurements. The lack of precision, reliability, and ease
of use of all these methods necessitate an alternative.

Previously, hemodynamic changes measured non-invasively with diffuse optical devices have
been correlated to ICP or CPP [32] and first attempts to predict ICP from these measurements of
hemoglobin concentrations and CBF have been presented. Using diffuse optical devices such
as near-infrared spectroscopy (NIRS) [33,34] and diffuse correlation spectroscopy (DCS) [35]
has the benefit of simplicity of use, given that only one probe needs to be placed on the head
that can measure for hours without causing discomfort or risk to the patient. Furthermore, these
devices can be portable and potentially low cost. Another significant advantage of diffuse optical
methods, such as DCS, which measures changes in cerebral blood flow, is the sensitivity to the
microvasculature, allowing for localized measurements as compared to global measurements
using TCD. We have recently shown that a transfer function approach can translate oxygenated
hemoglobin concentration changes measured with NIRS into changes in ICP [36].
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Here we expand the idea of using hemodynamic changes to measure ICP and demonstrate that
absolute values of ICP extraction are possible. We take advantage of changes in the cardiac pulse
waveform with ICP as well as hemodynamics. Specifically, we utilize ICP pulse shape changes
when the ICP baseline increases [37,38]. A similar idea has recently been proposed by Fischer
and colleagues, who demonstrated a proof-of-concept of estimating ICP in infants and adults
based on pulsatile CBF measurements and a recurrent neural network using a hold-out validation
[39]. The pulse typically shows three distinct peaks, namely the percussion peak translated
from the systolic pulse in the pulsatile arterial blood pressure (ABP), the tidal peak created as a
rebound of the percussion peak (a result of intracranial compliance), and the dicrotic peak from
the closure of the aortic valve. As ICP rises, the intracranial compliance changes and so does the
ICP waveform, with the tidal wave increasing in height relative to the percussion wave. Here
we use DCS in a non-human primate model in which ICP was experimentally manipulated to
measure the cardiac pulsation of cerebral blood flow, which also shows the three descriptive
peaks. Using a set of physically relevant features and advanced machine learning algorithms, we
correlated the morphological changes in the CBF waveform to underlying ICP baselines. This
approach permitted a highly accurate estimate of ICP from non-invasive cerebral blood flow
sensing.

2. Materials and methods

To train a machine-learning algorithm to identify level of ICP from cardiac pulse waveforms,
cerebral blood flow changes were recorded with DCS in combination with an electro-cardiogram
(EKG) in five non-human primates (NHP) under different ICP values.

2.1. Diffuse correlation spectroscopy

Diffuse Correlation Spectroscopy (DCS) was used to measure cerebral blood flow. The working
principle of DCS has been described previously [35,40,41]. A single long-coherence length
laser at λ= 850 nm wavelength (DL852-050-SO, CrystaLaser, Reno, NV, USA) was used for
illumination trough a 200 µm-diameter multimode fiber. The source-detector distance was 2 cm
and photon counts were recorded at 2 MHz through four few-mode fibers (5.8µm core diameter)
leading into a four-channel photon counting module (SPCM-AQ4C, Excelitas Technologies,
Vaudreuil-Dorion, Quebec, Canada). Using software correlation, the photon intensity was
auto-correlated and all four channels were averaged. The intensity auto-correlation was then
converted to electric-field auto-correlation and fitted to the solution of the diffusion equation [40].
Using this technique, we achieved a sampling rate of 50 Hz, which was fast enough to resolve
the cardiac pulsation. CBF was extracted as an expression of the Brownian motion diffusion
coefficient αDb (in cm2/s) and here described as a percentage change from the baseline, as ∆CBF.
A synchronization pulse was sent to the auxiliary port of the DCS at any time the 3-lead

EKG registered a QRS complex in the signal. The EKG used was an in-house amplifier circuit
that allowed the detection of a cardiac pulse when the electrical signal of the EKG exceeded
a threshold manually set for each subject at the beginning of the experiment. This threshold
was set to be exceeded during the R-peak in the QRS complex of the EKG. The thresholding
approach of the EKG signal allowed for precise recording of the onset times of a cardiac pulse.

