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Abstract

Background: Platelets are a critical element in coagulation and inflammation, and activated 

platelets are linked to cancer risk through diverse mechanisms. However, a causal relationship 

between platelets and risk of lung cancer remains unclear.

Methods: We performed single and combined multiple instrumental variable Mendelian 

Randomization (MR) analysis by an inverse-weighted (IVW) method, in addition to a series of 

sensitivity analyses. Summary data for associations between single nucleotide polymorphisms 

(SNPs) and platelet count is from a recent publication including 48,666 Caucasian Europeans and 

International Lung Cancer Consortium and Transdisciplinary Research in Cancer of the Lung data 

consisting of 29,266 cases and 56,450 controls analyze associations between candidate single 

nucleotide polymorphisms and lung cancer risk.

Results: Multiple instrumental variable analysis incorporating six SNPs showed a 62% increased 

risk of overall NSCLC (OR, 1.62; 95%CI, 1.15–2.27; P = 0.005) and 200% increased risk for 

small cell lung cancer (OR, 3.00; 95%CI, 1.27–7.06; P = 0.01), respectively. Results showed only 

a trending association with NSCLC histological subtypes, which may be due to insufficient sample 

size and/or weak effect size. A series of sensitivity analysis retained these findings.

Conclusion: Our findings suggest a causal relationship between elevated platelet count and 

increased risk of lung cancer and provide evidence of possible anti-platelet interventions for lung 

cancer prevention.

Impact: Our findings suggest a causal relationship of increased platelet count and risk of lung 

cancer, which also provide a better understanding of lung cancer etiology and potential evidence 

for anti-platelet interventions for lung cancer prevention.
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Introduction

Lung cancer, a highly invasive, rapidly metastasizing cancer, has been the leading cause of 

cancer deaths worldwide for decades, accounting for more than one million deaths each year 

[1]. Smoking is a major risk factor for lung cancer and accounts for about 80% of male and 

50% of female lung cancer cases [2]. In addition, environmental–occupational exposures [3, 

4], lifestyle, and genetic variants [5] have been broadly explored as risks/predisposing 

factors for lung cancer. However, aspects of lung cancer risk remain largely unexplained and 

thus warrant further study.

The lung was recently noted to play a major role in platelet biogenesis and act as an ideal 

bioreactor for production of mature platelets from megakaryocytes, which account for ~50% 

of total platelet production [6]. Platelets are an important element in coagulation and 

inflammation, and diverse mechanisms link activated platelets to cancer progression [7, 8]. It 

has been identified that several variants in those chromosomal regions associated with 

platelet count (PLT) have associations with myocardial infraction, autoimmune and 

hematologic disorders. Tumor-educated blood platelets (TEPs) have emerged as promising 

biomarker sources for non-invasive detection of cancer, and it was demonstrated to 

discriminates patients with NSCLC from healthy individuals and patients with various non-

cancerous inflammatory conditions [9, 10].Indeed, high platelet count (PLT) is associated 

with increased mortality in a variety of cancers, including malignant mesothelioma [11], 

gynecological malignancies [12], and breast cancer [13]. In addition, platelet-to-lymphocyte 

ratio and mean platelet volume also add value in early diagnosis of lung cancer [14] and 

prognosis prediction [15, 16]. These findings, taken together, indicate that disordered 

platelet production may be connected to lung carcinogenesis. However, due to potential 

unmeasured confounders in observational studies, the association between PLT and lung 

cancer risk remains unclear.

Mendelian Randomization (MR) is based on the principle that an individual’s genotype is 

randomized at conception[17] and utilizes genetic variants as instrumental variables (IV) for 

the association between phenotypic exposures and outcomes to eliminate bias due to 

unmeasured confounders. Genetic variants used as instrumental variables should meet the 

following assumptions: (1) genetic variants are associated with exposure, (2) genetic variants 

affect outcome only via the exposure, and (3) genetic variants are not associated with any 

confounders of the exposure–outcome association.[18] By finding a genetic marker that 

satisfies instrumental variable assumptions, Mendelian randomization analysis has been 

broadly used to estimate unconfounded associations between exposure and outcome [19], 

such as the effect of higher adult height on escalated cancer risk [20–24].