2.2. Experimental design

All procedures were approved by the Institutional Animal Care and Use Committee of the
University of Pittsburgh and complied with guidelines set forth in the National Institute of
Health’s Guide for the Care and Use of Laboratory Animals (2011). The measurements were
conducted on five NHPs (Macaca mulatta, N=5, f/m: 0/5, 8.2± 1.5 years, 10.2± 2 kg). All
animals were initially sedated using 20 mg/kg of Ketamine independently or in combination with
1 mg/kg Diazepam and 0.04 mg/kg Atropine. After placing an arterial line in the external carotid
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artery, the animals were ventilated and maintained under anesthesia using a combination of 10-25
µg/kg/hr Fentanyl administered intravenously and a minimal amount of Isoflurane gas (< 1%).
At the same time 0.1 mg/kg/hr of Vecuronium Bromide paralytic was given. Each animal was
held with its head facing forward in a stereotaxic apparatus and its stomach on the table.

The source and detector fibers of the DCS system were placed directly on the exposed skull of
the animals to reduce the influence of skin and muscle layers of the tissue. The fibers were placed
laterally on the right hemisphere near anterior-posterior zero in stereotaxic coordinates (Fig. 1(a)).
For ICPmonitoring and pressure manipulation, two small craniotomies were made. One permitted
access to the lateral ventricle for a catheter (Lumbar catheter, Medtronic, Minneapolis MN) and
the other led into the brain parenchyma for placement of the ICP sensor (Precision Pressure
Catheter, Raumedic Helmbrechts, Germany). ABP was measured from the A-line and ICP
from the invasive sensor at 100 Hz by a MPR1 Datalogger (Raumedic Helmbrechts, Germany).
Alignment markers were sent from a central voltage source to the pressure MPR1 Datalogger
and the DCS. The ventricular catheter was connected to an open saline reservoir that was lifted
relative to the animal’s head height to induce fluid pressure changes (Fig. 1(b)). By maintaining
a constant height, the pressure of the saline column translated to the cerebral ventricle and ICP
was altered. Due to CSF absorption in the brain, the catheter was held open to allow for constant
saline flow, which permitted maintenance of an ICP baseline level.

The first measurement for every subject was performed at the opening ICP. The ICP was then
leveled to 9 mmHg for a second measurement, if the initial ICP was at or below this level. From
there, the ICP was gradually raised to approximately 12 mmHg, 15 mmHg, 20 mmHg, and 30
mmHg. In three of the five subjects, the ICP was returned to a level of 9 mmHg between elevated
levels (12-30 mmHg), to distinguish ICP-induced influences on the hemodynamic signal from
those associated with the passage of time during the experiment. Every ICP level was held for
approximately 90 minutes while ICP and ∆CBF were recorded throughout this time period.

2.3. Signal processing

General signal processing was performed using Matlab R2019a (The MathWorks Inc., Natick,
MA, USA). All recorded signals were aligned with digital markers sent to the DCS and MPR1
Datalogger. EKG markers were used to measure the pulse onsets.

Over the course of several hours, laser instabilities were observed as seen in fluctuating y-axis
intersection of the intensity autocorrelation curve, known as β. The presence of a laser instability
was determined by any β value, averaged over 10 seconds, that showed a deviation greater than
0.01 from the median. If an instability was detected in a measurement, we removed all points
in time where β deviated more than half a standard deviation from the median. Unrelated to β,
some DCS pulses did not follow the canonical cardiac waveform shape, likely due to motion
artifacts. These motion artifacts can be caused by human intervention for periodically filling the
saline reservoir, watering the eyes of the NHP that were held open for visual stimulation of the
brain in a parallel experiment, or maintenance of the anesthesia and paralytic solution syringe
pumps. To exclude such pulses, we used a z-score rejection. The z-scored ∆CBF over all pulses
within a measurement (a period of approximately similar ICP for 90 minutes) was calculated at
each time point. Individual pulses that showed a z-score > 3 from the mean of the individual ICP
baseline for individual subjects were rejected.
After rejection of data, 120 consecutive pulses were averaged to improve the signal-to-noise

ratio (SNR). In our NHPs, 120 cardiac pulses corresponded to approximately 60 seconds of data,
given a typical heart rate of 120 beats per minute. The invasively measured ICP was averaged
over the time of these pulses to function as the ground truth for training of the machine learning
approach. The average window was then shifted by 10% of the window length, or 12 pulses, and
the procedure was repeated for the entire sequence of ICP data at each ICP level. This approach
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Fig. 1. Experimental setup and data analysis. (a) shows the experimental setup with the
placement of optical fibers and pressure sensor as well as the catheter on the exposed skull
of the monkey. The traces at the right show an example of changes in cerebral blood flow
(∆CBF) and ICP. The dashed line marks the maximum of the QRS complex in the EKG
recording. (b) shows how the saline reservoir connected to the lateral ventricle influences
ICP. The left two pulses show ICP pulsation shape changes, the right two curves show similar
changed in blood flow pulsation. (c) shows which morphologically relevant features were
extracted from the cartoon version of an ideal ∆CBF pulse.

balanced between the need to average data to reduce measurement noise and preserve a large
amount of training data for the machine learning algorithm.

The averaged pulses were then normalized to establish a consistent range across animals. The
normalization was performed in both the x- and y-direction – i.e. the blood flow change across a
pulse was set to be between 0 (diastolic) and 1 (systolic), and the length of a pulse was set to be
151 data points wide from diastolic to diastolic point in time by means of spline interpolation.
This normalization also removed the effect of heart rate changes that can be independent of ICP
changes.
To improve the SNR further, an adaptive filter was applied to the averaged pulses. Here we

used a Kalman filter adaptation, which was applied consecutively to all averaged pulses. Such
filtering allowed for the generation of an ideal pulse over time as an average of all previous
pulses. Each pulse was compared to the ideal pulse, the difference was calculated, and the pulse
was then corrected based on the error. Empirically determined constants defining the trust in
the ideal pulse and the measurement determined the strength of correction, weighted by the
calculated error. The ideal conception was then updated by adding the new measurement to the
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ideal conception calculation. As the waveform changed with increasing ICP, so did the Kalman
filter. The adaptive filter permitted reduction of the noise while maintaining the cardiac pulse
morphology and the ICP based changes thereof.

Given the sparsity of recorded pulses above 30mmHg of ICP, the prediction was only performed
for ICP values between 0 and 30 mmHg. The above procedures resulted in a total of 14,121
averaged pulses across all five animals.

2.4. Feature extraction

After normalization and filtering, morphological features were extracted. In Fig. 1(b) the
morphological differences for both ICP and ∆CBF for low (bottom) and high (top) ICP are shown.
To describe the subtle differences in the waveforms, the features shown in Fig. 1(c) were extracted
using the peak finding algorithms provided by the matlab function “findpeaks”. To describe the
individual waves within a cardiac pulse, peak height (pk), prominence (p) and full width at half
maximum (w) were extracted. In addition, the time point of the peak relative to the prior diastolic
minimum (pos), as well as the area under the curve were calculated. Further information was
gained by calculating the differences between waves. A complete list of all features is shown in
Table 1.

Table 1. Morphological features extracted from cardiac pulsation in ∆CBF

Individual peak analysis Peak to peak differences Full pulse analysis

P1pk P3pk d(P1-P2)pk Area under the curve (AUC)

P1pos P3pos d(P2-P3)pk Mean arterial pressure (MAP)