In this study, we performed summary data-based Mendelian randomization (SMR) [25] 

analysis which is the extension of two sample Mendelian randomization, using curated 

platelet count-related SNPs as instrumental variables to evaluate the association between 
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platelet count and lung cancer risk by using summary statistics from recent large scale 

genome-wide association studies (GWAS).

Materials and Methods

Data source and study population

Mendelian Randomization analysis was conducted to estimate the effect of platelet count 

(X) on risk of lung cancer (Y) using genetic variants (G) as instrumental variables.[26] 

According to the MR analysis diagram described in Figure 1, we used coefficients of genetic 

variants on platelet count (bXG) and their standard errors (SEXG) from the recently published 

study of Gieger et al., which pooled 23 studies and included approximately 48,666 

individuals of European descent [27].

The 54 genetic variants were identified that were associated with PLT (Table S1). One of the 

key assumptions underlying Mendelian Randomization is that the genetic variants (SNPs) 

used as instrumental variables are only related to the outcome of interest through the 

exposure variable under study. No pleiotropic pathways should exist from platelet-related 

SNPs to lung cancers through intermediates other than platelet count. Thus, six genetic 

variants (rs17030845, rs6141, rs3792366, rs210134, rs708382, and rs6065) where further 

selected as qualified instrumental variables that have prior functional knowledge supporting 

their association with platelets and no apparent link to cancer through intermediates other 

than platelets. By the way, the SNP rs6141 in THPO narrowly misses the level required for 

nominal significance (P<5×10−8) with P=6.18×10−8 in Europeans, but shows genome-wide 

significance in Japanese [28]. Therefore, it is still included serving as instrument variable for 

platelet count.

Coefficients (βYG) and corresponding standard errors (SEYG) of the association between 

genetic variants and lung cancer risk were obtained from meta-analysis of existing 

Oncoarray and TRICL GWAS studies, which were detailed previously [29]. Briefly, overall 

non-small cell lung cancer (NSCLC) samples were composed from Oncoarray and TRICL 

GWASs, including 29,266 cases and 56,450 controls, and subgroup analyses were performed 

for 11,273 adenocarcinoma (AC), 7,426 squamous cell carcinoma (SqCC), and 2,664 small 

cell lung cancer (SCLC) cases (Table S2).

Mendelian Randomization (MR) analysis

Mendelian Randomization analysis with multiple instrumental variables was performed 

using an inverse-variance weighted (IVW) method combining the effect of genetic variants 

by weighted score. This score was used as an instrumental variable to estimate the effect of 

PLT on lung cancer risk [26]:

bY X_IV W =
∑i = 1

N bXGibY Gi
SEY Gi

2

∑i = 1
N bXGi

SEY Gi

2 , SEY X_IV W = 1

∑i = 1
N bXGi

SEY Gi

2
(1)
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In which N = 6 represents the number of instrumental variables included, and bYX_IVW and 

SEYX_IVW represent the effect of platelet count on lung cancer risk in log(OR) scale and its 

corresponding standard error. Associations of platelet count on risk of overall NSCLC and 

individual subtypes were analyzed. Results are presented as OR for lung cancer risk per 

100×109/L increment of platelet count.

Additionally, penalized IVW, robust IVW, MR-Egger, penalized MR-Egger, and robust MR-

Egger methods were used for sensitivity analyses to evaluate robustness of the findings [30]. 

Step forward modeling was used to add an optimal instrumental variable each time from the 

left 48 SNPs, adding to the 6 curated SNPs for multiple instrumental variable analysis, until 

there was no improvement of statistical significance (P-value) for the test of causal effect. 

The modeling process was terminated when no added SNP increased −log10 (P-value) by 

20% or 10%. Besides, MR analysis with a single IV (one SNP at a time) was performed as 

supplementary. Effect of PLT on Lung cancer risk [bYX in log odds ratio (OR) scale] and its 

standard error (SEYX) were estimated as follows [31]:

bY X = bY G
bXG

, SEY X = SEY G
bXG

(2)

All analyses were performed using R Software Version 3.3.1 (The R Foundation). All tests 

were two-sided, and P ≤ 0.05 was considered statistically significant unless stated otherwise.