P1w P3w d(P1-P2)pos

P1p P3p d(P2-P3)pos

P2pk d(P1-P2)w
P2pos d(P2-P3)w
P2w d(P1-P2)p
P2p d(P2-P3)p

P1, P2 and P3 refer to the percussion, tidal and dicrotic peaks of the pulse wave, respectively.
The peak to peak differences were denoted as d(P1-P2) and d(P2-P3) and were calculated for all
four single peak features. In some cases, a feature was not detectable, e.g. when the percussion
and tidal peaks (P1 and P2) merged to a single peak (P1) at high ICP. In that case the dicrotic
peak (normally P3) became the second detected peak (P2) and no P3 could be found. In such
cases, all undetected features were set to 0, but still used in the machine learning algorithm as
the lack of a peak could be a strong indicator of elevated ICP. An additional feature added to
the algorithm was the averaged mean arterial pressure (MAP) over the time span of the 120
averaged pulses. This was done to avoid misinterpretation of elevated MAP for elevated ICP.
Combining the 22 features created a feature set that could be used to describe the individual
averaged pulse. A feature set was calculated for every averaged cardiac pulse, creating a matrix
including physiologically relatable information to use for supervised machine learning.

2.5. Machine learning

To allow for training and testing of the machine learning approach, the data were first separated
into training and testing data sets. The testing set, consisting of randomly sampled 20% of all
available feature sets, was held out from the training process (performed on 80% of the data) and
used in the final cross-validation.

The training set was then used to build a regression forest using the python toolbox scikit-learn
[42]. The functionality and working principle of regression forests and random decision forests
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in general has been explained in detail elsewhere [43,44]. The regression forest chosen here was
a bagged ensemble of 1000 individual decision tree regressors. Each decision in the decision
tree was binary and described by a threshold across a single feature chosen to yield the highest
information gain. Bagging describes that each individual decision tree in the ensemble was
trained on a small subset of the available training data set. This reduces the risk of overfitting to
the training set. Therefore, we chose to only include a randomly sampled fraction of one third of
the training set in each tree. The number was chosen by empirical evaluation. No restrictions
were given on the features available to every node or tree, such that all features could be used at
any time.

The maximum depth of each tree was set to 15. An increased tree depth can yield better results
but risks overfitting. In a decision tree regressor, the tree depth is exponentially proportional to
the resolution at which ICP can be estimated – a depth of 1 can distinguish 2 ICP levels, while a
depth of 3 can distinguish 8. The parameters of ensemble size and tree depth as well as bagging
quantity were chosen empirically to achieve a high precision and minimize overfitting.

After training the regression forest with the training data set and the corresponding invasively
measured ICP as the ground truth, the testing data set was used. A prediction of non-invasive
ICP based on the feature sets of each individual pulse was generated and the correlation to the
invasively measured ICP was determined.

3. Results

We successfully induced ICP baseline changes in 5 NHPs and recorded pulsatile∆CBF throughout
the experiment for multiple hours to generate a data set large enough for machine learning
application.

3.1. Data acquisition

For every NHP, data were collected in sets of approximately 90 minutes per ICP baseline, with the
total amount of data collected for animals varying between 9.1 and 16.6 hours. At the beginning

Fig. 2. Example recording of data in one subject. (a) shows a full measurement from one
subject, low-pass filtered (cut off frequency at 0.008 Hz) to emphasize the baseline. Dashed
line indicates where figure (b) is located. In (b), a close-up of data at the dashed line is
shown to see individual pulses. The pulses were filtered by a moving average of 0.1 seconds.



Research Article Vol. 11, No. 3 / 1 March 2020 / Biomedical Optics Express 1469

of every set, the ICP was adjusted. The individual measurement sets were combined in post
processing.

Changes in ICP translated into both changes in ABP and ∆CBF. This was especially apparent
when lowering the ICP from an elevated state back down to 9 mmHg (Fig. 1(a)). By measuring
ABP, ICP, and ∆CBF at high sampling rates, we were able to observe individual cardiac pulses
and their characteristic peaks and valleys (Fig. 2(b)).

3.2. Waveform extraction

The morphological details in the ∆CBF pulsatile signal needed were apparent by comparing the
pulses of low and elevated ICP baselines. Comparing pulses at ICP baseline below 10 mmHg,
which is considered normal pressure, with pulses during ICP baselines above 20 mmHg, which
is pathologically high, showed subtle but distinct differences (Fig. 3).

Fig. 3. Averaged cardiac pulses of all five NHP for ∆CBF, ICP and ABP. The solid black
line in each graph shows all pulses below 10 mmHg for the specific NHP. The red dashed
line shows pulse averages of ICP baselines above 20 mmHg. The shaded area shows the
standard deviation over all averaged pulses at each time point. The pulses were normalized
in height by division of maximum, thus showing a per unit (p.u.) magnitude, and spline
interpolated in time to be of the same length.

Overall, a higher ICP led to a broadening and rightward shift of the cardiac pulse compared
to the previous diastolic minimum. The strength of this effect differed between subjects (rows
in Fig. 3, with NHPs 2 and 4 exhibiting the least apparent changes but nonetheless subtle
morphological shifts. ICP and ABP waveforms were in good agreement with the non-invasively
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Fig. 4. Results of the regression forest machine learning approach. (a) shows the distribution
of the available data. The dashed line marks the maximum ICP level that was fitted for at 30
mmHg. (b) shows the distribution of features used in the regression forest as a percentage
of all chosen features in all decision criteria generated. The standard deviation across
individual trees is shown as error bars. Nomenclature is according to Table 1. (c) shows
the performance of the regression forest by plotting estimated ICP (ICPest) over invasively
measured ground truth (ICPinv). The solid line shows the ideal fit, while the dashed lines
mark an area of 2 mmHg around the ideal fit. The shaded area shows the confidence interval.
(d) graphs the difference between ICPest and ICPinv over ICPinv in a Bland-Altman plot. The
dashed lines span a region of 95% of the distribution, corresponding to a standard deviation
of 1.96. The histogram on the right of this graph shows the distribution of data points in
number of samples. (e) shows a continuous estimate of ICP for NHP 3. The gray line shows
the estimated ICP, and the black line the invasively measured ICP. An r2 = 0.92 and a mean
squared error MSE= 3.2 mmHg were achieved.
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measured ∆CBF waveform. ICP, measured through a parenchymal pressure transducer, and ABP,
measured in the carotid artery through an A-line, must be measured invasively, leaving ∆CBF as
the only non-invasive measurement we performed that was able to show these subtle changes.

3.3. Regression forest learner

We were only able to collect a small amount of data in one animal beyond 30 mmHg (Fig. 4(a)).
Therefore, the training and testing of the regression forest was only performed for data below
30 mmHg. The held-out testing data was closely matched (r2= 0.91) between the invasively
measured (ICPinv) and estimated (ICPest) pressure, as seen in Fig. 4(c). The shaded area shows
the confidence interval of the prediction calculated using the Jackknife algorithm described by
Wager et al. [45]. The dashed lines show an area of ±2 mmHg around the ideal match shown as
the solid line. A mean squared error of 3.3 mmHg was calculated for this test. A good match
between estimated and invasively measured ICP can be seen, especially around 10 mmHg, which
is also the area with the most available data (shown in Fig. 4(a)). Further evidence for a good fit
is given by the Bland-Altman plot that shows how 95% of all data points are within 3.7 mmHg of
the invasive reference measurement (Fig. 4(d)).

We found that the area under the curve (AUC) of the cardiac pulse and the MAP baseline value
(not pulsatile shape) were the most important features in our data (Fig. 4(b)). This suggests that a
measurement of MAP, for instance by blood pressure cuffs or photoplethysmography, is essential
for a precise prediction of ICP. In fact, when removing MAP as a feature to the regression forest,
to generate a single device approach only using information from DCS, the r2 value dropped
to 0.82 (data not shown). The area under the curve was the second most important feature for
predicting ICP, which is confirmed by the wave broadening (Fig. 3). The time delay to the
dicrotic wave, the third peak in the cardiac pulse, was the third strongest indicator of ICP. This
feature is interesting as it might not be present in some averaged waveforms. Therefore, the lack
of a dicrotic wave can offer valuable information to the fitting algorithm.
To simulate a continuous prediction, we ran all available waveforms for a single subject

through the predictor and plotted estimates against invasive measurements. Figure 4(e) shows
this example measurement, of which randomly selected 80% of the pulses were also used in the
training set and only 20% held out from training representing new data points. The graphical
representation over time shows good agreement between the estimated (gray colored graph) and
the invasive measurement (black colored graph) and the mean square error (MSE) between the
two was calculated to be 3.2 mmHg and is thus comparable to the test performed with only held
out data (Fig. 4(c)).