Results

Among 48,666 Europeans, 54 SNPs were quantitatively associated with platelet count with 

P ≤ 5×10−8 (Table S1) [27]. Associations of those 54 SNPs with risk of lung cancer were 

analyzed among 29,266 cases and 56,450 controls from OncoArray and previous GWAS 

studies. Demographics and study descriptions were detailed previously [29] and are briefly 

listed in Table S2 as well. Summarized association results of SNPs and lung cancer risk are 

listed in Table S3. According to instrumental variable assumptions that had evidence only 

related to platelets, six SNPs which are relatively independent and situated in different 

chromosomes were selected for MR analysis (Table 1), and 48 SNPs were excluded (Table 

S4).

In multiple IV analysis combining all six relatively independent SNPs situated in different 

chromosomes, a significant association between PLT and overall NSCLC risk is revealed, 

showing that each 100×109/L increment of PLT was associated with a 62% increase in 

NSCLC risk (95%CI, 1.15–2.27; P = 0.005) (Figure 2A and Figure 3A). In addition, five 

different methods of sensitivity analysis, including penalized IVW, robust IVW, MR-Egger, 

penalized MR-Egger, and robust MR-Egger, retained this association (Table 2). In NSCLC 

subtype analysis, it failed to detected significant associations between PLT and the risk of 

lung Adenocarcinoma (AC) (OR, 1.51; 95%CI, 0.92–2.48; P = 0.11) (Figure 2B and Figure 

3B) and squamous cells carcinomas (SqCC) (OR, 1.59; 95%CI, 0.86–2.92; P = 0.14) (Figure 

2C and Figure 3C). On the other hand, it is suggested that PLT is significantly associated 

with the risk of small cell lung cancer (SCLC) (OR, 3.00; 95%CI, 1.27–7.06; P = 0.01) 

(Figure 2D and Figure 3D). The results of single IV are presented in supplementary (Table 
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S5). No correction was conducted for them because a single weak instrument will have 

lower power to reject the null hypothesis [32].

We also performed a step forward modeling strategy to include more instrumental SNPs in 

the multiple instrumental variable model. Including more SNPs as instrumental variables 

yielded similar, yet more significant, causal estimates (Table S6 and Figure S1).

Discussion

This Mendelian randomization study suggests that each 100×109/L increment in platelets 

results in a 62% increased risk of non-small cell lung cancer and, notably, a 200% increased 

risk of small cell lung cancer. However, this study failed to show evidence of a relationship 

between PLT and risk of AC and SqCC, probably resulting from insufficient sample size. As 

comparing with SCLC, the effect size of PLT on AC and SqCC are weaker, larger sample 

size is needed [33].

Platelets have been studied for decades as an important regulator of inflammation and 

thrombosis [34], which are broadly interrelated with human carcinogenesis [13]. Platelets 

are also recognized as a stimulator of proangiogenic factors [13] and a major source of 

vascular endothelial growth factor (VEGF) [35], platelet-derived growth factor (PDGF) [36, 

37], and basic fibroblast growth factor (bFGF) [37], which act as promoters of tumor growth 

in lung [38–44]. New evidence suggests that platelets are relevant to defensive, physiological 

immune responses of the lungs and to inflammatory lung diseases [45]. Thus, higher platelet 

count has a potential biological connection to increased risk of lung cancer. Interestingly, p-

selectin, an important adhesion molecule expressed on the surface of activated platelets, is 

more highly expressed in lung adenocarcinomas and squamous cell carcinomas than in 

healthy populations [46]. These results indicate a considerable role of platelets in lung 

carcinogenesis.

Intriguingly, a recent study indicates that cancer cells depend on platelets to avoid anoikis 

and succeed in metastasis [47]. Platelets induce resistance to anoikis in vitro and are critical 

for metastasis in vivo by activating RhoA-MYPT1-PP1-mediated YAP1 dephosphorylation 

and promoting its nuclear translocation to inhibit apoptosis. However, the unknown 

underlying mechanism warrants future well-designed functional experiments to clarify the 

role of platelets in these cellular processes.