4. Discussion

In this work, we demonstrate that changes in baseline ICP influence the shape of the cardiac
pulsation observed in the ICP and ∆CBF waveforms. This effect allowed us to estimate ICP
using a machine learning approach with ∆CBF data obtained from DCS. In our testing in five
macaque monkeys in which we induced ICP changes with a catheter placed in the lateral ventricle,
we achieved a very high similarity between estimates of ICP and the invasive measurements
(r2= 0.91, cross-validated), with an estimation error of MSE= 3.3 mmHg and a 95% similarity
to the invasive data within a 3.7 mmHg range. The results therefore indicate the possibility of
reliable estimation of ICP in absolute numbers solely based on non-invasive measurements of
MAP and ∆CBF. The addition of EKG, another non-invasive measurement, allowed for precise
waveform alignment and averaging and is highly recommended in this setup, but not essential
if a hypothetical clinical application would not permit its use. The invasively measured ICP
was used as a validation reference, but it was not free of measurement error, due to placement
location in the brain tissue and inherent device limitations, such that differences between the two
can partially be explained by the limitations of the reference measurement itself.
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The benefit of a feature-based machine learning approach like the regression forest lies in
the information we receive about the importance for every physiological feature, i.e. how often
a feature allowed for the most significant split of ICP values. This information can be used
to improve the algorithm in the future or reject features to enhance performance for real-time
applications. We found that MAP and area under the curve of the ∆CBF waveform were the most
important features, while features that can potentially be removed without reducing the prediction
performance were the derivative features showing differences in peak height, prominence, full
width at half maximum and position between adjacent peaks.

Some groups have tried to predict CPP rather than ICP [30,46]. Under the assumption
that CPP=MAP – ICP, we would be able to calculate ICP from the estimated CPP through a
non-invasive measurement of MAP. We tried fitting to CPP directly by replacing the ground
truth of invasively measured ICP with invasively measured CPP and found that CPP prediction
yielded r2 = 0.98. While this can be considered a good fit, deriving ICP from here, by subtracting
the measured MAP value from the estimated CPP value, showed worse performance, typically
overestimating the true ICP with a wider spread of ICP values and yielding r2 = 0.76 (data
not shown). This is likely due to the assumptions used to calculate the reference CPP values.
Describing CPP as the difference between MAP and ICP is an approximation often used in the
clinic, and yet it neglects the effect of vessel wall tension and assumes that venous sinus pressure
is always equal to ICP. Furthermore, the MAP feature was used in over 90% of all decisions,
which intuitively makes sense given that normal MAP values are approximately one magnitude
larger than normal ICP values but overrules the sensitivity to ICP influences on CPP. We therefore
chose the direct ICP estimation over the CPP estimation.

Despite the good performance of ICP estimation with our approach, a set of limitations apply:
Generalization and inter-subject variability

1. The ability of the brain to autoregulate blood flow under differing pressure conditions can
vary among individuals and is one of many ways the five animals in this study differ from
each other.

2. Despite our best efforts at maintaining inter-experimental similarity, some subject variation
can be explained by slight variations in the probe placement for DCS as well as the ICP
sensor and the ventricular catheter.

3. While our approach outperforms current non-invasive alternatives, estimates of ICP in
this study were performed on held out data of the same NHP used for training. Further
testing on additional NHPs (not used to train the algorithm) and testing on human subjects
is needed to make a direct comparison and draw firm conclusions about the potential of
clinical use.

Experimental setup

1. In our study, changes in ICP were induced with an open saline reservoir connected via
a catheter to the lateral ventricle. These changes induced a hydrocephalus-like state in
which ICP was altered, but it is unclear how this type of manipulation of ICP will relate to
situations involving brain swelling or hemorrhage. Future work will be necessary to test
the generality of our ICP prediction in other disease states to make application in traumatic
brain injury and stroke possible.

2. The distribution of blood vessels and therefore blood flow as well as intracranial pressure
was assumed to be equal throughout the brain. This might limit the application in
certain clinical settings like local edema or hemorrhage. However, finding and comparing
differences in healthy vs. impaired brain regions can be a strength of this system as well,
allowing for localized ICP measurements.
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3. Under the assumption that morphological waveform changes are a result of brain impedance
changes due to elevated pressure, one must consider that the impedance to flow can be
changed by other mechanisms as well, including cerebral autoregulation which influences
the vasomotor tone. Influences of autoregulation are not considered artifacts in this study
but rather a potential contributor to the signal.

4. Autoregulatory impairment and vasomotor tone can be influenced by anesthesia, which
is a limitation of the study design. The isoflurane gas anesthetic, which is suspected to
negatively influence autoregulation [47], was kept at a minimum through the inclusion
of fentanyl. Nonetheless, the use of anesthesia may influence the generalizability of our
results to measurements of ICP in awake individuals or those under different anesthesia
regimes.

Signal processing

1. To train a regression forest, a large data set of features must be generated. This procedure
can, depending on the complexity of features and amount of training data, accumulate to
many hours of processing time. Once a regression forest is trained however, the application
can be done in real-time, given that regression forests perform simple comparisons at each
node in each tree, which require minimal computational power.

2. The accuracy of the regression forest prediction is dependent on the training data set size.
Figure 4(c) shows an increasingly larger confidence interval with increasing ICP, which is
an effect of fewer training data points at larger ICP values (as seen in the distribution in
Fig. 4(a)).

Our work compares favorably to other non-invasive ICP monitors using TCD. Cardim and
colleagues reported confidence intervals between 4.2 to 59.6 mmHg when comparing a large
number of TCD-based approaches, with an overall confidence interval around 12 mmHg [27].
In the review by Rosenberg et al. a large portion of the discussed ICP monitoring devices used
CT or Ultrasound to measure the diameter of the optical nerve sheath [21]. They only make a
binary decision between elevated and normal ICP, with a cut-off pressure at 20 mmHg. Reported
sensitivity for TCD ranges from 74% to 95%, with a specificity of 74-100% for 7 independent
studies identifying ICP > 20 mmHg. CT approaches show similar results as they rely on the same
physiological response to elevated ICP. Using our approach, a sensitivity of 88% was achieved,
with a specificity of 97%, placing the DCS-based ICP estimation at the top half of the reported
classification results, while having the additional advantage of allowing continuous predictions
as opposed to binary decisions. This implies that our approach can potentially be used to identify
cases of elevated ICP prior to EVD placement, currently estimated by enlarged ventricles in
magnetic resonance imaging (MRI) or computer tomography (CT) in TBI patients.

5. Conclusions

We have demonstrated the potential of DCS to be used as a non-invasive monitor of ICP by
interpreting the waveform shape of cardiac pulsation of ∆CBF. The performance of our machine
learning approach relied on incorporating non-invasive measurements like EKG, for better pulse
averaging, and MAP, for excluding events of elevated MAP. The regression forest reached an
r2 = 0.92 (cross-validated) with a mean squared error of 3.3 mmHg. In the future, a transition
to human application in clinical settings is needed to test the performance of a DCS-based ICP
monitor against clinically relevant invasive monitors in disease states that result in altered ICP
for reasons different from the fluid pressure elevation method used here. In addition, increasing
the number of subjects will be essential in future work to account for inter-subject variability and
improve the generalization of the approach. Nonetheless, our method opens the door for ICP
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monitors in patients with less severe injuries or diseases as well as healthy patients for research
purposes.
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