In addition, anti-platelet agents, such as purinergic antagonists, are used clinically because 

they affect inflammatory pathways [48]. Recent publications demonstrate that platelets 

suppress T-cell responses against tumors through production and activation of 

immunosuppressive factors. These results suggest the use of a combination of 

immunotherapy and platelet inhibitors, such as aspirin [49, 50] and clopidogrel, as a 

therapeutic strategy against cancer [51, 52]. Therefore, it is possible that anti-platelet therapy 

could reduce lung cancer risk.

However, we acknowledge some limitations in our study. First, some associations between 

genetic instrumental variables and phenotype (platelet count) were insufficient and thus may 

result in a “weak instrument” phenomenon [53]. Second, in some scenarios, inconsistent 
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results were observed between inverse-variance weighted and MR-Egger (or regular and 

penalized/robust) models. This phenomenon indicates that genetic variants probably have 

horizontal pleiotropy, and thus MR assumptions are likely violated [54]. Moreover, there is 

heterogeneity across results incorporating different SNP sets as instrumental variables, 

which indicates that the instrumental variable should be curated carefully before Mendelian 

randomization analysis. In this study, all platelet count-related SNPs were curated, and six 

were retained to better satisfy MR assumptions. Third, a linear association was assumed 

between PLT and lung cancer risk. However, the shape could be non-linear and thus 

warrants further study incorporating individual-level data. Fourth, we only evaluated platelet 

count as a potential causal factor, whereas platelet function plays a comparable causal role in 

this pathway. More detailed platelet information should be measured in future studies, 

including immature platelet fractions and function. In addition, we assumed that study 

populations used for the genetic instrument for platelet count and for risk of lung cancer 

were representative of the same general Caucasian population, which may not be true. 

Therefore, additional functional studies are needed to further evaluate the mechanisms that 

underlie associations between platelets and lung cancer risk.

Nonetheless, our findings do suggest a role of platelet count in risk of lung cancer. The 

results provide a better understanding of lung cancer etiology and evidence for a possible 

role of anti-platelet interventions in lung cancer prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of Mendelian randomization (MR) analysis. MR aims to estimate the unbiased 

causal relationship between PLT and lung cancer risk by incorporating genetic variants as 

instrumental variables (IVs). Dashed line represents the association between instrumental 

variable (SNP) and outcome (risk of lung cancer), denoted using bYG in log(odds ratio) scale 

and its standard error (SEYG), which were obtained from GWAS. Estimates of quantitative 

trait loci relationship between SNP and phenotype (platelet count) were obtained from a 

recently published article, which were described by bXG and SEXG. Lung cancer risk was 

assessed for non-small cell lung cancer (NSCLC), adenocarcinoma (AC), squamous cell 

carcinoma (SqCC), and small cell carcinoma (SCLC).
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Figure 2. 
Causal associations between platelet count and lung cancer risk. Forest plots of causal 

associations between platelet count (PLT) and risk of lung cancer using Mendelian 

randomization (MR) analysis incorporating different genetic variants as instrumental 

variables (IVs). Associations of PLT with risk of (A) non-small cell lung cancer (NSCLC), 

(B) adenocarcinoma (AC), (C) squamous cell carcinoma (SqCC), and (D) small-cell lung 

cancer (SCLC) were analyzed based on single IV or multiple IVs using inverse-variance 

weighted (IVW) analysis.
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Figure 3. 
Assocations between SNPs and lung cancer risk. Scatter plots displaying estimates of the 

association between each SNP and risk of lung cancer against quantitative relationship of 

each SNP on platelet count (PLT) for (A) non-small cell lung cancer (NSCLC), (B) 

adenocarcinoma (AC), (C) squamous cell carcinoma (SqCC), and (D) small cell lung cancer 

(SCLC). Slope of the blue dashed line through the plot represents inverse-variance weighted 

(IVW) regression estimate for the causal effect of PLT on lung cancer risk.
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